COMP9444
Neural Networks and Deep Learning

10b. Summary
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Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = wix; +woxo +wo

if g(s) = 0 but should be 1, if g(s) = 1 but should be 0,
Wi < wrp+NXxk Wi < Wi —NXk
wyg < wo+n wo < wo—n
SO 5+ s—l—r](l—i-Zx,%) SO 5 s—r](l—i—Xx,%)
3 3

otherwise, weights are unchanged. (n > 0 is called the learning rate)

Theorem: This will eventually learn to classify the data correctly,
as long as they are linearly separable.
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McCulloch & Pitts Model of a Single Neuron

X1
w
\ s
S| — | g | — gls)
w2
X1, Xp are inputs
X2 wo=-th
w1, wo are synaptic weights
s = wix] +waxp—th 1 W2 ynap g
=wix; +wxy +wo this a threshold
wy is a bias weight
g is transfer function
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Limitations of Perceptrons

Problem: many useful functions are not linearly separable (e.g. XOR)

I
1 O
?
0
. 0 1 5L
(@ I, and I, (b) I, or ~'IZ () I, xor I,

Possible solution:
x1 XOR x; can be written as: (x; AND x,) NOR (x; NOR x;)
Recall that AND, OR and NOR can be implemented by perceptrons.
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Multi-Layer Neural Networks Types of Learning

XOR
Supervised Learning

agent is presented with examples of inputs and their target outputs

NOR _ )
Reinforcement Learning

agent is not presented with target outputs, but is given a reward

AND NOR signal, which it aims to maximize

Unsupervised Learning

agent is only presented with the inputs themselves, and aims to

.. . . . find structure in these inputs
Problem: How can we train it to learn a new function? (credit assignment) p

COMP9444 (©Alan Blair, 2017-20 COMP9444 (©Alan Blair, 2017-20
COMP9444 20T3 Review 6 COMP9444 20T3 Review
]
Ockham’s Razor Two-Layer Neural Network
“The most likely hypothesis is the simplest one consistent with the data.” Output units a;
Wi
Hidden units a;
o
Wi
inadequate good compromise over-fitting Input units i
Since there can be noise in the measurements, in practice need to make a Normally, the numbers of input and output units are fixed,
tradeoff between simplicity of the hypothesis and how well it fits the data. but we can choose the number of hidden units.
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Local Search in Weight Space

A Current
State

Cost
function

N Uflat” Local

Minimum

AN

Local Minimum

s

Shoulder

_—— Global Minimum

>
>

State Space

Problem: because of the step function, the landscape will not be
smooth but will instead consist almost entirely of flat local regions and
“shoulders”, with occasional discontinuous jumps.
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Gradient Descent (4.3)

Recall that the error function E is (half) the sum over all input patterns
of the square of the difference between actual output and desired output

1 2
E = 5 z (Z — t)
The aim is to find a set of weights for which E is very low.

If the functions involved are smooth, we can use multi-variable calculus
to adjust the weights in such a way as to take us in the steepest downhill
direction.

- E

Wé—w—N —
n ow

Parameter N is called the learning rate.
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Key Idea

Replace the (discontinuous) step function with a differentiable function,

(a) Step function (b) Sign function (c) Sigmoid function

such as the sigmoid:

or hyperbolic tangent

g(s) = tanh(s) =
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Variations on Backprop

Cross Entropy

problem: least squares error function unsuitable for classification,

where target = 0 or 1

mathematical theory: maximum likelihood

solution: replace with cross entropy error function
Weight Decay

problem: weights “blow up”, and inhibit further learning

mathematical theory: Bayes’ rule

solution: add weight decay term to error function
Momentum

problem: weights oscillate in a “rain gutter”

solution: weighted average of gradient over time
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Cross Entropy

For classification tasks, target ¢ is either O or 1, so better to use
E =—tlog(z) — (1 —1t)log(l —z)

This can be justified mathematically, and works well in practice —
especially when negative examples vastly outweigh positive ones.
It also makes the backprop computations simpler

OE B 77—t
0z z(1—2)
) 1
if 7 = —
1+es’
0E  O0EO0z
os  0zO0s
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Bayesian Inference

H is a class of hypotheses
P(D|h) = probability of data D being generated under hypothesis i € H.
P(h| D) = probability that £ is correct, given that data D were observed.

