COMP9444 Neural Networks and Deep Learning

9a. Autoencoders

Textbook, Chapter 14

COMP9444

Outline

Autoencoder Networks (14.1)

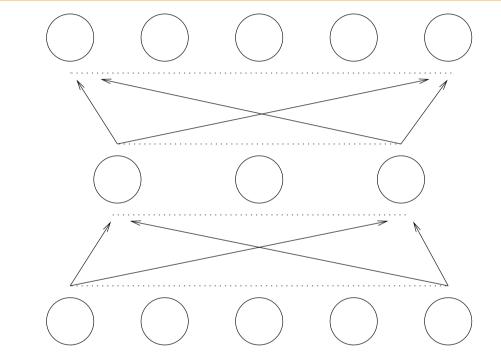
Regularized Autoencoders (14.2)

Stochastic Encoders and Decoders (14.4)

Generative Models

Variational Autoencoders (20.10.3)

Recall: Encoder Networks

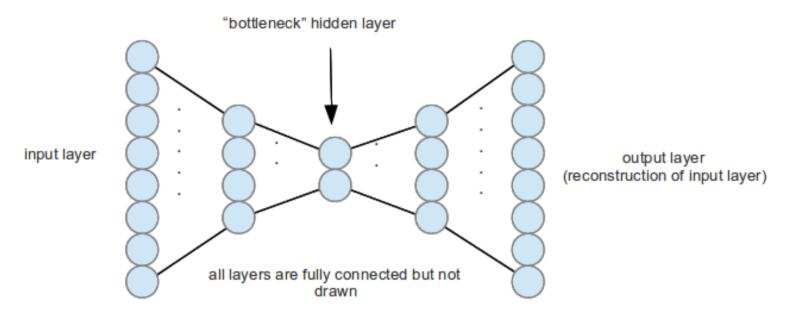


Inputs	Outputs
10000	10000
01000	01000
00100	00100
00010	00010
00001	00001

identity mapping through a bottleneck

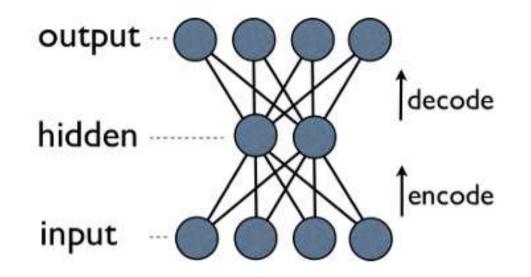
- also called N–M–N task
- used to investigate hidden unit representations

Autoencoder Networks



- output is trained to reproduce the input as closely as possible
- activations normally pass through a bottleneck, so the network is forced to compress the data in some way
- like the RBM, Autoencoders can be used to automatically extract abstract features from the input

Autoencoder Networks



If the encoder computes z = f(x) and the decoder computes g(f(x)) then we aim to minimize some distance function between x and g(f(x))

E = L(x, g(f(x)))

Autoencoder as Pretraining

- after an autoencoder is trained, the decoder part can be removed and replaced with, for example, a classification layer
- this new network can then be trained by backpropagaiton
- the features learned by the autoencoder then serve as initial weights for the supervised learning task

Greedy Layerwise Pretraining

- Autoencoders can be used as an alternative to Restricted Bolzmann Machines, for greedy layerwise pretraining.
- An autoencoder with one hidden layer is trained to reconstruct the inputs. The first layer (encoder) of this network becomes the first layer of the deep network.
- Each subsequent layer is then trained to reconstruct the previous layer.
- A final classification layer is then added to the resulting deep network, and the whole thing is trained by backpropagation.

Avoiding Trivial Identity

- If there are more hidden nodes than inputs (which often happens in image processing) there is a risk the network may learn a trivial identity mapping from input to output.
- We generally try to avoid this by introducing some form of regularization.

