COMP9444 20T3

COMP9444 Neural Networks and Deep Learning

4a. Image Processing

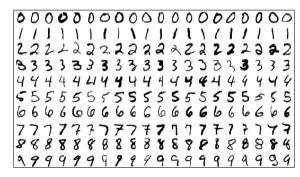
Textbook, Sections 7.4, 8.4, 8.7.1

Outline

- Image Datasets and Tasks
- AlexNet
- Data Augmentation (7.4)
- Weight Initialization (8.4)
- Batch Normalization (8.7.1)
- Residual Networks
- Dense Networks
- Style Transfer

COMP9444 C Alan Blair, 2017-20 COMP9444 20T3 Image Processing 2

MNIST Handwritten Digit Dataset



- **black and white, resolution** 28×28
- 60,000 images
- \blacksquare 10 classes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

COMP9444

©Alan Blair, 2017-20

COMP9444 20T3

Image Processing

3

1

CIFAR Image Dataset

- color, resolution 32×32
- **50,000** images
- 10 classes

ImageNet LSVRC Dataset

- \blacksquare color, resolution 227 \times 227
- 1.2 million images

1000	classes
------	---------

COMP9444	©Alan Blair, 2017-20	COMP9444	(

6

COMP9444 20T3

Image Processing

Object Detection

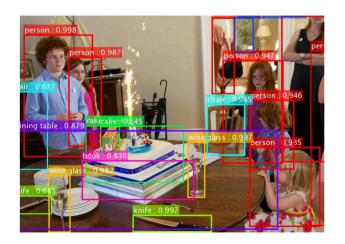


Image Processing Tasks

- image classification
- object detection
- object segmentation
- style transfer
- generating images
- generating art
- image captioning

© Alan Blair, 2017-20

7

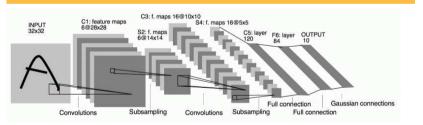
5

COMP9444 20T3

COMP9444 20T3

Image Processing

LeNet trained on MNIST

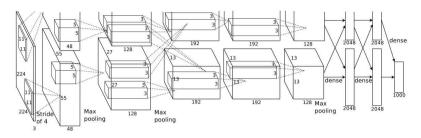


The 5×5 window of the first convolution layer extracts from the original 32×32 image a 28×28 array of features. Subsampling then halves this size to 14×14 . The second Convolution layer uses another 5×5 window to extract a 10×10 array of features, which the second subsampling layer reduces to 5×5 . These activations then pass through two fully connected layers into the 10 output units corresponding to the digits '0' to '9'.

ImageNet Architectures

- AlexNet, 8 layers (2012)
- VGG, 19 layers (2014)
- GoogleNet, 22 layers (2014)
- ResNets, 152 layers (2015)

AlexNet Architecture



- 5 convolutional layers + 3 fully connected layers
- max pooling with overlapping stride
- softmax with 1000 classes
- 2 parallel GPUs which interact only at certain layers

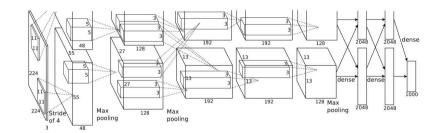
COMP9444	©Alan Blair, 2017-20	COMP9444	©Alan Blair, 2017-20

COMP9444 20T3

Image Processing

10

AlexNet Details



- 650K neurons
- 630M connections
- 60M parameters
- **u** more parameters that images \rightarrow danger of overfitting

Enhancements

COMP9444 20T3

- Rectified Linear Units (ReLUs)
- overlapping pooling (width = 3, stride = 2)
- stochastic gradient descent with momentum and weight decay

Image Processing

- data augmentation to reduce overfitting
- 50% dropout in the fully connected layers

