COMP9444 20T3

1

3

COMP9444 Neural Networks and Deep Learning

9a. Autoencoders

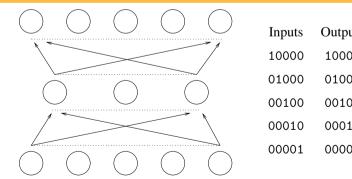
Textbook, Chapter 14

Outline

- Autoencoder Networks (14.1)
- Regularized Autoencoders (14.2)
- Stochastic Encoders and Decoders (14.4)
- Generative Models
- Variational Autoencoders (20.10.3)

COMP9444 ©Alan Blair, 2017-20		COMP9444			©Alan Blair, 2017-20	
COMP9444 20T3	Autoencoders	:	2	СОМР9444 20Т3	Autoencoders	

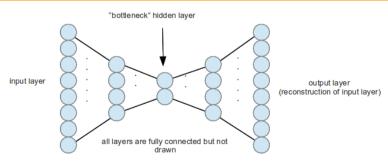
Recall: Encoder Networks



Inputs	Outputs	
10000	10000	
01000	01000	
00100	00100	
00010	00010	
00001	00001	

- identity mapping through a bottleneck
- also called N–M–N task
- **used to investigate hidden unit representations**

Autoencoder Networks



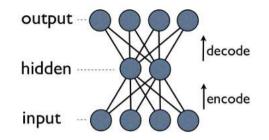
- output is trained to reproduce the input as closely as possible
- activations normally pass through a bottleneck, so the network is forced to compress the data in some way
- like the RBM, Autoencoders can be used to automatically extract abstract features from the input

COMP9444 20T3

5

7

Autoencoder Networks



If the encoder computes z = f(x) and the decoder computes g(f(x)) then we aim to minimize some distance function between x and g(f(x))

E = L(x, g(f(x)))

Autoencoder as Pretraining

- after an autoencoder is trained, the decoder part can be removed and replaced with, for example, a classification layer
- this new network can then be trained by backpropagaiton
- the features learned by the autoencoder then serve as initial weights for the supervised learning task

Creedy Loverwice Dretreining			Avaiding Trivial Idantity		
COMP9444 20T3	Autoencoders	6	COMP9444 20T3	Autoencoders	
COMP9444		©Alan Blair, 2017-20	COMP9444		© Alan Blair, 2017-20
201 0 2444			CON 1904/4		

Greedy Layerwise Pretraining

- Autoencoders can be used as an alternative to Restricted Bolzmann Machines, for greedy layerwise pretraining.
- An autoencoder with one hidden layer is trained to reconstruct the inputs. The first layer (encoder) of this network becomes the first layer of the deep network.
- Each subsequent layer is then trained to reconstruct the previous layer.
- A final classification layer is then added to the resulting deep network, and the whole thing is trained by backpropagation.

Avoiding Trivial Identity

- If there are more hidden nodes than inputs (which often happens in image processing) there is a risk the network may learn a trivial identity mapping from input to output.
- We generally try to avoid this by introducing some form of regularization.

Autoencoders

Regularized Autoencoders (14.2)

- autoencoders with dropout at hidden layer(s)
- sparse autoencoders
- contractive autoencoders
- denoising autoencoders

Sparse Autoencoder (14.2.1)

- One way to regularize an autoencoder is to include a penalty term in the loss function, based on the hidden unit activations.
- This is analogous to the weight decay term we previously used for supervised learning.
- One popular choice is to penalize the sum of the absolute values of the activations in the hidden layer

$$E = L(x, g(f(x)) + \lambda \sum_{i} |h_i|$$

This is sometimes known as L₁-regularization (because it involves the absolute value rather than the square); it can encourage some of the hidden units to go to zero, thus producing a sparse representation.

COMP9444		©Alan Blair, 2017-20		
COMP9444 20T3	Autoencoders		10	

Contractive Autoencoder (14.2.3)

Another popular penalty term is the L₂-norm of the derivatives of the hidden units with respect to the inputs

$$E = L(x, g(f(x)) + \lambda \sum_{i} ||\nabla_x h_i||^2$$

This forces the model to learn hidden features that do not change much when the training inputs x are slightly altered.

COMP9444 20T3

COMP9444

COMP9444 20T3

Autoencoders

Denoising Autoencoder (14.2.2)

Another regularization method, similar to contractive autoencoder, is to add noise to the inputs, but train the network to recover the original input

```
repeat:
sample a training item x^{(i)}
generate a corrupted version \tilde{x} of x^{(i)}
train to reduce E = L(x^{(i)}, g(f(\tilde{x})))
end
```

© Alan Blair, 2017-20

9

Autoencoders

COMP9444 20T3

Loss Functions and Probability

- We saw previously how the loss (cost) function at the output of a feedforward neural network (with parameters θ) can be seen as defining a probability distribution $p_{\theta}(x)$ over the outputs. We then train to maximize the log of the probability of the target values.
 - squared error assumes an underlying Gaussian distribution, whose mean is the output of the network
 - cross entropy assumes a Bernoulli distribution, with probability equal to the output of the network
 - softmax assumes a Boltzmann distribution

Stochastic Encoders and Decoders (14.4)

- For autoencoders, the decoder can be seen as defining a conditional probability distribution $p_{\theta}(x|z)$ of output *x* for a certain value *z* of the hidden or "latent" variables.
- In some cases, the encoder can also be seen as defining a conditional probability distribution $q_{\phi}(z|x)$ of latent variables z based on an input x.
- We have seen an example of this with the Restricted Boltzmann Machine, where $q_{\phi}(z|x)$ and $p_{\theta}(x|z)$ are Bernoulli distributions.

