
COMP9444 20T3 Deep Reinforcement Learning 2

Hill Climbing (Evolution Strategy)

� Initialize “champ” policy θchamp = 0

� for each trial, generate “mutant” policy

θmutant = θchamp +Gaussian noise (fixed σ)

� champ and mutant are evaluated on the same task(s)

� if mutant does “better” than champ,

θchamp← (1−α)θchamp +αθmutant

� in some cases, the size of the update is scaled according to the

difference in fitness (and may be negative)

COMP9444 c©Alan Blair, 2017-20

COMP9444
Neural Networks and Deep Learning

8a. Deep Reinforcement Learning

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 3

Case Study – Simulated Hockey

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 1

Outline

� Policy Learning

◮ Evolution Strategies

◮ Policy Gradients

� Actor-Critic

� History of Reinforcement Learning

� Deep Q-Learning for Atari Games

� Asynchronous Advantage Actor Critic (A3C)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 6

Shock Agent

friendly goal
enemy goal

puck{
friendly goal

enemy goal
puck{

friendly goal
enemy goal

puck{

friendly goal
enemy goal

puck{
friendly goal

enemy goal
puck{

friendly goal
enemy goal

puck{ output
vector

z

velocity

sensor 0

sensor 4

sensor 5

sensor 3

sensor 2

sensor 1

{ longitudinal (left skate)

longitudinal (right skate)

lateral

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 4

Shock Sensors

� 6 Braitenberg-style sensors equally spaced around the vehicle

� each sensor has an angular range of 90◦ with an overlap of 30◦

between neighbouring sensors

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 7

Policy Gradients

Policy Gradients are an alternative to Evolution Strategy, which use

gradient ascent rather than random updates.

Let’s first consider episodic games. The agent takes a sequence of actions

a1 a2 . . . at . . . am

At the end it receives a reward rtotal. We don’t know which actions

contributed the most, so we just reward all of them equally. If rtotal is high

(low), we change the parameters to make the agent more (less) likely to

take the same actions in the same situations. In other words, we want to

increase (decrease)

log
m

∏
t=1

πθ(at |st) =
m

∑
t=1

logπθ(at |st)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 5

Shock Inputs

� each of the 6 sensors responds to three different stimuli

◮ ball / puck

◮ own goal

◮ opponent goal

� 3 additional inputs specify the current velocity of the vehicle

� total of 3×6+3 = 21 inputs

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 10

Policy Gradients

We wish to extend the framework of Policy Gradients to non-episodic

domains, where rewards are received incrementally throughout the game

(e.g. PacMan, Space Invaders).

Every policy πθ determines a distribution ρπθ
(s) on S

ρπθ
(s) = ∑

t≥0

γ tprobπθ,t
(s)

where probπθ,t
(s) is the probability that, after starting in state s0 and

performing t actions, the agent will be in state s. We can then define the

fitness of policy π as

fitness(πθ) = ∑
s

ρπθ
(s)∑

a

Qπθ(s,a)πθ(a|s)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 8

Policy Gradients

If rtotal = +1 for a win and −1 for a loss, we can simply multiply the log

probability by rtotal. Differentials can be calculated using the gradient

∇θ rtotal

m

∑
t=1

logπθ(at |st) = rtotal

m

∑
t=1

∇θ logπθ(at |st)

The gradient of the log probability can be calculated nicely using Softmax.

If rtotal takes some other range of values, we can replace it with (rtotal−b)

where b is a fixed value, called the baseline.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 11

Policy Gradients

fitness(πθ) = ∑
s

ρπθ
(s)∑

a

Qπθ(s,a)πθ(a|s)

Note: In the case of episodic games, we can take γ = 1, in which case

Qπθ(s,a) is simply the expected reward at the end of the game.

However, the above equation holds in the non-episodic case as well.

The gradient of ρπθ
(s) and Qπθ(s,a) are extremely hard to determine, so

we ignore them and instead compute the gradient only for the last term

πθ(a|s).

