COMP9444 Neural Networks and Deep Learning

8a. Deep Reinforcement Learning

Outline

- **Policy Learning**
	- ▶ Evolution Strategies
	- ▶ Policy Gradients
- Actor-Critic
- **History of Reinforcement Learning**
- Deep Q-Learning for Atari Games
- **Asynchronous Advantage Actor Critic (A3C)**

Case Study – Simulated Hockey

Hill Climbing (Evolution Strategy)

- Initialize "champ" policy $θ_{\text{champ}} = 0$
- **for each trial, generate "mutant" policy**

 $\theta_{\text{mutant}} = \theta_{\text{champ}} + \text{Gaussian noise}$ (fixed σ)

- \blacksquare champ and mutant are evaluated on the same task(s)
- **i** if mutant does "better" than champ,

$$
\theta_{champ} \leftarrow (1-\alpha)\theta_{champ} + \alpha\theta_{mutant}
$$

in some cases, the size of the update is scaled according to the difference in fitness (and may be negative)

Shock Sensors

- 6 Braitenberg-style sensors equally spaced around the vehicle
- \blacksquare each sensor has an angular range of 90 \degree with an overlap of 30 \degree between neighbouring sensors

- each of the 6 sensors responds to three different stimuli
	- \blacktriangleright ball / puck
	- ► own goal
	- ▶ opponent goal
- 3 additional inputs specify the current velocity of the vehicle
- total of $3 \times 6 + 3 = 21$ inputs

Shock Agent

Policy Gradients

Policy Gradients are an alternative to Evolution Strategy, which use gradient ascent rather than random updates.

Let's first consider episodic games. The agen^t takes ^a sequence of actions

$$
a_1 a_2 \ldots a_t \ldots a_m
$$

At the end it receives a reward r_{total} . We don't know which actions contributed the most, so we just reward all of them equally. If r_{total} is high (low), we change the parameters to make the agen^t more (less) likely to take the same actions in the same situations. In other words, we want to increase (decrease)

$$
\log \prod_{t=1}^m \pi_{\theta}(a_t|s_t) = \sum_{t=1}^m \log \pi_{\theta}(a_t|s_t)
$$

COMP9444 20T3 Deep Reinforcement Learning 8

Policy Gradients

If $r_{\text{total}} = +1$ for a win and -1 for a loss, we can simply multiply the log probability by r_{total} . Differentials can be calculated using the gradient

$$
\nabla_{\theta} r_{\text{total}} \sum_{t=1}^{m} \log \pi_{\theta}(a_t | s_t) = r_{\text{total}} \sum_{t=1}^{m} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)
$$

The gradient of the log probability can be calculated nicely using Softmax.

If r_{total} takes some other range of values, we can replace it with $(r_{\text{total}} - b)$ where *b* is ^a fixed value, called the baseline.

Policy Gradients

We wish to extend the framework of Policy Gradients to non-episodic domains, where rewards are received incrementally throughout the game (e.g. PacMan, Space Invaders).

Every policy π_{θ} determines a distribution $\rho_{\pi_{\theta}}(s)$ on S

$$
\rho_{\pi_{\theta}}(s) = \sum_{t \geq 0} \gamma^t prob_{\pi_{\theta},t}(s)
$$

where $prob_{\pi_{\theta},t}(s)$ is the probability that, after starting in state s_0 and performing *^t* actions, the agen^t will be in state *^s*. We can then define the fitness of policy π as

$$
\text{fitness}(\pi_{\theta}) = \sum_{s} \rho_{\pi_{\theta}}(s) \sum_{a} Q^{\pi_{\theta}}(s, a) \pi_{\theta}(a|s)
$$

REINFORCE Algorithm

We then get the following REINFORCE algorithm:

```
for each trial
      run trial and collect states s_t, actions a_t, and reward r_{total}for t = 1 to length(trial)
           \theta \leftarrow \theta + \eta(r_{\text{total}} - b)\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)end
end
```
This algorithm has successfully been applied, for example, to learn to play the game of Pong from raw image pixels.