Bayes’ Theorem:

P(h|D)P(D) = P(D[h)P(h)
P(h|D) = LDIJQI;(}’)

P(h) is called the prior.
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Bayes’ Rule (3.11)

The formula for conditional probability can be manipulated to find a
relationship when the two variables are swapped:

P(aAb) = P(a|b)P(b) = P(b|a)P(a)

P
— Bayes’ rule P(a|b) =

This is often useful for assessing the probability of an underlying cause
after an effect has been observed:

P(Effect|Cause)P(Cause)

P(Cause|Effect) = P(Effect)
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Weight Decay (5.2.2)

Sometimes we add a penalty term to the loss function which encourages
the neural network weights w; to remain small:

1 A
E = EZ(Zi_ti)z + ngg

This can prevent the weights from “saturating” to very high values.

It is sometimes referred to as “elastic weights” because the weights
experience a force as if there were a spring pulling them back towards the
origin according to Hooke’s Law.

The scaling factor A needs to be determined from experience, or

empirically.
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Momentum (8.3)

If landscape is shaped like a “rain gutter”, weights will tend to oscillate
without much improvement.

Solution: add a momentum factor

ow cx6w—r]g—f}

w <~ w+ ow

Hopefully, this will dampen sideways oscillations but amplify downhill
motion by ﬁ.
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Hinton Diagrams
Sharp Straight Sharp
Left Ahead Right

30x32 Sensor
Input Retina

used to visualize higher dimensions

white = positive, black = negative
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Dropout (7.12)

(a) Standard Neural Net

Review

(b) After applying dropout.

Nodes are randomly chosen to not be used, with some fixed probability

(usually, one half).
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Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidal network.

For example, this Twin Spirals problem cannot be learned with a 2-layer
network, but it can be learned using a 3-layer network if we include

shortcut connections between non-consecutive layers.

COMPY444
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Vanishing / Exploding Gradients

Training by backpropagation in networks with many layers is difficult.

When the weights are small, the differentials become smaller and smaller
as we backpropagate through the layers, and end up having no effect.

When the weights are large, the activations in the higher layers will
saturate to extreme values. As a result, the gradients at those layers will
become very small, and will not be propagated to the earlier layers.

When the weights have intermediate values, the differentials will
sometimes get multiplied many times is places where the transfer function
is steep, causing them to blow up to large values.
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Convolutional Network Components

Input Convolutional Pooling  Fully Connected Output
Layer Layer Layer Layer Layer
| |

convolution layers: extract shift-invariant features from the previous
layer

subsampling or pooling layers: combine the activations of multiple
units from the previous layer into one unit

fully connected layers: collect spatially diffuse information

output layer: choose between classes
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Activation Functions (6.3)

n/

Sigmoid Rectified Linear Unit (ReLU)

Hyperbolic Tangent Scaled Exponential Linear Unit (SELU)
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Softmax (6.2.2)

Consider a classification task with N classes, and assume z; is the output
of the unit corresponding to class j.

We assume the network’s estimate of the probability of each class j is
proportional to exp(z;). Because the probabilites must add up to 1, we
need to normalize by dividing by their sum:

exp(zi)
leyzl exp(z;)

logProb(i) = z; — log Z/J\;l exp(z;)

Prob(i) =

If the correct class is i, we can treat —logProb(i) as our cost function.
The first term pushes up the correct class i, while the second term mainly
pushes down the incorrect class j with the highest activation (if j # i).
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Convolutional Neural Networks

j -

j+m-

¥ ¥ -
k k+n

jl:,k = g(bl + z an/[;()l Zi;v;ol Kli,m,nvjl—&-m,k+n)
l

The same weights are applied to the next M x N block of inputs, to

l

compute the next hidden unit in the convolution layer (“weight sharing”).
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Convolutional Filters

First Layer

Second Layer

Third Layer
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Stride with Zero Padding
When combined with zero padding of width P,
Jj takes on the values 0,s,2s,...,(J+2P — M)
k takes on the values 0,s,2s,...,(K+2P—N)
The next layer is (14 (/+2P —M)/s) by (14+(K+2P—N)/s)
COMP9444 (©Alan Blair, 2017-20
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Weight Initialization

In order to have healthy forward and backward propagation, each term in
the product must be approximately equal to 1. Any deviation from this
could cause the activations to either vanish or saturate, and the differentials
to either decay or explode exponentially.

