
Slide 1

DISTRIBUTED SYSTEMS [COMP9243]

Lecture 8: Fault Tolerance

➀ Failure

➁ Reliable Communication

➂ Process Resilience

➃ Recovery

Slide 2

DEPENDABILITY

Availability: system is ready to be used immediately

Reliability: system can run continuously without failure

Safety: when a system (temporarily) fails to operate correctly,

nothing catastrophic happens

Maintainability: how easily a failed system can be repaired

Building a dependable system comes down to

controlling failure and faults.

CASE STUDY: AWS FAILURE 2011 1

Slide 3

CASE STUDY: AWS FAILURE 2011

➜ April 21, 2011

➜ EBS (Elastic Block Store) in US East region unavailable for about 2

days

➜ 13% of volumes in one availability zone got stuck

➜ led to control API errors and outage in whole region

➜ led to problems with EC2 instances and RDS in most popular

region

➜ due to reconfig error and re-mirroring storm.

➜ http://aws.amazon.com/message/65648/

Slide 4

AWS EBS Overview:

➜ Region → Availability Zones

➜ Clusters → Nodes → Volumes

➜ Volume: replicated in cluster

➜ Control Plane Services: API for

volumes for whole region

➜ Networks: primary, secondary

What happened?:

➜ US east AZ

➜ network config problem

➜ re-mirroring storm

➜ CP API thread starvation

➜ node race condition

➜ CP election overload

Region

AZ

Availability Zone

EBS

Cluster

Control Plane

server

NodeNode

Node

CASE STUDY: AWS FAILURE 2011 2

Slide 5

Solution:

➜ Disconnect bad cluster

➜ Throttle re-mirroring

➜ Add more disk space

➜ Slowly un-throttle re-mirroring

➜ Volumes unstuck → reconnect cluster

➜ 0.07% data lost

Lessons learned:

➜ Back off

➜ Re-establish connectivity to previous replicas

➜ Shorter timeouts

➜ Snapshot stuck volumes

➜ CP: one AZ shouldn’t crash another AZ

➜ Make it easier to use multiple AZs

Slide 6

FAILURE

Terminology:

Failure: a system fails when it does not meet its promises or

cannot provide its services in the specified manner

Error: part of the system state that leads to failure (i.e., it

differs from its intended value)

Fault: the cause of an error (results from design errors,

manufacturing faults, deterioration, or external

disturbance)

Recursive:

➜ Failure can be a fault

➜ Manufacturing fault leads to disk failure

➜ Disk failure is a fault that leads to database failure

➜ Database failure is a fault that leads to email service failure

TOTAL VS PARTIAL FAILURE 3

Slide 7

TOTAL VS PARTIAL FAILURE

Total Failure:

All components in a system fail

➜ Typical in nondistributed system

Partial Failure:

One or more (but not all) components in a distributed

system fail

➜ Some components affected

➜ Other components completely unaffected

➜ Considered as fault for the whole system

Slide 8

CATEGORISING FAULTS AND FAILURES

Types of Faults:

Transient Fault: occurs once then disappear

Intermittent Fault: occurs, vanishes, reoccurs, vanishes, etc.

Permanent Fault: persists until faulty component is replaced

Types of Failures:

Process Failure: process proceeds incorrectly or not at all

Storage Failure: secondary storage is inaccessible

Communication Failure: communication link or node failure

FAILURE MODELS 4

Slide 9

FAILURE MODELS

Crash Failure: a server halts, but works correctly until it halts

Fail-Stop: server will stop in a way that clients can tell that it has

halted.

Fail-Resume: server will stop, then resume execution at a later

time.