COMP9444 20T3 Deep Reinforcement Learning 11

Policy Gradients

$$
\text{fitness}(\pi_{\theta}) = \sum_{s} \rho_{\pi_{\theta}}(s) \sum_{a} Q^{\pi_{\theta}}(s, a) \pi_{\theta}(a|s)
$$

Note: In the case of episodic games, we can take $\gamma = 1$, in which case $Q^{\pi_{\theta}}(s, a)$ is simply the expected reward at the end of the game. However, the above equation holds in the non-episodic case as well.

The gradient of $\rho_{\pi_{\theta}}(s)$ and $Q^{\pi_{\theta}}(s, a)$ are extremely hard to determine, so we ignore them and instead compute the gradient only for the last term $\pi_{\theta}(a|s)$.

$$
\nabla_{\theta} \text{ fitness}(\pi_{\theta}) = \sum_{s} \rho_{\pi_{\theta}}(s) \sum_{a} Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \pi_{\theta}(a|s)
$$

The Log Trick

$$
\sum_{a} Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \pi_{\theta}(a|s) = \sum_{a} Q^{\pi_{\theta}}(s, a) \pi_{\theta}(a|s) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}
$$

$$
= \sum_{a} Q^{\pi_{\theta}}(s, a) \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s)
$$

So

$$
\nabla_{\theta} \text{ fitness}(\pi_{\theta}) = \sum_{s} \rho_{\pi_{\theta}}(s) \sum_{a} Q^{\pi_{\theta}}(s, a) \pi_{\theta}(a|s) \nabla_{\theta} \log \pi_{\theta}(a|s)
$$

$$
= \mathbf{E}_{\pi_{\theta}}[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)]
$$

The reason for the last equality is this:

 $\rho_{\pi_{\theta}}(s)$ is the number of times (discounted by γ^{t}) that we expect to visit state *s* when using policy π_{θ} . Whenever state *s* is visited, action *a* will be chosen with probability $\pi_{\theta}(a|s)$.

COMP9444

COMP9444 20T3 Deep Reinforcement Learning 14

Actor Critic Algorithm

sample a_0 from $\pi(a|s_0)$ for each timestep *^t* do

sample reward r_t from $\mathcal{R}(r|s_t, a_t)$

sample next state s_{t+1} from $\delta(s|s_t, a_t)$

sample action a_{t+1} from $\pi(a|s_{t+1})$

$$
\frac{dE}{dQ} = -[r_t + \gamma Q_w(s_{t+1}, a_{t+1}) - Q_w(s_t, a_t)]
$$

$$
\theta \leftarrow \theta + \eta_{\theta} Q_w(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)
$$

$$
w \leftarrow w - \eta_w \frac{dE}{dQ} \nabla_w Q_w(s_t, a_t)
$$

end

end

Actor-Critic

Recall:

 ∇_{θ} fitness $(\pi_{\theta}) = \mathbf{E}_{\pi_{\theta}}[Q^{\pi_{\theta}}(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)]$

For non-episodic games, we cannot easily find ^a good estimate for $Q^{\pi_{\theta}}(s, a)$. One approach is to consider a family of Q-Functions Q_w determined by parameters *^w* (different from θ) and learn *^w* so that Q_w approximates $Q^{\pi_{\theta}}$, at the same time that the policy π_{θ} itself is also being learned.