D . o
Var[z] ~ ( Go n}“Var[w(’)])Var[x]
D
i 0
out () il
( Gy n®"Var[w ])Var[az]

=

0

We therefore choose the initial weights {wyk)} in each layer (7) such that
G Var[w!)] = 1
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Batch Normalization

We can normalize the activations x,(f) of node k in layer (i) relative to the
mean and variance of those activations, calculated over a mini-batch of
training items: " "

1 1
20 _ x;” —Mean([x, ']
k= -
Var[x,El)]

These activations can then be shifted and re-scaled to
y,(:) _ B/(:) +y,((t)x,\l(<l)
B,Ei),y,(f) are additional parameters, for each node, which are trained by

backpropagation along with the other parameters (weights) in the network.

After training is complete, Mean [x,(j)] and Var[x,((i)] are either pre-computed
on the entire training set, or updated using running averages.
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Dense Networks

Input
Prediction
Dense Block 1 Dense Block 2 9 Dense Block 3
{5 ] =0 vO vo vo 0 v0 vo vo [>|5i>(5 @ vo vo vo || $,§-7,>
3 < =
S

Recently, good results have been achieved using networks with densely

Bujood

UopinjoAuoD

‘
Y
vy
A
iNjoAUOD

connected blocks, within which each layer is connected by shortcut

connections to all the preceding layers.
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Residual Networks

weight layer

weight layer

anytwo

29

stacked layers F(x) identity
relu
H(x) Hx)=Fx)+x @

Idea: Take any two consecutive stacked layers in a deep network and add a
“skip” connection which bipasses these layers and is added to their output.
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Neural Texture Synthesis

1. pretrain CNN on ImageNet (VGG-19)

2. pass input texture through CNN; compute feature map Fl,lc for i filter
at spatial location k in layer (depth) [

3. compute the Gram matrix for each pair of features
I _ Il
Gij= zFikF jk
3

4. feed (initially random) image into CNN

5. compute L2 distance between Gram matrices of original and new image
6. backprop to get gradient on image pixels

7. update image and go to step 5.
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Neural Style Transfer

new image

content + style —

COMP9444 (© Alan Blair, 2017-20

COMP9444 20T3 Review

Recurrent Networks

Processing Temporal Sequences
Sliding Window

Recurrent Network Architectures
Hidden Unit Dynamics

Long Short Term Memory

COMP9444 (© Alan Blair, 2017-20

32 COMPY444 20T3 Review 33

Neural Style Transfer

For Neural Style Transfer, we minimize a cost function which is

Eota = O Econtent  + B Estyle
L
a l ! 2, B wi I 412
=53 Y Ik — Bl + 3 5 (Gl — Al
ik ik\*c 2212 ij ij
2 g & NM; g
where
Xey X = content image, synthetic image
F} = i filter at position & in layer [
N;, M; = number of filters, and size of feature maps, in layer /
wy = weighting factor for layer /
Gl.lj, Ailj = Gram matrices for style image, and synthetic image
COMP9444 (©Alan Blair, 2017-20
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Sliding Window

speech
synthesizer Abm ))

loudspeaker
oue

neural
network

44— Ezample 1t IIH to NETtalk

The simplest way to feed temporal input to a neural network is the
“sliding window”” approach, first used in the NetTalk system
(Sejnowski & Rosenberg, 1987).
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Simple Recurrent Network (Elman, 1990)

at each time step, hidden layer activations are copied to “context” layer
hidden layer receives connections from input and context layers

the inputs are fed one at a time to the network, it uses the context layer
to “remember” whatever information is required for it to produce the

correct output
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COMP9444 20T3

Oscillating Solution for &"5"

HU2 Activation

COMP9444
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0.2
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Back Propagation Through Time