Fail-Silent: clients do not know server has halted

Omission Failure: a server fails to respond to incoming

requests

Receive Omission: fails to receive incoming messages

Send Omission: fails to send messages

Slide 10

Response Failure: a server’s response is incorrect

Value Failure: the value of the response is wrong

State Transition Failure: the server deviates from the correct flow of

control

Timing Failure: a server’s response lies outside the specified

time interval

Arbitrary Failure: a server may produce arbitrary response at

arbitrary times (aka Byzantine failure)

DETECTING FAILURE 5

Slide 11

DETECTING FAILURE

Failure Detector:

➜ Service that detects process failures

➜ Answers queries about status of a process

Reliable:

➜ Failed – crashed

➜ Unsuspected – hint

Unreliable:

➜ Suspected – may still be alive

➜ Unsuspected – hint

Slide 12

Synchronous systems:

➜ Timeout

➜ Failure detector sends probes to detect crash failures

Asynchronous systems:

X Timeout gives no guarantees

➜ Failure detector can track suspected failures

➜ Combine results from multiple detectors

X How to distinguish communication failure from process failure?

➜ Ignore messages from suspected processes

V Turn an asynchronous system into a synchronous one

FAULT TOLERANCE 6

Slide 13

FAULT TOLERANCE

Fault Tolerance:

➜ System can provide its services even in the presence of faults

Goal:

➜ Automatically recover from partial failure

➜ Without seriously affecting overall performance

Techniques:

➜ Prevention: prevent or reduce occurrence of faults

➜ Masking: hide the occurrence of the fault

➜ Prediction: predict the faults that can occur and deal with them

➜ Recovery: restore an erroneous state to an error-free state

Slide 14

FAILURE PREVENTION

Make sure faults don’t happen:

➜ Quality hardware

➜ Hardened hardware

➜ Quality software

FAILURE PREDICTION 7

Slide 15

FAILURE PREDICTION

Deal with expected faults:

➜ Test for error conditions

➜ Error handling code

➜ Error correcting codes

• checksums

• erasure codes

Slide 16

FAILURE MASKING

Try to hide occurrence of failures from other processes

Mask:

➀ Communication Failure →

Reliable Communication

➁ Process Failure →

Process Resilience

FAILURE MASKING 8

Slide 17

Redundancy:

➜ Information redundancy

➜ Time redundancy

➜ Physical redundancy

A B C

A1

A2

A3

V1

V2

V3

B1

B2

B3

V4

V5

V6

C1

C2

C3

V7

V8

V9

(a)

(b)

Voter

Slide 18

RELIABLE COMMUNICATION

➜ Communication channel experiences failure

➜ Focus on masking crash (lost/broken connections) and omission

(lost messages) failures

RELIABLE COMMUNICATION 9

Slide 19

Two Army Problem:

Non-faulty processes but lossy communication.

1 2
3000 3000

5000

➜ 1 → 2 attack!

➜ 2 → 1 ack

➜ 2: did 1 get my ack?

➜ 1 → 2 ack ack

➜ 1: did 2 get my ack ack?

➜ etc.

Consensus with lossy com-

munication is impossible.

Why does TCP work?

Slide 20

RELIABLE POINT-TO-POINT COMMUNICATION

➜ Reliable transport protocol (e.g., TCP)

V Masks omission failure

X Not crash failure

RELIABLE POINT-TO-POINT COMMUNICATION 10

Slide 21

Example: Failure and RPC:

Possible failures:

➜ Client cannot locate server

➜ Request message to server is lost

➜ Server crashes after receiving a request

➜ Reply message from server is lost

➜ Client crashes after sending a request

How to deal with the various kinds of failure?

Slide 22

RELIABLE GROUP COMMUNICATION

Sender

Sender

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

History
buffer

M25

M25

M25

M25

M25

M25

M25

M25

Last = 24

Last = 25

Last = 23

Last = 23

Last = 24

Last = 24

Last = 24

Last = 24

Receiver missed
message #24

ACK 25 ACK 25
ACK 25Missed 24

Network

Network

(a)

(b)

M25

SCALABILITY OF RELIABLE MULTICAST 11

Slide 23

SCALABILITY OF RELIABLE MULTICAST

Feedback Implosion: sender is swamped with feedback

messages

Nonhierarchical Multicast:

➜ Use NACKs

➜ Feedback suppression: NACKs multicast to everyone

➜ Prevents other receivers from sending NACKs if they’ve already

seen one.