COMP9444

 \ge > 10 layers

> 30 layers

 \ge 100 layers

weight initializationbatch nomalization

skip connections

▶ identity skip connections

COMP9444 20T3

Image Processing

12

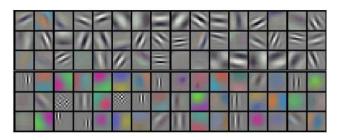
Data Augmentation (7.4)

- patches of size 224 × 224 are randomly cropped from the original images
- images can be reflected horizontally

Dealing with Deep Networks

- also include changes in intensity of RGB channels
- at test time, average the predictions on 10 different crops of each test image

Image Processing



- filters on GPU-1 (upper) are color agnostic
- filters on GPU-2 (lower) are color specific
- these resemble Gabor filters

© Alan Blair, 2017-20

15

```
COMP9444 20T3
```

Image Processing

Statistics Example: Coin Tossing

Example: Toss a coin once, and count the number of Heads

Mean	μ	$=\frac{1}{2}(0+1) = 0.5$
Variance		$= \frac{1}{2} \big((0 - 0.5)^2 + (1 - 0.5)^2) \big) = 0.25$
Standard	Deviation σ	$=\sqrt{\text{Variance}}=0.5$
Example: 7	Foss a coin 100	times, and count the number of Heads
Mean	μ	=100*0.5=50

Variance	=100*0.25=25
Standard Deviation σ	$=\sqrt{Variance}=5$

Example: Toss a coin 10000 times, and count the number of Heads

 $\mu = 5000, \qquad \sigma = \sqrt{2500} = 50$

© Alan Blair, 2017-20

16

Statistics

The mean and variance of a set of *n* samples x_1, \ldots, x_n are given by

$$Mean[x] = \frac{1}{n} \sum_{k=1}^{n} x_k$$

$$Var[x] = \frac{1}{n} \sum_{k=1}^{n} (x_k - Mean[x])^2 = \left(\frac{1}{n} \sum_{k=1}^{n} x_k^2\right) - Mean[x]^2$$
If w_k, x_k are independent and $y = \sum_{k=1}^{n} w_k x_k$ then

$$\operatorname{Var}[y] = n \operatorname{Var}[w] \operatorname{Var}[x]$$

COMP9444

©Alan Blair, 2017-20

18

COMP9444 20T3

Image Processing

Weight Initialization

If the nework has *D* layers, with input $x = x^{(1)}$ and output $z = x^{(D+1)}$, then

$$\operatorname{Var}[z] \simeq \left(\prod_{i=1}^{D} G_0 n_i^{\operatorname{in}} \operatorname{Var}[w^{(i)}]\right) \operatorname{Var}[x]$$

When we apply gradient descent through backpropagation, the differentials will follow a similar pattern:

$$\operatorname{Var}[\frac{\partial}{\partial x}] \simeq \left(\prod_{i=1}^{D} G_1 \, n_i^{\operatorname{out}} \operatorname{Var}[w^{(i)}]\right) \operatorname{Var}[\frac{\partial}{\partial z}]$$

In this equation, n_i^{out} is the average number of outgoing connections for each node at layer *i*, and G_1 is meant to estimate the average value of the derivative of the transfer function.

For Rectified Linear Units, we can assume $G_0 = G_1 = \frac{1}{2}$

Weight Initialization (8.4)

Consider one layer (i) of a deep neural network with weights $w_{jk}^{(i)}$ connecting the activations $\{x_k^{(i)}\}_{1 \le k \le n_i}$ at the previous layer to $\{x_j^{(i+1)}\}_{1 \le j \le n_{i+1}}$ at the next layer, where g() is the transfer function and

$$x_j^{(i+1)} = g(\operatorname{sum}_j^{(i)}) = g\left(\sum_{k=1}^{n_i} w_{jk}^{(i)} x_k^{(i)}\right)$$

Then

COMP9444 20T3

$$\operatorname{Var}[\operatorname{sum}^{(i)}] = n_i \operatorname{Var}[w^{(i)}] \operatorname{Var}[x^{(i)}]$$
$$\operatorname{Var}[x^{(i+1)}] \simeq G_0 n_i \operatorname{Var}[w^{(i)}] \operatorname{Var}[x^{(i)}]$$

Where G_0 is a constant whose value is estimated to take account of the transfer function.