∇θ fitness(πθ) = ∑
s

ρπθ
(s)∑

a

Qπθ(s,a)∇θ πθ(a|s)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 9

REINFORCE Algorithm

We then get the following REINFORCE algorithm:

for each trial

run trial and collect states st , actions at , and reward rtotal

for t = 1 to length(trial)

θ← θ+η(rtotal−b)∇θ logπθ(at |st)

end

end

This algorithm has successfully been applied, for example, to learn to play

the game of Pong from raw image pixels.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 14

Actor Critic Algorithm

for each trial

sample a0 from π(a|s0)

for each timestep t do

sample reward rt from R (r |st ,at)

sample next state st+1 from δ(s |st ,at)

sample action at+1 from π(a |st+1)
dE
dQ

=−[rt + γQw(st+1,at+1)−Qw(st ,at)]

θ← θ+ηθ Qw(st ,at)∇θ logπθ(at |st)

w← w−ηw
dE
dQ

∇w Qw(st ,at)

end

end

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 12

The Log Trick

∑
a

Qπθ(s,a)∇θ πθ(a|s) = ∑
a

Qπθ(s,a)πθ(a|s)
∇θ πθ(a|s)

πθ(a|s)

= ∑
a

Qπθ(s,a)πθ(a|s)∇θ logπθ(a|s)

So

∇θ fitness(πθ) = ∑
s

ρπθ
(s)∑

a

Qπθ(s,a)πθ(a|s)∇θ logπθ(a|s)

= Eπθ
[Qπθ(s,a)∇θ logπθ(a|s)]

The reason for the last equality is this:

ρπθ
(s) is the number of times (discounted by γ t) that we expect to visit

state s when using policy πθ . Whenever state s is visited, action a will be

chosen with probability πθ(a|s) .

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 15

Reinforcement Learning Timeline

� model-free methods

◮ 1961 MENACE tic-tac-toe (Donald Michie)

◮ 1986 TD(λ) (Rich Sutton)

◮ 1989 TD-Gammon (Gerald Tesauro)

◮ 2015 Deep Q Learning for Atari Games

◮ 2016 A3C (Mnih et al.)

◮ 2017 OpenAI Evolution Strategies (Salimans et al.)

� methods relying on a world model

◮ 1959 Checkers (Arthur Samuel)

◮ 1997 TD-leaf (Baxter et al.)

◮ 2009 TreeStrap (Veness et al.)

◮ 2016 Alpha Go (Silver et al.)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 13

Actor-Critic

Recall:

∇θ fitness(πθ) = Eπθ
[Qπθ(s,a)∇θ logπθ(a|s)]

For non-episodic games, we cannot easily find a good estimate for

Qπθ(s,a). One approach is to consider a family of Q-Functions Qw

determined by parameters w (different from θ) and learn w so that

Qw approximates Qπθ , at the same time that the policy πθ itself is also

being learned.

This is known as an Actor-Critic approach because the policy determines

the action, while the Q-Function estimates how good the current policy is,

and thereby plays the role of a critic.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 18

Game Tree (2-player, deterministic)

XX

XX

X

X

X

XX

MAX (X)

MIN (O)

X X

O

O

OX O

O

O O

O OO

MAX (X)

X OX OX O X

X X

X

X

X X

MIN (O)

X O X X O X X O X

.

. . .

. . .

. . .

TERMINAL

XX

−1 0 +1Utility

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 16

MENACE

Machine Educable Noughts And Crosses Engine

Donald Michie, 1961

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 19

Martin Gardner and HALO

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 17

MENACE

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 22

Deep Q-Learning for Atari Games

� end-to-end learning of values Q(s,a) from pixels s

� input state s is stack of raw pixels from last 4 frames

◮ 8-bit RGB images, 210×160 pixels

� output is Q(s,a) for 18 joystick/button positions

� reward is change in score for that timestep

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 20

Hexapawn Boxes

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 23

Deep Q-Network

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 21

Reinforcement Learning with BOXES

� this BOXES algorithm was later adapted to learn more general tasks

such as Pole Balancing, and helped lay the foundation for the modern

field of Reinforcement Learning

� for various reasons, interest in Reinforcement Learning faded in the

late 70’s and early 80’s, but was revived in the late 1980’s, largely

through the work of Richard Sutton

� Gerald Tesauro applied Sutton’s TD-Learning algorithm to the game

of Backgammon in 1989

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 26

DQN Results for Atari Games

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 24

Q-Learning

Q(st ,at)← Q(st ,at)+η [rt + γ max
b

Q(st+1,b)−Q(st ,at)]

� with lookup table, Q-learning is guaranteed to eventually converge

� for serious tasks, there are too many states for a lookup table

� instead, Qw(s,a) is parametrized by weights w, which get updated so

as to minimize

[rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

◮ note: gradient is applied only to Qw(st ,at), not to Qw(st+1,b)

� this works well for some tasks, but is challenging for Atari games,

partly due to temporal correlations between samples

(i.e. large number of similar situations occurring one after the other)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 27