V Reduces (N)ACK load on server

X Receivers have to be coordinated so they don’t all multicast

NACKs at same time

X Multicasting feedback also interrupts processes that successfully

received message

Slide 24

Hierarchical Multicast:

C
C

S

(Long-haul) connection

Sender

Coordinator

Root
R

Receiver

Local-area network

PROCESS RESILIENCE 12

Slide 25

PROCESS RESILIENCE

Protection against process failures

Slide 26

Groups:

➜ Organise identical processes into groups

• Process groups are dynamic

• Processes can be members of multiple groups

• Mechanisms for managing groups and group membership

➜ Deal with all processes in a group as a single abstraction

Flat vs Hierarchical Groups:

➜ Flat group: all decisions made collectively

➜ Hierarchical group: coordinator makes decisions

REPLICATION 13

Slide 27

REPLICATION

Create groups using replication

Primary-Based:

➜ Primary-backup

➜ Hierarchical group

➜ If primary crashes others elect a new primary

Replicated-Write:

➜ Active replication or Quorum

➜ Flat group

➜ Ordering of requests (atomic multicast problem)

k Fault Tolerance:

➜ can survive faults in k components and still meet its

specifications

➜ k + 1 replicas enough if fail-silent (or fail-stop)

➜ 2k + 1 required if if byzantine

Slide 28 STATE MACHINE REPLICATION

STATE MACHINE REPLICATION 14

Slide 29

Client

lock()

…Client

Client

lock()

lock()

Replica

Replica

Slide 30

Each replica executes as a state machine:

➜ state + input -> output + new state

➜ All replicas process same input in same order

➜ Deterministic: All correct replicas produce same output

➜ Output from incorrect replicas deviates

Input Messages:

➜ All replicas agree on content of input messages

➜ All replicas agree on order of input messages

➜ Consensus (also called Agreement)

What can cause non-determinism?

ATOMIC MULTICAST 15

Slide 31

ATOMIC MULTICAST

A message is delivered to either all processes, or none

Requires agreement about group membership

Process Group:

➜ Group view: view of the group (list of processes) sender had

when message sent

➜ Each message uniquely associated with a group

➜ All processes in group have the same view

Slide 32

View Synchrony:

A message sent by a crashing sender is either

delivered to all remaining processes (crashed after

sending) or to none (crashed before sending).

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

➜ view changes and messages are delivered in total order Why?

ATOMIC MULTICAST 16

Slide 33

Implementing View Synchrony:

stable message: a message that has been received by all

members of the group it was sent to.

➜ Implemented using reliable point-to-point communication (TCP)

➜ Failure during multicast → only some messages delivered

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

(a) (b) (c)

View change

Unstable
message

Flush message

Slide 34

AGREEMENT

Examples: Election, transaction commit/abort, dividing tasks

among workers, mutual exclusion

➜ Previous algorithms assumed no faults

➜ What happens when processes can fail?

➜ What happens when communication can fail?

➜ What happens when byzantine failures are possible

We want all nonfaulty processes to reach and

establish agreement (within a finite number of steps)

VARIANTS OF THE AGREEMENT PROBLEM 17

Slide 35

VARIANTS OF THE AGREEMENT PROBLEM

Consensus:

➜ each process proposes a value

➜ communicate with each other...

➜ all processes decide on same value

➜ for example, the maximum of all the proposed values

Interactive Consistency:

➜ all processes agree on a decision vector

➜ for example, the value that each of the processes proposed

Byzantine Generals:

➜ commander proposes a value

➜ all other processes agree on the commander’s value

Slide 36

Correctness of agreement:

Termination all processes eventually decide

Agreement all processes decide on the same value

Validity C the decided value was proposed by one of the

processes

IC the decided value is a vector that reflects each of the

processes proposed values

BG the decided value was proposed by the commander

CONSENSUS IN A SYNCHRONOUS SYSTEM 18

Slide 37

CONSENSUS IN A SYNCHRONOUS SYSTEM

Assume:

➜ Execution in rounds

➜ Timeout to detect lost messages

Slide 38

Byzantine Generals Problem:

Reliable communication but faulty processes.