S
aH - [AJ-[A{A

& §EE

we can “unroll” a recurrent architecture into an equivalent feedforward

architecture, with shared weights

applying backpropagation to the unrolled architecture is reffered to as
“backpropagation through time”

we can backpropagate just one timestep, or a fixed number of
timesteps, or all the way back to beginning of the sequence
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Long Range Dependencies

i ® ® ® %9 ®
aregion bl T T T T T
(A [ A [

S S S G

b region
Simple Recurrent Networks (SRNs) can learn medium-range
~ PN dependencies but have difficulty learning long range dependencies
! P ! !
02 04 0.6 08 1 Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU)
HU1 Activation can learn long range dependencies better than SRN
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Long Short Term Memory Gated Recurrent Unit
ht ————————————————————
I R IR R IR I - h ! ' h
Cea ~ @-Ct ' Gt t1 ! e n ' Tt Gates:
T T . =
. N E Gates: | . z: = o(Wex: + Ushy_1 + b,)
1 p—
' . (0 o, tamh ' ft = (W +Urhia+ by : 1 e 3 r; = o(Wrx¢ + Urhi—1 + b;)
rf IR 9t L0 ; it = o (Wixs + Ushs—1 + b;) h
! 5 i — tanh (W,x; + U,hs—1 + by) : £
: [0 ] [tanh : 8t gt T YgTt—1T By ! tanh ! Candidate Activation:
) 1 ot =0 (W,,xt + Uohi—1 + bo) : U"W : flt =
heq " h I |
t:1 —t State: |z re ¢ , tanh (Wx; + U(r: @ hy—1) + by)
————————————————————————— _ . 1 I
&t ct=c10f+i:Og: | o o | Output:
Output: LU @ UH‘?’ ' h;=(1-2)0hi14+20h
I I
ht = tanh c: ® o Xt + i |
Wiy Wi ISR U PR 3
W
i fie s GRU is similar to LSTM but has only two gates instead of three.
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Co-occurrence Matrix (2-word window) Word Embeddings
= =3 g 8 g 0.4
k= 'Sb%"g 9 u@c®§5 o f’?“ﬁwo - together
wod | «3EE35522E-25FEE 52882588 s
a 1 161 11 111 03 7
all 1 1 little
and 1 11 1 mouse
botught 1 | 1 |
caught | 1 1 oz o 1
crooked | 6 1 1 1 11111 house
found 1 1
he 1 1
house 1 01f R
in 1 1
Hed " ! 1 caught
man 1 1
mile 1 1 or 1
mouse 1 1 a
sixpence 1 1
stile 1 1 crooked found ~ {here
there 1 o1b who 4
they 11 man
together 1 1 bought
upon 1 1 stile
walked 1 1
was 1 1 -0.2 ' . . !
who 11 1 1 -0.6 -0.4 -0.2 0
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Singular Value Decomposition

Co-occurrence matrix X can be decomposed as X = USVT where U, V
are unitary (all columns have unit length) and S is diagonal.
M N

N M
—Tp—
~ 7u27 SIS2 ‘ ‘
L Ll —u— \A2 N
s |1
X U S V!

Columns 1 to n of row k of U then provide an n-dimensional vector
representing the k™ word in the vocabulary.

SVD is computationally expensive, proportional to L x M? if L > M.
Can we do something similar with less computation, and incrementally?
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word2vec Skip-Gram Model

Output layer

Yij

try to predict the context words,

Input layer given the center word

this skip-gram model is similar to
CBOW, except that in this case a
single input word is used to predict

v o Y2

multiple context words

all context words share the same
hidden-to-output weights

CxV-dim

COMP9444 (© Alan Blair, 2017-20

44 COMPY444 20T3

Review

Continuous Bag Of Words

Input layer

Xlko\

Wy

X2k

O/ CxV-dim

COMPY444
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Hierarchical Softmax

n(WZa l)

”(Wzaz)

H(W2,3)

+,

[7" = child(n)] = L

If several context words are each
used independently to predict the
center word, the hidden activation
becomes a sum (or average) over all
the context words

Note the difference between
this and NetTalk — in word2vec
(CBOW) all context words share

the same input-to-hidden weights

(©Alan Blair, 2017-20
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Wy, Wy

if n’ is left child of node n,

otherwise.

o(u) =1/(1 - exp(—u))

L(w)—1

prob(w = w;) = I_I o([n(w,j+1)= child(n(w,j))]V;l(W)

=

COMP9444
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Negative Sampling

The idea of negative sampling is that we train the network to increase
its estimation of the target word j* and reduce its estimate not of all the
words in the vocabulary but just a subset of them Wcg, drawn from an
appropriate distribution.