Generative Mode	s		Gaussian Dis	stribution (3.9.3)	
COMP9444 20T3	Autoencoders	14	COMP9444 20T3	Autoencoders	15
COMP9444		©Alan Blair, 2017-20	COMP9444	©)Alan Blair, 2017-20

- Sometimes, as well as reproducing the training items {x⁽ⁱ⁾}, we also want to be able to use the decoder to generate new items which are of a similar "style" to the training items.
- In other words, we want to be able to choose latent variables z from a standard Normal distribution p(z), feed these values of z to the decoder, and have it produce a new item x which is somehow similar to the training items.
- Generative models can be:
 - explicit (Variational Autoencoders)
 - implicit (Generative Adversarial Networks)

 $\mu = \text{mean}$ $\sigma = \text{standard deviation}$ Multivariate Gaussian: $P_{\mu,\sigma}(x) = \prod_{i} P_{\mu_i,\sigma_i}(x_i)$

 $P_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$

©Alan Blair, 2017-20

Entropy and KL-Divergence

- The entropy of a distribution q() is $H(q) = \int_{\theta} q(\theta)(-\log q(\theta)) d\theta$
- In Information Theory, H(q) is the amount of information (bits) required to transmit a random sample from distribution q()
- For a Gaussian distribution, $H(q) = \sum \log \sigma_i$

KL-Divergence
$$D_{KL}(q || p) = \int_{\theta} q(\theta) (\log q(\theta) - \log p(\theta)) d\theta$$

- **D**_{KL} $(q \parallel p)$ is the number of extra bits we need to trasmit if we designed a code for p() but the samples are drawn from q() instead.
- If p(z) is Standard Normal distribution, minimizing $D_{\text{KL}}(q_{\phi}(z) || p(z))$ encourages $q_{\phi}()$ to center on zero and spread out to approximate p().

COMP9444 20T3

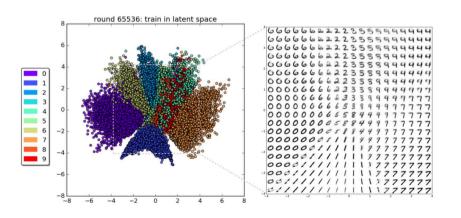
COMP9444

Autoencoders

18

© Alan Blair, 2017-20

Variational Autoencoder Digits



Variational Autoencoder (20.10.3)

Instead of producing a single z for each $x^{(i)}$, the encoder (with parameters ϕ) can be made to produce a mean $\mu_{z|x^{(i)}}$ and standard deviation $\sigma_{z|x^{(i)}}$ This defines a conditional (Gaussian) probability distribution $q_{\phi}(z|x^{(i)})$ We then train the system to maximize

$$\mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})}[\log p_{\theta}(x^{(i)}|z)] - D_{\mathrm{KL}}(q_{\phi}(z|x^{(i)}) \| p(z))$$

- the first term enforces that any sample z drawn from the conditional distribution q_φ(z|x⁽ⁱ⁾) should, when fed to the decoder, produce somthing approximating x⁽ⁱ⁾
- the second term encourages $q_{\phi}(z|x^{(i)})$ to approximate p(z)
- in practice, the distributions $q_{\phi}(z|x^{(i)})$ for various $x^{(i)}$ will occupy complementary regions within the overall distribution p(z)

COMP9444

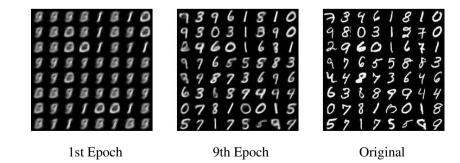
© Alan Blair, 2017-20

19

COMP9444 20T3

Autoencoders

Variational Autoencoder Digits



COMP9444

COMP9444

Autoencoders

Variational Autoencoder Faces

Variational Autoencoder

- Variational Autoencoder produces reasonable results
- tends to produce blurry images
- \blacksquare often end up using only a small number of the dimensions available to z

COMP9444

© Alan Blair, 2017-20

21

COMP9444

Autoencoders

References

http://kvfrans.com/variational-autoencoders-explained/
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
https://arxiv.org/pdf/1606.05908.pdf

COMP9444

© Alan Blair, 2017-20

22