COMP9444
Neural Networks and Deep Learning

2a. Probability and
Backprop Variations

Textbook, Sections 3.1-3.5, 3.9-3.13, 5.2.2, 5.5, 8.3
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Outline

Probability and Random Variables (3.1-3.2)
Probability for Continuous Variables (3.3)
Gaussian Distribution (3.9.3)

Conditional Probability (3.5)

Bayes’ Rule (3.11)

Entropy and KL-Divergence (3.13)

Cross Entropy (3.13)

Maximum Likelihood (5.5)

Weight Decay (5.2.2)

Momentum (8.3)
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Probability (3.1)

Begin with a set Q — the sample space (e.g. 6 possible rolls of a die)

Each w € Q 1s a sample point/possible world/atomic event

A probability space or probability model 1s a sample space
with an assignment P(w) for every w € Q such that

e.g. P(1) =P(2)=P(3)=P(4) =P(5) = P(6) = ¢.
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Random Events

A random event A is any subset of Q

PA)= Y P(w)
{weA}
e.g. P(dieroll <5)=P(1)+P(2)+P3)+P4)=2+++¢+¢=13
: ° ° o0 E o0 e o
: ° ° % oo | o% : :
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Random Variables (3.2)

A random variable is a function from sample points to some range
(e.g. the Reals or Booleans)

For example, 0dd(3) = true

P induces a probability distribution for any random variable X:

P(X = Xi) = Z P((JO)
{orX (w)=x;}

e.g., P(0dd = true) = P(1)+P(3)+P(5) = % + % i % — %
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Probability for Continuous Variables (3.3)

e.g. P(X =x) =U|[18,26|(x) = uniform density between 18 and 26

[ )

0.125

18 dx 26

Here P is a density; it integrates to 1.
P(X =20.5) =0.125 really means

lim P(20.5 <X <20.5+dx)/dx=0.125
dx—0
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Gaussian Distribution (3.9.3)

Puo(x) = \/21_]T0_e—(x—‘u)2/20'2 A

0 O
U = mean
O = standard deviation

Multivariate Gaussian: P, o(x) = [ Pu.o; (x;)

l
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Probability and Backprop Variations

Probability and Logic

A

A"B

Logically related events must have related probabilities

For example, P(AV B) = P(A) + P(B) — P(AAB)
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Conditional Probability (3.5)

If P(B) # 0, then the conditional probability of A given B is

COMPY444

Probability and Backprop Variations

A

A"B

B

P(A|B) =

P(AAB)

P(B)
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Bayes’ Rule (3.11)

The formula for conditional probability can be manipulated to find a
relationship when the two variables are swapped:

P(AAB) = P(A|B)P(B) = P(B|A)P(A)

P(B|A)P(A)

— Bayes’ rule P(A|B) = P(B)

This is often useful for assessing the probability of an underlying cause
after an effect has been observed:

P(Effect|Cause)P(Cause)

P(Cause|Effect) = P(Effect
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Example: Medical Diagnosis

Question: Suppose we have a test for a type of cancer which occurs 1n 1%
of patients. The test has a sensitivity of 98% and a specificity of 97%.
If a patient tests positive, what is the probability that they have the cancer?

Answer: There are two random variables: Cancer (true or false) and
Test (positive or negative). The probability is called a prior, because it
represents our estimate of the probability before we have done the test
(or made some other observation). The sensitivity and specificity are
interpreted as follows:

P(positive|cancer)=0.98, and P(negative|—cancer)=0.97
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Bayes’ Rule for Medical Diagnosis

POS/' P(Yes,Pos) =0.01
0.98
Yes Test 0.02

0.01 mx P(Yes,Neg) = 0.00

0.99 Pos P(No ,Pos) =0.03
No %’
Test
w‘
Neg P(No ,Neg) = 0.96

P(positive|cancer)P(cancer)

Cancer?