Regularized Autoencoders (14.2)

- autoencoders with dropout at hidden layer(s)
 - sparse autoencoders
- contractive autoencoders
- denoising autoencoders

Sparse Autoencoder (14.2.1)

- One way to regularize an autoencoder is to include a penalty term in the loss function, based on the hidden unit activations.
- This is analogous to the weight decay term we previously used for supervised learning.
- One popular choice is to penalize the sum of the absolute values of the activations in the hidden layer

$$E = L(x, g(f(x)) + \lambda \sum_{i} |h_i|)$$

This is sometimes known as L_1 -regularization (because it involves the absolute value rather than the square); it can encourage some of the hidden units to go to zero, thus producing a sparse representation.

9

Contractive Autoencoder (14.2.3)

Another popular penalty term is the L₂-norm of the derivatives of the hidden units with respect to the inputs

$$E = L(x, g(f(x)) + \lambda \sum_{i} ||\nabla_x h_i||^2$$

This forces the model to learn hidden features that do not change much when the training inputs *x* are slightly altered.

Another regularization method, similar to contractive autoencoder, is to add noise to the inputs, but train the network to recover the original input

```
repeat:

sample a training item x^{(i)}

generate a corrupted version \tilde{x} of x^{(i)}

train to reduce E = L(x^{(i)}, g(f(\tilde{x})))

end
```

Loss Functions and Probability

- We saw previously how the loss (cost) function at the output of a feedforward neural network (with parameters θ) can be seen as defining a probability distribution $p_{\theta}(x)$ over the outputs. We then train to maximize the log of the probability of the target values.
 - squared error assumes an underlying Gaussian distribution, whose mean is the output of the network
 - cross entropy assumes a Bernoulli distribution, with probability equal to the output of the network
 - softmax assumes a Boltzmann distribution

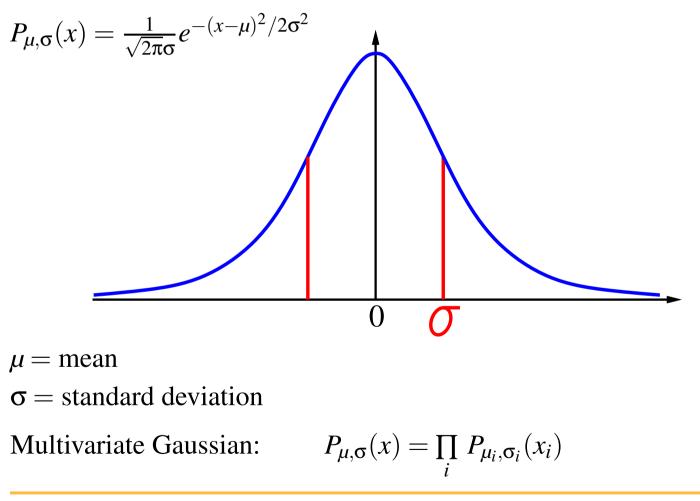
Stochastic Encoders and Decoders (14.4)

- For autoencoders, the decoder can be seen as defining a conditional probability distribution $p_{\theta}(x|z)$ of output *x* for a certain value *z* of the hidden or "latent" variables.
- In some cases, the encoder can also be seen as defining a conditional probability distribution $q_{\phi}(z|x)$ of latent variables *z* based on an input *x*.
- We have seen an example of this with the Restricted Boltzmann Machine, where $q_{\phi}(z|x)$ and $p_{\theta}(x|z)$ are Bernoulli distributions.

Generative Models

- Sometimes, as well as reproducing the training items $\{x^{(i)}\}\)$, we also want to be able to use the decoder to generate new items which are of a similar "style" to the training items.
- In other words, we want to be able to choose latent variables z from a standard Normal distribution p(z), feed these values of z to the decoder, and have it produce a new item x which is somehow similar to the training items.
- Generative models can be:
 - explicit (Variational Autoencoders)
 - implicit (Generative Adversarial Networks)

Gaussian Distribution (3.9.3)



Entropy and KL-Divergence

The entropy of a distribution
$$q()$$
 is $H(q) = \int_{\theta} q(\theta)(-\log q(\theta))d\theta$

- In Information Theory, H(q) is the amount of information (bits) required to transmit a random sample from distribution q()
- For a Gaussian distribution, $H(q) = \sum_{i} \log \sigma_i$

KL-Divergence
$$D_{KL}(q || p) = \int_{\theta} q(\theta) (\log q(\theta) - \log p(\theta)) d\theta$$

- **D**_{KL}(q || p) is the number of extra bits we need to trasmit if we designed a code for p() but the samples are drawn from q() instead.
- If p(z) is Standard Normal distribution, minimizing $D_{\text{KL}}(q_{\phi}(z) || p(z))$ encourages $q_{\phi}()$ to center on zero and spread out to approximate p().