➜ n generals (processes)

➜ m are traitors (will send incorrect and contradictory info)

➜ Need to know everyone else’s troop strength gi

➜ Each process has a vector: 〈g1, ...gn〉

➜ (Note: this is actually interactive consistency)

1 2

3 4

1

2

2 4

z

4

1 x
1

4

y

2

1
2
3
4

Got(
Got(
Got(
Got(

1, 2, x, 4
1, 2, y, 4
1, 2, 3, 4
1, 2, z, 4

)
)
)

)

1 Got 2 Got 4 Got
(((
(((
(((

1, 1, 1,
a, e, 1,
1, 1, i,

2, 2, 2,
b, f, 2,
2, 2, j,

y, x, x,
c, g, y,
z, z, k,

4 4 4
d h 4
4 4 l

)))
)))
)))

(a) (b) (c)
Faulty process

CONSENSUS IN A SYNCHRONOUS SYSTEM 19

Slide 39

Byzantine Generals Impossibility:

1

23

1
21

x

y

2 1
2
3

Got(
Got(
Got(

1, 2, x
1, 2, y
1, 2, 3

)
)
)

1 Got 2 Got
((
((
1, 1,
a, d,

2, 2,
b, e,

y x
c f

))
))

(a) (b) (c)
Faulty process

➜ If m faulty processes then 2m+ 1 nonfaulty processes required

for correct functioning

Slide 40

Byzantine agreement with Signatures:

➜ Digitally sign messages

➜ Cannot lie about what someone else said

➜ Avoids the impossibility result

➜ Can have agreement with 3 processes and 1 faulty

CONSENSUS IN AN ASYNCHRONOUS SYSTEM 20

Slide 41

CONSENSUS IN AN ASYNCHRONOUS SYSTEM

Assume:

➜ Arbitrary execution time (no rounds)

➜ Arbitrary message delays (can’t rely on timeout)

Slide 42

IMPOSSIBILITY OF CONSENSUS WITH ONE FAILURE

Impossible to guarantee consensus with ≥ 1 faulty

process

Proof Outline:

➜ Fischer, Lynch, Patterson (FLP) 1985

➜ the basic idea is to show circumstances under which the

protocol remains forever indecisive

➜ bivalent (any result is possible) vs univalent (only single result is

possible) states

1. There is always a bivalent start state

2. Always possible to reach a bivalent state by delaying messages

→ no termination

In practice we can get close enough

CONSENSUS IN PRACTICE 21

Slide 43

CONSENSUS IN PRACTICE

Two Phase Commit:

➜ Original assumption: No failure

Failures can be due to:

➜ Failure of communication channels:

• use timeouts

➜ Server failures:

• potentially blocking

Slide 44

Two-phase commit with timeouts: Worker:

running

CanCommit

yes

DoCommit

DoCommit

timeout

GetDecision

CanCommit

abort

DoAbort

uncertain

NewServer

abort

committed

aborted

➜ On timeout sends GetDecision.

CONSENSUS IN PRACTICE 22

Slide 45

Two-phase commit with timeouts: Coordinator:

1 2 n−1

committedaborted

CanCommit{1−n}

CommitReq yes(1)

DoCommit{1−n}

abort(1)

DoAbort{1−n}

DoAbort{1−n}
DoAbort{1−n}

...

yes(n)

abort(n)

abort(2)

GetDecision(i)GetDecision(i)

DoAbort(i) DoCommit(i)

...

yes(2) yes(n−1)

CanCommit{2−n}

timeout

CanCommit(n)

timeout

➜ On timeout re-sends CanCommit, On GetDecision repeats

decision.

Slide 46

Coordinator failure:

➜ When coordinator crashes start a new recovery coordinator

➜ Learn state of protocol from workers (what did they vote, what

did they learn from coordinator)

➜ Finish protocol

Coordinator and Worker failure: Blocking 2PC:

➜ Recovery coordinator can’t distinguish between

• All workers vote Commit and failed worker already

committed

• Failed worker voted Abort and rest of workers voted Commit

➜ So can’t make a decision

THREE PHASE COMMIT 23

Slide 47

THREE PHASE COMMIT

➀ Vote: as in 2PC

➁ Pre-commit: coordinator sends vote result to all workers, workers

acknowledge

➂ Commit: coordinator tells workers to perform vote action

Why does this work?