This is known as an Actor-Critic approach because the policy determines the action, while the Q-Function estimates how good the current policy is, and thereby plays the role of ^a critic.

```
COMP9444
```
^c Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 15

Reinforcement Learning Timeline

- **n** model-free methods
	- **► 1961 MENACE tic-tac-toe (Donald Michie)**
	- \blacktriangleright 1986 TD(λ) (Rich Sutton)
	- ► 1989 TD-Gammon (Gerald Tesauro)
	- ▶ 2015 Deep Q Learning for Atari Games
	- \triangleright 2016 A3C (Mnih et al.)
	- ► 2017 OpenAI Evolution Strategies (Salimans et al.)
- **n** methods relying on a world model
	- ▶ 1959 Checkers (Arthur Samuel)
	- ▶ 1997 TD-leaf (Baxter et al.)
	- ► 2009 TreeStrap (Veness et al.)
	- ▶ 2016 Alpha Go (Silver et al.)

^c Alan Blair, 2017-20

MENACE

Machine Educable Noughts And Crosses Engine Donald Michie, 1961

Game Tree (2-player, deterministic)

MENACE

Martin Gardner and HALO

Hexapawn Boxes

Reinforcement Learning with BOXES

- **this BOXES** algorithm was later adapted to learn more general tasks such as Pole Balancing, and helped lay the foundation for the modern field of Reinforcement Learning
- for various reasons, interest in Reinforcement Learning faded in the late 70's and early 80's, but was revived in the late 1980's, largely through the work of Richard Sutton
- Gerald Tesauro applied Sutton's TD-Learning algorithm to the game of Backgammon in 1989

Fully connected

Fully connected Mo innuit

 $R + 0$

Deep Q-Learning for Atari Games

- \blacksquare end-to-end learning of values $Q(s, a)$ from pixels *s*
- input state *s* is stack of raw pixels from last 4 frames
	- \triangleright 8-bit RGB images, 210 \times 160 pixels
- \Box output is $Q(s, a)$ for 18 joystick/button positions
- \blacksquare reward is change in score for that timestep

Convolution

 \blacktriangleright

 \Box

 \blacksquare

DP.

DF.

p.

Convolution

 \blacksquare

 $\overline{}$

Ð

 \Box

Ò

 $\overline{\mathbf{p}}$

 \rightarrow

 \rightarrow

 \rightarrow

Q-Learning

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta [r_t + \gamma \max_b Q(s_{t+1}, b) - Q(s_t, a_t)]$

- with lookup table, Q-learning is guaranteed to eventually converge
- **for serious tasks, there are too many states for a lookup table**
- instead, $Q_w(s, a)$ is parametrized by weights w, which get updated so as to minimize

$$
[r_t + \gamma \max_b Q_w(s_{t+1}, b) - Q_w(s_t, a_t)]^2
$$

- note: gradient is applied only to $Q_w(s_t, a_t)$, not to $Q_w(s_{t+1}, b)$
- \blacksquare this works well for some tasks, but is challenging for Atari games, partly due to temporal correlations between samples
	- (i.e. large number of similar situations occurring one after the other)

COMP9444 20T3 Deep Reinforcement Learning 26

DQN Results for Atari Games

Deep Q-Learning with Experience Replay

- choose actions using current Q function (ε -greedy)
- uild a database of experiences (s_t, a_t, r_t, s_{t+1})
- sample asynchronously from database and apply update, to minimize

$$
[r_t + \gamma \max_b Q_w(s_{t+1}, b) - Q_w(s_t, a_t)]^2
$$

- **removes temporal correlations by sampling from variety of game** situations in random order
- **n** makes it easier to parallelize the algorithm on multiple GPUs

```
COMP9444
```
^c Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 27

DQN Improvements

- **Prioritised Replay**
	- \triangleright weight experience according to surprise
- Double Q-Learning
	- **►** current Q-network *w* is used to select actions
	- \triangleright older Q-network \overline{w} is used to evaluate actions
- **Advantage Function**
	- \triangleright action-independent value function $V_u(s)$
	- action-dependent advantage function $A_w(s, a)$

 $Q(s, a) = V_u(s) + A_w(s, a)$

COMP9444

Prioritised Replay

instead of sampling experiences uniformly, store them in a priority queue according to the DQN error

$$
|r_t + \gamma \max_b Q_w(s_{t+1}, b) - Q_w(s_t, a_t)|
$$

 \blacksquare this ensures the system will concentrate more effort on situations where the Q value was "surprising" (in the sense of being far away from what was predicted)