P(cancer|positive)

P(positive)
0.98 x0.01 0.01 1

0.98%0.01+0.03x0.99  0.01+0.03 4
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Example: Light Bulb Defects

Question: You work for a lighting company which manufactures 60% of
its light bulbs in Factory A and 40% in Factory B. One percent of the
light bulbs from Factory A are defective, while two percent of those from
Factory B are defective. If a random light bulb turns out to be defective,

what is the probability that it was manufactured in Factory A?

Answer: There are two random variables: Factory (A or B) and Defect
(Yes or No). In this case, the prior is:

P(A) = 0.6, P(B) =04
The conditional probabilities are:

P(defect|A) =0.01, and P(defect|B)=0.02
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Bayes’ Rule for Light Bulb Defects

YeS/' P(A,Yes) = 0.006
0.01
A Defect? 0.99
0.6 No\» P(A.No ) = 0.594
0.4 Yes P(B,Yes) =0.008
B %
Defect?
w‘
No P(B,No ) =0.392

P(defect|A)P(A)
P(defect)
0.01%0.6 0.006

Factory?

P(A|defect) =

COMPY444

0.01%0.6+0.02%04  0.006+0.008
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Entropy and KL-Divergence (3.13)

The entropy of a discrete probability distribution p = (py,...,py) is

n
Z 10g2 p l

Given two probability distributions p = (p1,...,p,) and ¢ = (q1,---,qn)
on the same set Q, the Kullback-Leibler Divergence between p and ¢ is

k(P q) pi(log, pi —log, qi)

IIMs

KL-Divergence 1s like a “distance” from one probability distribution to
another. But, it is not symmetric.

DxL(pllq) # Dxkr(q||p)
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Entropy and Huffmann Coding

Entropy is the number of bits per symbol achieved by a (block) Huffman
Coding scheme.

Example 1:  H((0.5,0.5)) = 1 bit.

Suppose we want to encode, in zeros and ones, a long message composed
of the two letters A and B, which occur with equal frequency. This can be
done efficiently by assigning A=0, B=1. In other words, one bit is needed
to encode each letter.
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Entropy and Huffmann Coding

Example 2:  H((0.5,0.25,0.25)) = 1.5 bits.

Suppose we need to encode a message consisting of the letters A, B and C,
and that B and C occur equally often but A occurs twice as often as the
other two letters. In this case, the most efficient code would be A=0, B=10,
C=11. The average number of bits needed to encode each letter is 1.5.
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Entropy and KL-Divergence

If the samples occur in some other proportion, we would need to “block™
them together in order to encode them efficiently. But, the average number

of bits required by the most efficient coding scheme is given by

n

H(<p177pn>): pi(_10g2pi)

1=

Dk1(¢q| p) is the number of extra bits we need to trasmit if we designed a
code for ¢() but it turned out that the samples were drawn from p() instead.

k(P q) pi(log, pi —log, qi)

M:

l:
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Continuous Entropy and KL-Divergence

the entropy of a continuous distribution p() is

H(p) = [ p(6)(~logp(8))do
for a multivariate Gaussian distribution,

H(p) = Z log 0;
7
KL-Divergence

Die.(pll9) = | p(8)(log p(8) —log ¢(8)) a8
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Forward KL-Divergence

Given P, choose Gaussian Q to minimize Dgp (P || Q)

Not OK,
Forward-KL large

/1|

OK, KL small

Q must not be small in any place where P is large.
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Reverse KL-Divergence

Given P, choose Gaussian Q to minimize Dy (Q || P)

Not OK,
Reverse-KL large

/

¥ ¥

OK, KL small

Q just needs to be concentrated in some place where P is large.
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KL-Divergence in Deep Learning

KL-Divergence 1s used in a number of deep learning algorithms,
including Variational Autoencoders (Week 10)

KL-Divergence 1s also used in some policy-based deep reinforcement
learning algorithms such as Variational Inference or Trust Region
Policy Optimization (TPRO) (but we will not cover these in detail)
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Variations on Backprop

Cross Entropy
problem: least squares error function not suitable for classification,
where target =0 or 1
mathematical theory: maximum likelihood
solution: replace with cross entropy error function