Slide 48

RAFT

Reliable, Replicated, Redundant, And Fault-Tolerant

Consensus

Goal: each node agrees on the same series of operations

(log)

Log ordered list of operations

Leader node responsible for deciding how to add operations

to the log

Followers nodes that replicate the leader’s log

Two subproblems

Leader Election how to agree on who the leader is

Log Replication how to replicate the leader’s log to the

followers

LEADER ELECTION 24

Slide 49

LEADER ELECTION

Term the time during which a node is leader

Candidate node who wants to become leader

Failed Leader:

➜ Leader sends regular heartbeat to followers

➜ Follower sees no communication from leader (election timeout)

➜ Leader sees heartbeat from a later term (steps down as leader)

Slide 50

A C

E D

B

Client

Candidate

Leader

Follower

Follower

Follower

B

B
B

B

LEADER ELECTION 25

Slide 51

D

B

Client

Leader

Follower

Follower

Follower

B

B

B

C

E

A

Slide 52

Candidate:

➜ Detects that leader has failed

➜ Sends Request Vote to all other nodes

➜ Nodes reply

Yes hasn’t voted yet this term

No has already voted this term

➜ Majority votes -> candidate becomes leader

➜ or Timeout -> new election

LOG REPLICATION 26

Slide 53

LOG REPLICATION

D

B

Client

C

)
A

5
5

5

5

5

Slide 54

D

B

Client

C

E

5

5

5

5 A

LOG REPLICATION 27

Slide 55

D

B

Client

C

E

5

5

5

5 A

Slide 56

LOG REPLICATION

➀ Client sends operation to leader

➁ Leader appends to its log

➂ Leader sends Append Entries message to followers

➃ Followers acknowledge

➄ Leader commits operation to log

PAXOS 28

Slide 57

PAXOS

Goal: a collection of processes chooses a single proposed

value In the presence of failure

Proposer proposes value to choose (leader)

Acceptor accept or reject proposed values

Learner any process interested in the result (chosen value) of

the consensus

Chosen Value: value accepted by majority of acceptors

Properties:

➜ Only proposed values can be learned

➜ At most one value can be learned

➜ If a value has been proposed then eventually a value will be

learned

Slide 58

USING PAXOS

Use Paxos for:

➜ Leader election: choose a leader id

• single paxos instance. elections starter(s) propose leader id.

result in an agreed upon leader.

➜ View synchrony: order view changes

• one paxos instance per view change: result in a view

change order sequence number

➜ Total order multicast: order messages

• one paxos instance per message: result in a message

sequence number

➜ State machine replication: order operations

• one paxos instance per operation: result in an operation

sequence number

PAXOS ALGORITHM: 3 PHASES 29

Slide 59

PAXOS ALGORITHM: 3 PHASES

Assuming no failures

Phase 1: Propose:

➀ Propose: send a proposal <seq, value> to ≥ N/2 acceptors

➁ Promise: acceptors reply.

• accept (include last accepted value). promised = seq.

Phase 2: Accept:

➀ Accept: when ≥ N/2 accept replies, proposer sends value (as

received from acceptor or arbitrary):

➁ Accepted: acceptors reply

• accepted. Remember accepted value.

Phase 3: Learn:

➀ Propagate value to Learners when ≥ N/2 accepted replies

received.

Slide 60

SIMPLE CASE

P1 A1 A2 A3 Learners

propose(<p1,s1>,v)

promise(<p1,s1>,<nil,nil>)

accept(<p1,s1>,v)

accepted(<p1,s1>,v)

accepted(<p1,s1>,v)

accepted(<p1,s1>,v)

FAILURES 30

Slide 61

FAILURES

What can go wrong before agreement is reached?

Failure Model:

channel : lose, reorder, duplicate message

process : crash (fail-stop, fail-resume)

Failure Cases:

➀ Acceptor fails

➁ Acceptor recovers/restarts

➂ Proposer fails

➃ Multiple proposers

➜ New proposer

➜ Proposer recovers/restarts

Slide 62

PAXOS ALGORITHM: 3 PHASES

With Failures!

