
COMP9444
Neural Networks and Deep Learning

7b. Reinforcement Learning

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 1

Outline

� Reinforcement Learning vs. Supervised Learning

� Models of Optimality

� Exploration vs. Exploitation

� Value Function Learning

◮ TD-Learning

◮ Q-Learning

� TD-Gammon

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 2

Supervised Learning

Recall: Supervised Learning

� We have a training set and a test set, each consisting of a set of

examples. For each example, a number of input attributes and a target

attribute are specified.

� The aim is to predict the target attribute, based on the input attributes.

� Various learning paradigms are available:

◮ Decision Trees

◮ Neural Networks

◮ SVM

◮ .. others ..

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 3

Learning of Actions

Supervised Learning can also be used to learn Actions, if we construct a

training set of situation-action pairs (called Behavioral Cloning).

However, there are many applications for which it is difficult, inappropri-

ate, or even impossible to provide a “training set”

� optimal control

◮ mobile robots, pole balancing, flying a helicopter

� resource allocation

◮ job shop scheduling, mobile phone channel allocation

� mix of allocation and control

◮ elevator control, backgammon

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 4

Reinforcement Learning Framework

� An agent interacts with its environment.

� There is a set S of states and a set A of actions.

� At each time step t, the agent is in some state st .

It must choose an action at , whereupon it goes into state

st+1 = δ(st ,at) and receives reward rt = R (st ,at)

� Agent has a policy π : S → A . We aim to find an optimal policy π∗

which maximizes the cumulative reward.

� In general, δ, R and π can be multi-valued, with a random element,

in which case we write them as probability distributions

δ(st+1 = s |st ,at) R (rt = r |st ,at) π(at = a |st)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 5

Probabilistic Policies

There are some environments in which any deterministic agent will

perform very poorly, and the optimal (reactive) policy must be stochastic

(i.e. randomized).

In 2-player games like Rock-Paper-Scissors, a random strategy is also

required in order to make agent choices unpredictable to the opponent.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 6

Models of optimality

Is a fast nickel worth a slow dime?

Finite horizon reward
h−1

∑
i=0

rt+i

Infinite discounted reward
∞

∑
i=0

γ irt+i, 0≤ γ < 1

Average reward lim
h→∞

1
h

h−1

∑
i=0

rt+i

� Finite horizon reward is simple computationally

� Infinite discounted reward is easier for proving theorems

� Average reward is hard to deal with, because can’t sensibly choose

between small reward soon and large reward very far in the future.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 7

Comparing Models of Optimality

1
+2

+11

+10

3

2

a

a
a

� Finite horizon, k = 4 → a1 is preferred

� Infinite horizon, γ = 0.9 → a2 is preferred

� Average reward → a3 is preferred

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 8

RL Approaches

� Value Function Learning

◮ TD-Learning

◮ Q-Learning

� Policy Learning

◮ Evolution Strategies

◮ Policy Gradients

� Actor-Critic

◮ Combination of Value and Policy learning

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 9

Value Function Learning

Every policy π determines a Value Function V π : S → R where V π(s) is

the average discounted reward received by an agent who begins in state s

and chooses its actions according to policy π.

If π = π∗ is optimal, then V ∗(s) = V π∗(s) is the maximum (expected)

discounted reward obtainable from state s . Learning this optimal value

function can help to determine the optimal strategy.

The agent retains its own estimate V () of the “true” value function V ∗().

The aim of Value Function Learning is generally to start with a random V

and then iteratively improve it so that it more closely approximates V ∗.

This process is sometimes called “Bootstrapping”.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 10

Value Function

(a)

1 2 3

1

2

3

− 1

+ 1

4

START

−1

+1

.5

.33

.5

.33 .5

.33

.5

1.0

.33

.33

.33

(b)

1.0.5

.5

.5

.5

.5

.5

.5

.5

.33

.33

.33

1 2 3

1

2

3

− 1

+ 1

4

(c)

−0.0380

−0.0380

 0.0886 0.2152

−0.1646

−0.2911

−0.4430

−0.5443 −0.7722

This is the Value Function V π where π is the policy of choosing between

available actions uniformly randomly.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 11

K-Armed Bandit Problem

The special case of an active, stochastic environment with only one state

is called the K-armed Bandit Problem, because it is like being in a room

with several (friendly) slot machines, for a limited time, and trying to

collect as much money as possible.

Each action (slot machine) provides a different average reward.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 12

Exploration / Exploitation Tradeoff

Most of the time we should choose what we think is the best action.

However, in order to ensure convergence to the optimal strategy, we must

occasionally choose something different from our preferred action, e.g.

� choose a random action 5% of the time, or

� use Softmax (Boltzmann distribution) to choose the next action:

P(a) =
eR (a))/T

∑
b∈A

eR (b))/T

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 13

Exploration / Exploitation Tradeoff

I was born to try...

But you’ve got to make choices

Be wrong or right

Sometimes you’ve got to sacrifice the things you like.

- Delta Goodrem

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 14

Delayed Reinforcement

aa1

s1 s

−1

+1

2

s +2

+1

a

a1a2

a

−1

+1

2 1
2 3

We may need to take several actions before we can get the good reward.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 15

Temporal Difference Learning

Let’s first assume that R and δ are deterministic. Then the (true) value

V ∗(s) of the current state s should be equal to the immediate reward plus

the discounted value of the next state

V ∗(s) = R (s,a)+ γV ∗(δ(s,a))

We can turn this into an update rule for the estimated value, i.e.