DQN Improvements

� Prioritised Replay

◮ weight experience according to surprise

� Double Q-Learning

◮ current Q-network w is used to select actions

◮ older Q-network w is used to evaluate actions

� Advantage Function

◮ action-independent value function Vu(s)

◮ action-dependent advantage function Aw(s,a)

Q(s,a) =Vu(s)+Aw(s,a)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 25

Deep Q-Learning with Experience Replay

� choose actions using current Q function (ε-greedy)

� build a database of experiences (st ,at ,rt ,st+1)

� sample asynchronously from database and apply update, to minimize

[rt + γ max
b

Qw(st+1,b)−Qw(st ,at)]
2

� removes temporal correlations by sampling from variety of game

situations in random order

� makes it easier to parallelize the algorithm on multiple GPUs

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 30

Advantage Function

The Q Function Qπ(s,a) can be written as a sum of the value function

V π(s) plus an advantage function Aπ(s,a) = Qπ(s,a)−V π(s)

Aπ(s,a) represents the advantage (or disadvantage) of taking action a in

state s, compared to taking the action preferred by the current policy π.

We can learn approximations for these two components separately:

Q(s,a) =Vu(s)+Aw(s,a)

Note that actions can be selected just using Aw(s,a), because

argmaxb Q(st+1,b) = argmaxb Aw(st+1,b)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 28

Prioritised Replay

� instead of sampling experiences uniformly, store them in a priority

queue according to the DQN error

|rt + γ max
b

Qw(st+1,b)−Qw(st ,at)|

� this ensures the system will concentrate more effort on situations

where the Q value was “surprising” (in the sense of being far away

from what was predicted)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 31

Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baseline b could be subtracted

from rtotal

θ← θ+η(rtotal−b)∇θ logπθ(at |st)

In the actor-critic framework, rtotal is replaced by Q(st ,at)

θ← θ+ηθ Q(st ,at)∇θ logπθ(at |st)

We can also subtract a baseline from Q(st ,at). This baseline must be

independent of the action at , but it could be dependent on the state st .

A good choice of baseline is the value function Vu(s), in which case the

Q function is replaced by the advantage function

Aw(s,a) = Q(s,a)−Vu(s)

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 29

Double Q-Learning

� if the same weights w are used to select actions and evaluate actions,

this can lead to a kind of confirmation bias

� could maintain two sets of weights w and w, with one used for

selection and the other for evaluation (then swap their roles)

� in the context of Deep Q-Learning, a simpler approach is to use the

current “online” version of w for selection, and an older “target”

version w for evaluation; we therefore minimize

[rt + γQw(st+1,argmaxb Qw(st+1,b))−Qw(st ,at)]
2

� a new version of w is periodically calculated from the distributed

values of w, and this w is broadcast to all processors.

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 34

References

� David Silver, Deep Reinforcement Learning Tutorial,

http://icml.cc/2016/tutorials/deep rl tutorial.pdf

� A Brief Survey of Deep Reinforcement Learning,

https://arxiv.org/abs/1708.05866

� Asynchronous Methods for Deep Reinforcement Learning,

https://arxiv.org/abs/1602.01783

� Evolution Strategies as a Scalable Alternative to Reinforcement

Learning, https://arxiv.org/abs/1703.03864

� Eric Jang, Beginner’s Guide to Variational Methods,

http://blog.evjang.com/2016/08/variational-bayes.html

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 32

Asynchronous Advantage Actor Critic

� use policy network to choose actions

� learn a parameterized Value function Vu(s) by TD-Learning

� estimate Q-value by n-step sample

Q(st ,at) = rt+1 + γrt+2 + . . .+ γn−1rt+n + γnVu(st+n)

� update policy by

θ← θ+ηθ [Q(st ,at)−Vu(st)]∇θ logπθ(at |st)

� update Value function my minimizing

[Q(st ,at)−Vu(st)]
2

COMP9444 c©Alan Blair, 2017-20

COMP9444 20T3 Deep Reinforcement Learning 33

Latest Research in Deep RL

� augment A3C with unsupervised auxiliary tasks

� encourage exploration, increased entropy

� encourage actions for which the rewards are less predictable

� concentrate on state features from which the preceding action is more

predictable

� transfer learning (between tasks)

� inverse reinforcement learning (infer rewards from policy)

� hierarchical RL

� multi-agent RL

COMP9444 c©Alan Blair, 2017-20