T T
E = —logo(v}: 'h) — > loga(—v) h)
JE Wheg

This is a simplified version of Noise Constrastive Estimation (NCE).
It is not guaranteed to produce a well-defined probability distribution,
but in practice it does produce high-quality word embeddings.
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Bidirectional Recurrent Encoder

: (Economic, growth, has, slowed, down, in, recent, year
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Word Vector Arithmetic

Country and Capital Vectors Projected by PCA

2 T —— T T T T T
China¢

"Beijing
15 Russia- 1
Japan<
»"Moscow
1r T
Turkey Ankara ~Tokyo
0.5 | o
Poland«
0r Germany- -
France’ Warsaw
. ~Berlin
-0.5 Italy< Paris B
» —Athens
Greece:
-1 | Spain Rome 4
. ‘Madrid |
-1.5 |- Portugal siizbon
2 L . . L L . L
-2 -1.5 -1 -0.5 0 0.5 1 15 2
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Attention Mechanism

(La, croissance, économique, s'est, ralentie, ces, derniéres, anné

u ] 0 A -
r ] = N
O\ F | A\ A\ F .
1\ O | O\ O\ O u

\’\.Nr/\n Attention
P\ weight X z aj=
(1) P [
al )
—0-10-OHO OO0

i 1 i ) (g i

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Reinforcement Learning Framework

An agent interacts with its environment.
There is a set S of states and a set 4 of actions.

At each time step ¢, the agent is in some state s;.
It must choose an action a;, whereupon it goes into state
s+1 = O(s;,a,) and receives reward r; = R (s;,a,)

Agent has a policy T.: § — 4. We aim to find an optimal policy T*

which maximizes the cumulative reward.

In general, d, R and Tt can be multi-valued, with a random element,
in which case we write them as probability distributions

O(si41=5|sp,ar) R(ri=rlsa) Ta,=als)
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RL Approaches

Value Function Learning
TD-Learning
Q-Learning

Policy Learning
Hill Climbing
Policy Gradients
Evolutionary Strategy

Actor-Critic

combination of Value and Policy learning

COMP9444 (© Alan Blair, 2017-20
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Models of optimality
Is a fast nickel worth a slow dime?
h—1
Finite horizon reward 5 r,;
i=0
L .
Infinite discounted reward 5 Y'r4, 0<y<l1
i=0
o het
Average reward ’}glolo n2 T+
i=0

Finite horizon reward is simple computationally
Infinite discounted reward is easier for proving theorems
Average reward is hard to deal with, because can’t sensibly choose

between small reward soon and large reward very far in the future.
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Exploration / Exploitation Tradeoff

Most of the time we should choose what we think is the best action.

However, in order to ensure convergence to the optimal strategy, we must
occasionally choose something different from our preferred action, e.g.

choose a random action 5% of the time, or

use Softmax (Boltzmann distribution) to choose the next action:

oR(@)/T

Ty RO/T
bea

COMP9444 (©Alan Blair, 2017-20
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Temporal Difference Learning

Let’s first assume that R and & are deterministic. Then the (true) value
V*(s) of the current state s should be equal to the immediate reward plus
the discounted value of the next state

V*(s) = R(s,a) +YV*(8(s,a))
We can turn this into an update rule for the estimated value, i.e.
V(st) < re+yV(sit1)

If R and d are stochastic (multi-valued), it is not safe to simply replace
V (s) with the expression on the right hand side. Instead, we move its value
fractionally in this direction, proportional to a learning rate N

V(s;) < V(s))+n[ri +yV(sit1) =V (st)]

COMP9444 (© Alan Blair, 2017-20
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Policy Gradients

If riota1 = +1 for a win and —1 for a loss, we can simply multiply the log
probability by ryo. Differentials can be calculated using the gradient

m m

Ue Ttotal z log Tg(a;|s1) = rotal z Og log T (a|s;)
t=1 =1

The gradient of the log probability can be calculated nicely using Softmax.