If some layers are not fully connected, we replace n_i with the average number n_i^{in} of incoming connections to each node at layer i + 1.

COMP9444

© Alan Blair, 2017-20

COMP9444 20T3

Image Processing

Weight Initialization

In order to have healthy forward and backward propagation, each term in the product must be approximately equal to 1. Any deviation from this could cause the activations to either vanish or saturate, and the differentials to either decay or explode exponentially.

$$\operatorname{Var}[z] \simeq \left(\prod_{i=1}^{D} G_0 \, n_i^{\text{in}} \operatorname{Var}[w^{(i)}]\right) \operatorname{Var}[x]$$
$$\operatorname{Var}\left[\frac{\partial}{\partial x}\right] \simeq \left(\prod_{i=1}^{D} G_1 \, n_i^{\text{out}} \operatorname{Var}[w^{(i)}]\right) \operatorname{Var}\left[\frac{\partial}{\partial z}\right]$$

We therefore choose the initial weights $\{w_{ik}^{(i)}\}$ in each layer (i) such that

$$G_1 n_i^{\text{out}} \text{Var}[w^{(i)}] = 1$$

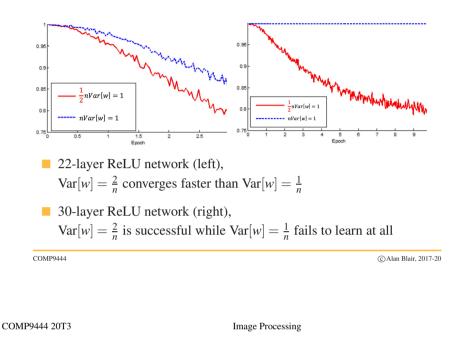
COMP9444

19

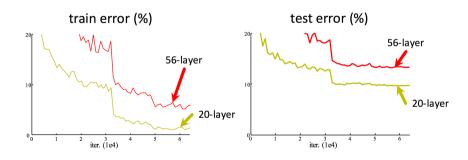
20

22

Weight Initialization



Going Deeper



If we simply stack additional layers, it can lead to higher training error as well as higher test error.

Batch Normalization (8.7.1)

We can normalize the activations $x_k^{(i)}$ of node *k* in layer (*i*) relative to the mean and variance of those activations, calculated over a mini-batch of training items:

$$\hat{x}_{k}^{(i)} = \frac{x_{k}^{(i)} - \text{Mean}[x_{k}^{(i)}]}{\sqrt{\text{Var}[x_{k}^{(i)}]}}$$

These activations can then be shifted and re-scaled to

$$y_k^{(i)} = \beta_k^{(i)} + \gamma_k^{(i)} \hat{x}_k^{(i)}$$

 $\beta_k^{(i)}, \gamma_k^{(i)}$ are additional parameters, for each node, which are trained by backpropagation along with the other parameters (weights) in the network. After training is complete, Mean $[x_k^{(i)}]$ and Var $[x_k^{(i)}]$ are either pre-computed on the entire training set, or updated using running averages.

COMP9444

© Alan Blair, 2017-20

23

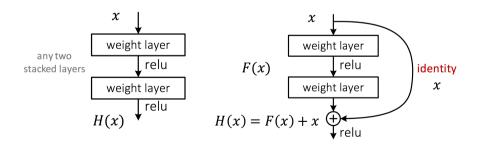
COMP9444 20T3

COMP9444

COMP9444 20T3

Image Processing

Residual Networks



Idea: Take any two consecutive stacked layers in a deep network and add a "skip" connection which bipasses these layers and is added to their output.