Advantage Function

The Q Function $Q^{\pi}(s, a)$ can be written as a sum of the value function *V*^π(*s*) plus an advantage function $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$

 $A^{\pi}(s, a)$ represents the advantage (or disadvantage) of taking action *a* in state *^s*, compared to taking the action preferred by the current policy π. We can learn approximations for these two components separately:

 $Q(s, a) = V_u(s) + A_w(s, a)$

Note that actions can be selected just using $A_w(s, a)$, because

$$
\operatorname{argmax}_b Q(s_{t+1}, b) = \operatorname{argmax}_b A_w(s_{t+1}, b)
$$

Double Q-Learning

- **■** if the same weights *w* are used to select actions and evaluate actions, this can lead to ^a kind of confirmation bias
- could maintain two sets of weights w and \overline{w} , with one used for selection and the other for evaluation (then swap their roles)
- \blacksquare in the context of Deep Q-Learning, a simpler approach is to use the current "online" version of *^w* for selection, and an older "target" version \overline{w} for evaluation; we therefore minimize

$$
[r_t + \gamma Q_{\overline{w}}(s_{t+1}, \operatorname{argmax}_b Q_w(s_{t+1}, b)) - Q_w(s_t, a_t)]^2
$$

a a new version of \overline{w} is periodically calculated from the distributed values of *w*, and this \overline{w} is broadcast to all processors.

COMP9444

^c Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 31

Advantage Actor Critic

Recall that in the REINFORCE algorithm, ^a baseline *b* could be subtracted from r_{total}

$$
\theta \leftarrow \theta + \eta (r_{\text{total}} - b) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)
$$

In the actor-critic framework, r_{total} is replaced by $Q(s_t, a_t)$

 $\theta \leftarrow \theta + \eta_{\theta} Q(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

We can also subtract a baseline from $Q(s_t, a_t)$. This baseline must be independent of the action a_t , but it could be dependent on the state s_t . A good choice of baseline is the value function $V_u(s)$, in which case the Q function is replaced by the advantage function

$$
A_w(s,a) = Q(s,a) - V_u(s)
$$

Asynchronous Advantage Actor Critic

- use policy network to choose actions
- **learn** a parameterized Value function $V_u(s)$ by TD-Learning
- \blacksquare estimate O-value by n-step sample

$$
Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \ldots + \gamma^{n-1} r_{t+n} + \gamma^n V_u(s_{t+n})
$$

update policy by

$$
\theta \leftarrow \theta + \eta_{\theta} \left[Q(s_t, a_t) - V_u(s_t) \right] \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)
$$

update Value function my minimizing

$$
[Q(s_t,a_t)-V_u(s_t)]^2
$$

References

- David Silver, Deep Reinforcement Learning Tutorial, http://icml.cc/2016/tutorials/deep rl tutorial.pdf
- **A Brief Survey of Deep Reinforcement Learning,** https://arxiv.org/abs/1708.05866
- **Asynchronous Methods for Deep Reinforcement Learning,** https://arxiv.org/abs/1602.01783
- Evolution Strategies as ^a Scalable Alternative to Reinforcement Learning, https://arxiv.org/abs/1703.03864
- **Example 1** Eric Jang, Beginner's Guide to Variational Methods, http://blog.evjang.com/2016/08/variational-bayes.html

Latest Research in Deep RL

- **a** augment A3C with unsupervised auxiliary tasks
- **E** encourage exploration, increased entropy
- \blacksquare encourage actions for which the rewards are less predictable
- **concentrate on state features from which the preceding action is more** predictable
- **the transfer learning (between tasks)**
- \blacksquare inverse reinforcement learning (infer rewards from policy)
- **hierarchical RL**
- **nulti-agent RL**

COMP9444

^c Alan Blair, 2017-20