If riotar takes some other range of values, we can replace it with (rior — b)
where b is a fixed value, called the baseline.

COMP9444 (© Alan Blair, 2017-20
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Q-Learning

For a deterministic environment, Tt°, Q* and V* are related by
U (s) = argmax, Q" (s, a)

Q" (s,a) = R (s,a) +YV*(d(s,a))

S V*(s) = max 0" (s,D)

Q'(s,a) = R(s,a) +ymax 0" (&(s,a),b)
This allows us to iteratively approximate Q by
O(ss,ar) <1+ Vmglx O(sr+1,D)
If the environment is stochastic, we instead write

O(sr,ar) < Q(sr,a) +n 11 +mex O(sr+1,b) — O(s1,ar)]

COMP9444 (©Alan Blair, 2017-20
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REINFORCE Algorithm

We then get the following REINFORCE algorithm:

for each trial
run trial and collect states s;, actions a;, and reward 7o
for t = 1 to length(trial)
0 < 04N (riota — b) e log T (s, )
end
end

This algorithm has successfully been applied, for example, to learn to play
the game of Pong from raw image pixels.
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Deep Q-Network

Convolution Convolution Fully connected Fully connected
v v v v
(Noinput]
. . .
/ 8 / ° . . =
]
| g . . .
o] [4 ; /B A !
/ . . . =R
I 8 . . .
e
[ - S . . .
=gl E m A\ 3\ .
2/ . . - \\mm
H@EH 10! i@
- L4 N I | M. © |
\ a \ ./ . o/ /
ol ] /I
i\ = 1/ 1/
oz Blwe i =
\ 8\ . . .
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Double Q-Learning

if the same weights w are used to select actions and evaluate actions,
this can lead to a kind of confirmation bias

could maintain two sets of weights w and W, with one used for
selection and the other for evaluation (then swap their roles)

in the context of Deep Q-Learning, a simpler approach is to use the
current “online” version of w for selection, and an older “target”
version w for evaluation; we therefore minimize

(7 +YOw(si41,argmax;, Oy, (s;41,b)) — Qw(stvat)]z

a new version of w is periodically calculated from the distributed
values of w, and this w is broadcast to all processors.
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Deep Q-Learning with Experience Replay

choose actions using current Q function (g-greedy)
build a database of experiences (s;,a;,rs,S;+1)

sample asynchronously from database and apply update, to minimize
[ +ymax Qu(si+1,b) — Qulsr, @)

removes temporal correlations by sampling from variety of game
situations in random order

makes it easier to parallelize the algorithm on multiple GPUs
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Advantage Actor Critic

Recall that in the REINFORCE algorithm, a baseline b could be subtracted

from riotal
e < 9—|— r](rtotal — b)l:le 10ng'e(a,|St)

In the actor-critic framework, rio, is replaced by Q(s;,a,)

0+ 0+n0Q(ss,a;)TologTi(ay | s¢)

We can also subtract a baseline from Q(s;,a;). This baseline must be
independent of the action a;, but it could be dependent on the state s;.
A good choice of baseline is the value function V,(s), in which case the
Q function is replaced by the advantage function

Ay(s,a) = O(s,a) — Vi(s)
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Asynchronous Advantage Actor Critic

use policy network to choose actions
learn a parameterized Value function V,(s) by TD-Learning

estimate Q-value by n-step sample
O(si,ar) = revi +Yresa+ o Y repn +Y"Valsein)
update policy by
0« 0+ ne[Q(sr,ar) — Vu(s)|Delog T (a | s1)
update Value function my minimizing

[O(st,ar) =V (St)]z
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Boltzmann Machine (20.1)

The Boltzmann Machine uses exactly the same energy function as the
Hopfield network:

1<Jj

E(x) = —(Z Xiwijxj+ zbixi)

The Boltzmann Machine is very similar to the Hopfield Network, except that
components (neurons) x; take on the values 0, 1 instead of —1,+1
used to generate new states rather than retrieving stored states

update is not deterministic but stochastic, using the sigmoid
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Hopfield Network

1
E(x) = _(E inw,-jxj—l— Zb,-x,-)
] 7

Start with an initial state x and then repeatedly try to “flip” neuron
activations one at a time, in order to reach a lower-energy state. If we
choose to modify neuron x;, its new value should be

+1, if ijijxj+bi>07
Xi < Xi, if zjwijxj+bi:0,
—1, if zjw,-jxj+bi<0.
This ensures that the energy E(x) will never increase. It will eventually

reach a local minimum.

COMP9444 (©Alan Blair, 2017-20

COMP9444 20T3 Review 67

Boltzmann Machine

The Boltzmann Machine operates similarly to a Hopfield Network, except
that there is some randomness in the neuron updates.

In both cases, we repeatedly choose one neuron x; and decide whether or
not to “flip” the value of x;, thus changing from state x into x’.

For the Hopfield Network, we do not change from x to x’ unless AE < 0,
i.e. we never move to a higher energy state. For the Boltzmann machine,
we instead choose x; = 1 with probability
B 1
p= 1 + e—AE /T
In other words, there is some probability of moving to a higher energy
state (or remaining in a higher energy state when a lower one is available).
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Restricted Boltzmann Machine (16.7)

If we allow visible-to-visible and hidden-to-hidden connections, the
network takes too long to train. So we normally restrict the model by
allowing only visible-to-hidden connections.

Boltzmann Restricted
Machine Boltzmann
f"=$-':“='\ Machine
/—L £

Hidden

Visible (:J O l’;) ini

This is known as a Restricted Boltzmann Machine.
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Alternating Gibbs Sampling

eone ege ese

<v,-hj>0 gpepn
e e ve]
t=0 t=1 t=2 t = infinity

With the Restricted Boltzmann Machine, we can sample from the
Boltzmann distribution as follows:

choose vy randomly

then sample hg from p(h|vo)
then sample v; from p(v|hg)
then sample & from p(h|v;)
etc.
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Restricted Boltzmann Machine

inputs are binary vectors

two-layer bi-directional neural network
visible layer v

hidden layer A
no vis-to-vis or hidden-to-hidden connections

all visible units connected to all hidden units
E(V,h)z—( bivi+ thj‘i‘ V,'Wijhj)
2 omE ety

trained to maximize the expected log probability of the data
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Quick Contrastive Divergence

It was noticed in the early 2000’s that the process can be sped up by taking
just one additional sample instead of running for many iterations.

t=0 t=1
data reconstruction

vo,ho are used as positive sample, and v,/ as negative sample

this can be compared to the Negative Sampling that was used with
word2vec — it is not guaranteed to approximate the true gradient, but
it works well in practice
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Autoencoder Networks Regularized Autoencoders (14.2)

“bottleneck™ hidden layer
Sparse autoencoders

autoencoders with dropout at hidden layer(s)
input layer output layer

(Feconsinclion of Input layer) contractive autoencoders

denoising autoencoders

all layers are fully connected but not
drawn

output is trained to reproduce the input as closely as possible
activations normally pass through a bottleneck, so the network is
forced to compress the data in some way

like the RBM, Autoencoders can be used to automatically extract
abstract features from the input
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Generative Models Gaussian Distribution (3.9.3)
R A —e1)2 2
Sometimes, as well as reproducing the training items {x(‘)}, we also Buo(x) = \/217[03 (e=w)”/20

want to be able to use the decoder to generate new items which are of
a similar “style” to the training items.

In other words, we want to be able to choose latent variables z from
a standard Normal distribution p(z), feed these values of z to the
decoder, and have it produce a new item x which is somehow similar

to the training items.