Weight Decay

problem: weights “blow up”, and inhibit further learning
mathematical theory: Bayes’ rule

solution: add weight decay term to error function
Momentum

problem: weights oscillate in a “rain gutter”
solution: weighted average of gradient over time
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Cross Entropy

For classification tasks, target ¢ 1s either O or 1, so better to use
E=—tlog(z)— (1—1)log(l —7z)

This can be justified mathematically, and works well in practice —
especially when negative examples vastly outweigh positive ones.
It also makes the backprop computations simpler

G_E B 7—1
0z  z(1—2)
: 1
it S l+es’
OFE O0F 07
— = S5 =1—t
Os 0z Os
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Maximum Likelihood (5.5)

H 1is a class of hypotheses
P(D|h) = probability of data D being generated under hypothesis & € H.
log P(D|h) is called the likelihood.

ML Principle: Choose h € H which maximizes this likelihood,

i.e. maximizes P(D | h) [or, maximizes log P(D | h)]

In our case, each hypothesis % is a choice of parameters for a neural
network or other function applied to input values x while the observed
data D consist of the target values ¢.
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Least Squares Line Fitting

f(x)
|

> X
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Derivation of Least Squares

Suppose the data are generated by a linear function f() plus Gaussian

noise with mean zero and standard deviation O.

1 ()2
P(DIR) = Ptlf) = [] e =0
1 1
logP(1|f) = Z—z—oz(ti—f(xi))z—log(o)—Elog(Zn)
JuL = argmax,.y log P(t|f)

= argmingey Y (6— f(x;))’

(Note: we do not need to know O)
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Derivation of Cross Entropy (3.9.1)

For classification tasks, 7 1s either O or 1.
Assume t is generated by hypothesis f as follows:

P(I[f(x) = f(x)
PO[f(x:)) = (1—f(xi))
ie.  P@lf(w) = fu)"(1—f()" ™

then
logP(t|f) = ) tilogf(xi)+(1—1)log(1—f(x))

fur = argmax;ey Y tilog f(xi) +(1—1)log(1 — f(x:)

(Can also be generalized to multiple classes.)
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Weight Decay (5.2.2)

Sometimes we add a penalty term to the loss function which encourages
the neural network weights w; to remain small:

1 A
E = §Z(Zi_ti)2 + §§W§

This can prevent the weights from “saturating” to very high values.

It 1s sometimes referred to as “elastic weights” because the weights
experience a force as if there were a spring pulling them back towards the
origin according to Hooke’s Law.

The scaling factor A needs to be determined from experience, or
empirically.
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Bayesian Inference

H 1s a class of hypotheses
P(D|h) = probability of data D being generated under hypothesis h € H.
P(h|D) = probability that & is correct, given that data D were observed.

Bayes’ Theorem:

P(h|D)P(D) = P(D|h)P(h)
P(h|D) = © (DIJ(’%) (h)

P(h) is called the prior.
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Weight Decay as MAP Estimation (5.6.1)

We assume a Gaussian prior distribution for the weights, 1.e.

1 2 /72
Plw) = e Wi/2%
Then (w) U\/ZTIGO
P(t|w)P(w) 1 1 (=) 1 w22
Plwl|t) = — e 202 e J’'°70
i P(t) P(1) I_l V2ro U V21O
1 1
log P(w|t) = —2—022(5— - 20(2) ;w + constant
WMAP = argmax,.g logP(w|t)

1
= argmin, g (5 > (@i— ;)

i

2)
} J
J
where A = 02/002.
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Momentum (8.3)

It landscape 1s shaped like a “rain gutter”’, weights will tend to oscillate

without much improvement.

Solution: add a momentum factor

J3)

ow <+ O(Bw—r]a—
w

w o — w+ Ow

Hopeftully, this will dampen sideways oscillations but amplify downhill

motion by ﬁ.

COMPY444 (© Alan Blair, 2017-20

31