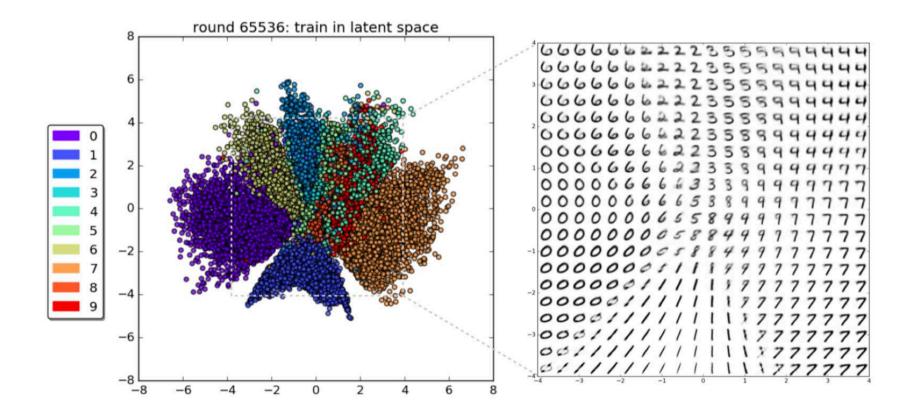
Variational Autoencoder (20.10.3)

Instead of producing a single z for each $x^{(i)}$, the encoder (with parameters ϕ) can be made to produce a mean $\mu_{z|x^{(i)}}$ and standard deviation $\sigma_{z|x^{(i)}}$ This defines a conditional (Gaussian) probability distribution $q_{\phi}(z|x^{(i)})$ We then train the system to maximize

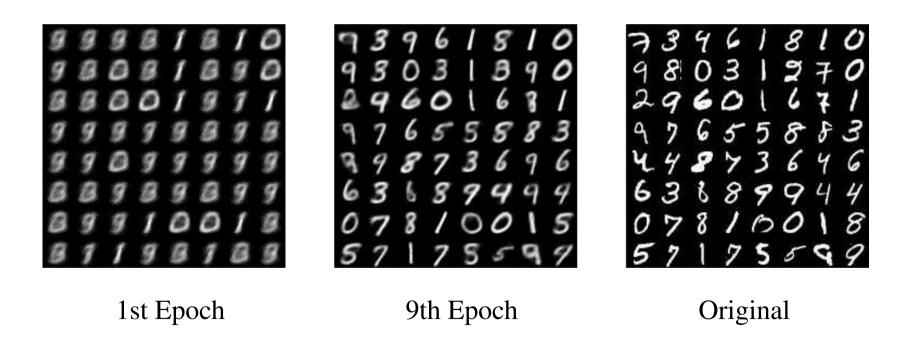
$$\mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})}[\log p_{\theta}(x^{(i)}|z)] - D_{\mathrm{KL}}(q_{\phi}(z|x^{(i)})||p(z))$$

- the first term enforces that any sample *z* drawn from the conditional distribution $q_{\phi}(z|x^{(i)})$ should, when fed to the decoder, produce somthing approximating $x^{(i)}$
- the second term encourages $q_{\phi}(z|x^{(i)})$ to approximate p(z)
- in practice, the distributions $q_{\phi}(z|x^{(i)})$ for various $x^{(i)}$ will occupy complementary regions within the overall distribution p(z)

Variational Autoencoder Digits



Variational Autoencoder Digits



Variational Autoencoder Faces



Variational Autoencoder

- Variational Autoencoder produces reasonable results
- tends to produce blurry images
- \blacksquare often end up using only a small number of the dimensions available to z

References

http://kvfrans.com/variational-autoencoders-explained/
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
https://arxiv.org/pdf/1606.05908.pdf