V (st)← rt + γV (st+1)

If R and δ are stochastic (multi-valued), it is not safe to simply replace

V (s) with the expression on the right hand side. Instead, we move its value

fractionally in this direction, proportional to a learning rate η

V (st)←V (st)+η [rt + γV (st+1)−V (st)]

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 16

Q-Learning

Q-Learning is similar to TD-Learning except that we use a function

Qπ : S ×A → R which depends on a state, action pair instead of just a

state.

For any policy π the Q-Function Qπ(s,a) is the average discounted reward

received by an agent who begins in state s, first performs action a and then

follows policy π for all subsequent timesteps.

If π = π∗ is optimal, then Q∗(s,a) = Qπ∗(s,a) is the maximum (expected)

discounted reward obtainable from s, if the agent is forced to take action a

in the first timestep but can act optimally thereafter.

The agent retains its own (initially, random) estimate Q() and iteratively

improves this estimate to more closely approximate the “true” function Q∗().

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 17

Q-Learning

For a deterministic environment, π∗, Q∗ and V ∗ are related by

π∗(s) = argmaxa Q∗(s,a)

Q∗(s,a) = R (s,a)+ γV ∗(δ(s,a))

V ∗(s) = max
b

Q∗(s,b)
So

Q∗(s,a) = R (s,a)+ γ max
b

Q∗(δ(s,a),b)

This allows us to iteratively approximate Q by

Q(st ,at)← rt + γ max
b

Q(st+1,b)

If the environment is stochastic, we instead write

Q(st ,at)← Q(st ,at)+η [rt + γ max
b

Q(st+1,b)−Q(st ,at)]

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 18

Q-Learning Example

aa1

s1 s

−1

+1

2

s +2

+1

a

a1a2

a

−1

+1

2 1
2 3

Exercise:

1. compute V π(s3) if π(s3) = a2 and γ = 0.9

2. compute π∗, V ∗ and Q∗ for this environment (if γ = 0.9)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 19

Theoretical Results

Theorem: Q-learning will eventually converge to the optimal policy, for

any deterministic Markov decision process, assuming an appropriately

randomized strategy.

(Watkins & Dayan 1992)

Theorem: TD-learning will also converge, with probability 1.

(Sutton 1988, Dayan 1992, Dayan & Sejnowski 1994)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 20

Limitations of Theoretical Results

� Delayed reinforcement

◮ reward resulting from an action may not be received until several

time steps later, which also slows down the learning

� Search space must be finite

◮ convergence is slow if the search space is large

◮ relies on visiting every state infinitely often

� For “real world” problems, we can’t rely on a lookup table

◮ need to have some kind of generalisation (e.g. TD-Gammon)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 21

Computer Game Playing

Suppose we want a write a computer program to play a game like

Backgammon, Chess, Checkers or Go. This can be done using a tree

search algorithm (expectimax, MCTS, or minimax with alpha-beta

pruning). But we need:

(a) an appropriate way of encoding any board position as a set of

numbers, and

(b) a way to train a neural network or other learning system to compute a

board evaluation, based on those numbers

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 22

Backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 23

Backgammon Neural Network

Board encoding

� 4 units × 2 players × 24 points

� 2 units for the bar

� 2 units for off the board

Two layer neural network

� 196 input units

� 20 hidden units

� 1 output unit

The input s is the encoded board position (state),

the output V(s) is the value of this position (probability of winning).

At each move, roll the dice, find all possible “next board positions”,

convert them to the appropriate input format, feed them to the network,

and choose the one which produces the largest output.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 24

Backpropagation

w← w+η(T −V)
∂V

∂w

V = actual output

T = target value

w = weight

η = learning rate

Q: How do we choose the target value T ?

In other words, how do we know what the value of the current position

“should have been”? or, how do we find a better estimate for the value

of the current position?

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 25

How to Choose the Target Value

� Behavioral Cloning (Supervised Learning)

◮ learn moves from human games (Expert Preferences)

� Temporal Difference Learning

◮ use subsequent positions to refine evaluation of current position

◮ general method, does not rely on knowing the “world model”

(rules of the game)

� methods which combine learning with tree search

(must know the “world model”)

◮ TD-Root, TD-Leaf, MCTS, TreeStrap

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 26

TD-Learning for Episodic Games

Backgammon is an example of an episodic task, in the sense that the agent

receives just a single reward at the end of the game, which we can consider

as the final value Vm+1 (typically, +1 for a win or −1 for a loss). We then

have a sequence of game positions, each with its own (estimated) value:

(current estimate) Vt →Vt+1→ . . .→Vm→Vm+1 (final result)

In this context, TD-Learning simplifies and becomes equivalent to using the

value of the next state (Vt+1) as the training value for the current state (Vk)

A fancier version, called TD(λ), uses Tk as the training value for Vk, where

Tt = (1−λ)
m

∑
k=t+1

λk−1−tVk +λm−tVm+1

Tt is a weighted average of future estimates, λ = discount factor (0≤ λ < 1)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Reinforcement Learning 27

TD-Gammon

� Tesauro trained two networks:

◮ EP-network was trained on Expert Preferences (Supervised)

◮ TD-network was trained by self play (TD-Learning)

� TD-network outperformed the EP-network.

� With modifications such as 3-step lookahead (expectimax) and

additional hand-crafted input features, TD-Gammon became the best

Backgammon player in the world (Tesauro, 1995).

COMP9444 c©Alan Blair, 2017-20