0 0

Generative models can be:

4 = mean
explicit (Variational Autoencoders) O — standard deviation
implicit (Generative Adversarial Networks) Multivariate Gaussian: Puo(x) =[] Puo, (x:)
i Y
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Entropy and KL-Divergence

The entropy of a distribution g() is  fy(4) = /q(e)(—logq(e))de
Cl

In Information Theory, H(g) is the amount of information (bits)

required to transmit a random sample from distribution ¢()

For a Gaussian distribution,  H(q) = Y log 0;
KL-Divergence Dy (g1|p) = [ 4(8)(1og 4(8) ~ log p(8))d
6

Dki(gq| p) is the number of extra bits we need to trasmit if we
designed a code for p() but the samples are drawn from ¢() instead.

If p(z) is Standard Normal distribution, minimizing Dt (g¢(z)[ p(z))
encourages ¢o() to center on zero and spread out to approximate p/().
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Variational Autoencoder Digits

round 65536: train in latent space

LCLLLLLEZZLLSS554444

LLLLLLLL2LLLSSERY YUY

6 OLLLLLLALLLISSE/ QYUY
COLLLLLLAL2L23SSS/9944qqUY

a 0COLLLLLAL2235S899494949¢y

0 0006LLLLL223353899994¢
1 00066L6LLLE22353999949qr]
> 2 0000666662233399999nn7
3 000006664&33399999171717
. 0 000000666¢€53%899971777177
000000065589991717177177

5 0000000cs8299917177777
6| -2 10000000 F§99971777777
7 ooooooecs /11797777777
8| _, )o00002/ /111377777777
9 ococooc// /1177777777
ocooc/// /11 W\ 772727777

-6 oo/ // /NN N272727777
oc/// /711N \\NY27272777

" s/ /77711 I NNNNZ2Z772777
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Variational Autoencoder (20.10.3)

Instead of producing a single z for each x\, the encoder (with parameters @)
can be made to produce a mean JTENG and standard deviation O 1x(0)

This defines a conditional (Gaussian) probability distribution qq,(z]x("))
We then train the system to maximize

E__,uonlog po(x|2)] — Die(qq(zlx)]p(2))

the first term enforces that any sample z drawn from the conditional
distribution g¢(z/x)) should, when fed to the decoder, produce
somthing approximating x0

the second term encourages go(z|x'")) to approximate p(z)

in practice, the distributions q(p(z|x(i)) for various x() will occupy
complementary regions within the overall distribution p(z)

COMP9444 (©Alan Blair, 2017-20

COMP9444 20T3 Review

Generative Adversarial Networks

Generator (Artist) Gg and Discriminator (Critic) Dy are both
Deep Convolutional Neural Networks.

Generator Gg : z — x, with parameters 0, generates an image x from latent
variables z (sampled from a Normal distribution).

Discriminator Dy, : x — Dy(x) € (0,1), with parameters ), takes an image
x and estimates the probability of the image being real.

Generator and Discriminator play a 2-player zero-sum game to compute:
mein mqa}x <Ex"‘l7data [lOg Dlp (.X)] + EZNPmodel [log (1 B Dq" (Ge (Z)))] )

Discriminator tries to maximize the bracketed expression,
Generator tries to minimize it.
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Generative Adversarial Networks

Alternate between:

Gradient ascent on Discriminator:
mlﬁ‘x <Ex"’pdala [log DqJ ()C)] + EZNPmodel [log (1 - DUJ (Ge (Z) ) )] >
Gradient descent on Generator, using:

%ETB%‘H#G@‘@H_ZN
9 'model

This formula puts too much emphasis on images that are correctly
classified. Better to do gradient ascent on Generator, using:

max E:proae 108 (Py(Go (2)))]

This puts more emphasis on the images that are wrongly classified.
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GAN Generated Images
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Generative Adversarial Networks

repeat:
for k steps do
sample minibatch of m latent samples {z(l) . ,z(m)} from p(z)
sample minibatch of m training items {x(1),... x("}
update Discriminator by gradient ascent on UJ:

m

DIIJ% Y [logDy(x?) +log (1~ Dy(Ge(z")))]

end for -

sample minibatch of m latent samples {z(1),...,z("™} from p(z)
update Generator by gradient ascent on 6:

m

1 .
Do~ % log(Dy(Go (29)))
end repeat
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