24

25

27

Residual Networks

- the preceding layers attempt to do the "whole" job, making x as close as possible to the target output of the entire network
- F(x) is a residual component which corrects the errors from previous layers, or provides additional details which the previous layers were not powerful enough to compute
- with skip connections, both training and test error drop as you add more layers
- with more than 100 layers, need to apply ReLU before adding the residual instead of afterwards. This is called an identity skip connection.

C	OMP9444	©Alan Blair, 2017-20			COMP9444		©Alan Blair, 2017-20	
COMP94	<i>44</i> 20T3	Image Processing		26	COMP9444 20T3	Image Processing		
COMP94	44 2013	Image Processing		26	COMP9444 2013	Image Processing		

Texture Synthesis

Neural Texture Synthesis

- 1. pretrain CNN on ImageNet (VGG-19)
- 2. pass input texture through CNN; compute feature map F_{ik}^{l} for i^{th} filter at spatial location k in layer (depth) l
- 3. compute the Gram matrix for each pair of features

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$

- 4. feed (initially random) image into CNN
- 5. compute L2 distance between Gram matrices of original and new image
- 6. backprop to get gradient on image pixels
- 7. update image and go to step 5.

Dense Networks

COMP9444 20T3

Input	Dense Block 1	Pooling Convolution	Dense Block 2	Pooling Convolution	Dense Block 3	Prediction Prediction "horse"
-------	---------------	------------------------	---------------	------------------------	---------------	-------------------------------------

Recently, good results have been achieved using networks with densely connected blocks, within which each layer is connected by shortcut connections to all the preceding layers.

28

Neural Texture Synthesis

We can introduce a scaling factor w_l for each layer l in the network, and define the Cost function as

$$E_{\text{style}} = \frac{1}{4} \sum_{l=0}^{L} \frac{w_l}{N_l^2 M_l^2} \sum_{i,j} (G_{ij}^l - A_{ij}^l)^2$$

where N_l , M_l are the number of filters, and size of feature maps, in layer l, and G_{ij}^l , A_{ij}^l are the Gram matrices for the original and synthetic image.

			content	1	btyle /		new muge
COMP9444	©Alan Blair, 2017-20		COMP9444				©Alan Blair, 2017-20
COMP9444 20T3	Image Processing	30	COMP9444 20T3		Image Processing	Ş	

Neural Style Transfer

Neural Style Transfer

Neural Style Transfer

For Neural Style Transfer, we minimize a cost function which is

$$E_{\text{total}} = \alpha \ E_{\text{content}} + \beta \ E_{\text{style}}$$

= $\frac{\alpha}{2} \sum_{i,k} ||F_{ik}^{l}(x) - F_{ik}^{l}(x_{c})||^{2} + \frac{\beta}{4} \sum_{l=0}^{L} \frac{w_{l}}{N_{l}^{2} M_{l}^{2}} \sum_{i,j} (G_{ij}^{l} - A_{ij}^{l})^{2}$

where

- $x_c, x =$ content image, synthetic image
- $F_{ik}^{l} = i^{\text{th}}$ filter at position k in layer l
- N_l, M_l = number of filters, and size of feature maps, in layer l
 - w_l = weighting factor for layer l
- $G_{ii}^{l}, A_{ii}^{l} =$ Gram matrices for style image, and synthetic image

29

References

- "ImageNet Classification with Deep Convolutional Neural Networks", Krizhevsky et al., 2015.
- "Understanding the difficulty of training deep feedforward neural networks", Glorot & Bengio, 2010.
- Batch normalization: Accelerating deep network training by reducing internal covariate shift", Ioffe & Szegedy, ICML 2015.
- "Deep Residual Learning for Image Recognition", He et al., 2016.
- "Densely Connected Convolutional Networks", Huang et al., 2016.
- "A Neural Algorithm of Artistic Style", Gatys et al., 2015.

COMP9444

©Alan Blair, 2017-20