Phase 1: Propose:

➀ Propose: send a proposal <seq, value> to ≥ N/2 acceptors

➁ Promise: acceptors reply.

• reject if seq < seq of previously accepted value

• else accept (include last accepted value). promised = seq.

Phase 2: Accept:

➀ Accept: when ≥ N/2 accept replies, proposer sends value (as

received from acceptor or arbitrary):

➁ Accepted: acceptors reply

• reject if seq < promised.

• else accepted. Remember accepted value.

Phase 3: Learn:

➀ Propagate value to Learners when ≥ N/2 accepted received.

ACCEPTOR FAILS 31

Slide 63

ACCEPTOR FAILS

V As long as a quorum still available

➜ Restart: Must remember last accepted value(s)

P1 A1 A2 A3 Learners

propose(<p1,s1>,v)

promise(<p1,s1>,<nil,nil>)

accept(<p1,s1>,v)

accepted(<p1,s1>,v)

accepted(<p1,s1>,v)

,

Slide 64

PROPOSER FAILS

➜ Elect a new leader

➜ Continue execution

V New proposer will choose any previously accepted value

P1 A1 A2 A3 LearnersP2

accept(<p2,s1>,v2)

accepted(<p2,s1>,v2)

�
propose(<p2,s1>,v2)

promise(<p2,s1>,<nil,nil>)

promise(<p1,s1>,<nil,nil>)

propose(<p1,s1>,v1)

PROPOSER FAILS 32

Slide 65

P1 A1 A2 A3 LearnersP2

accept(<p2,s1>,v1)

accepted(<p2,s1>,v1)

�
propose(<p2,s1>,v2)

promise(<p2,s1>,<p1s1,v1>)

promise(<p1,s1>,<nil,nil>)

propose(<p1,s1>,v1)

accept(<p1,s1>,v1)

promise(<p2,s1>,<nil,nil>)

Slide 66

MULTIPLE PROPOSERS

➜ For example: crashed proposer returns and continues

X Dueling proposers

X No guaranteed termination

V Heuristics to recognise situation and back off

OPTIMISATION AND MORE INFORMATION 33

Slide 67

OPTIMISATION AND MORE INFORMATION

Opportunities for optimisation:

➜ Reduce rounds

• Phase 1: reject: return highest accepted seq

• Phase 2: reject: return promised seq

➜ Reduce messages

• Piggyback multiple requests and replies

• Pre-propose multiple instances (assumes Proposer rarely fails)

More information:

Paxos Made Live - An Engineering Perspective Experiences

implementing Paxos for Google’s Chubby lock server. It

turns out to be quite complicated.

Slide 68

FAILURE RECOVERY

Restoring an erroneous state to an error free state

Issues:

➜ Reclamation of resources:

locks, buffers held on other nodes

➜ Consistency:

Undo partially completed operations prior to restart

➜ Efficiency:

Avoid restarting whole system from start of computation

FORWARD VS. BACKWARD ERROR RECOVERY 34

Slide 69

FORWARD VS. BACKWARD ERROR RECOVERY

Forward Recovery:

➜ Correct erroneous state without moving back to a previous

state.

➜ Example: erasure correction - missing packet reconstructed

from successfully delivered packets.

X Possible errors must be known in advance

Backward Recovery:

➜ Correct erroneous state by moving to a previously correct state

➜ Example: packet retransmission when packet is lost

V General purpose technique.

X High overhead

X Error can reoccur

X Sometimes impossible to roll back (e.g. ATM has already

delivered the money)

Slide 70

BACKWARD RECOVERY

General Approach:

➜ Restore process to recovery point

➜ Restore system by restoring all active processes

Specific Approaches:

Operation-based recovery :

• Keep log (or audit trail) of operations (like transactions)

• Restore to recovery point by reversing changes

State-based recovery :

• Store complete state at recovery point

(checkpointing)

• Restore process state from checkpoint (rolling back)

Log or checkpoint recorded on stable storage

BACKWARD RECOVERY 35

Slide 71

State-Based Recovery - Checkpointing:

Take frequent checkpoints during execution

Checkpointing:

➜ Pessimistic vs Optimistic

• Pessimistic: assumes failure, optimised toward recovery

• Optimistic: assumes infrequent failure, minimises checkpointing

overhead

➜ Independent vs Coordinated

• Coordinated: processes synchronise to create global checkpoint

• Independent : each process takes local checkpoints independently

of others

➜ Synchronous vs Asynchronous

• Synchronous: distributed computation blocked while checkpoint

taken

• Asynchronous: distributed computation continues while checkpoint

taken

Slide 72

Checkpointing Overhead:

X Frequent checkpointing increases overhead

X Infrequent checkpointing increases recovery cost

Decreasing Checkpointing Overhead:

Incremental checkpointing: Only write changes since last

checkpoint:

➜ Write-protect whole address space

➜ On write-fault mark page as dirty and unprotect

➜ On checkpoint only write dirty pages

Asynchronous checkpointing: Use copy-on-write to

checkpoint while execution continues
➜ Easy with UNIX fork()

Compress checkpoints: Reduces storage and I/O cost at the

expense of CPU time

RECOVERY IN DISTRIBUTED SYSTEMS 36

Slide 73

RECOVERY IN DISTRIBUTED SYSTEMS

➜ Failed process may have causally affected other processes

➜ Upon recovery of failed process, must undo effects on other

processes

➜ Must roll back all affected processes

→ All processes must establish recovery points

➜ Must roll back to a consistent global state

Slide 74

Domino Effect:

P1

P2

P3

R11 R13

R21

R31 R32

R22

R12

m

➜ P1 fails → roll back: P1 y R13

➜ P2 fails → P2 y R22

Orphan message m is received but not sent → P1 y R12

➜ P3 fails → P3 y R32 → P2 y R21 → P1 y R11, P3 y R31

Messaging dependencies plus independent checkpointing

may force system to roll back to initial state

RECOVERY IN DISTRIBUTED SYSTEMS 37

Slide 75

Message Loss:

R21

R11

P2

P1

m

➜ Failure of P2 → P2 y R21

➜ Message m is now recorded as sent (by P1) but not received (by

P2), and m will never be received after rollback

➜ Message m is lost

➜ Whether m is lost due to rollback or due to imperfect

communication channels is indistinguishable!

→ Require protocols resilient to message loss

Slide 76

Livelock:

P2

P1

R11

R21

n1

m1

P2⇓ → P2 y R21 → P1 y R11. Note: n1 in transit

R11

R21

P1
n2

m2n1 P2

➜ Pre-rollback message n1 is received after rollback

➜ Forces another rollback P2 y R21, P1 y R11, can repeat

indefinitely

CONSISTENT CHECKPOINTING 38

Slide 77

CONSISTENT CHECKPOINTING

Consistent Cut:

P2

P3

P1

cut 2cut 1

0
r

2

0
1

s

r
1
2

0
2

s
1
2

s

0
3

r

0
1

r

3
1

s

1
1

r

2
2

s

3
r

10
3

s

Slide 78

Idea: collect local checkpoints in a coordinated way.

➜ Set of local checkpoints forms a global checkpoint.

➜ A global checkpoint represents a consistent system state.

P1

P2

P3

R11

R21

R31

R22

R12

R32

m

➜ {R11, R21, R31} form a strongly consistent checkpoint :

• No information flow during checkpoint interval

➜ {R12, R22, R32} form a consistent checkpoint :

• All messages recorded as received must be recorded as sent

CONSISTENT CHECKPOINTING 39

Slide 79

➜ Strongly consistent checkpointing requires quiescent system

→ Potentially long delays during blocking checkpointing

➜ Consistent checkpointing requires dealing with message loss

• Not a bad idea anyway, as otherwise each lost message

would result in a global rollback

• Note that a consistent checkpoint may not represent an

actual past system state

How to take a consistent checkpoint?:

➜ Simple solution: Each process checkpoints immediately after

sending a message

X High overhead

➜ Reducing this to checkpointing after n messages, n > 1, is not

guaranteed to produce a consistent checkpoint!

→ Require some coordination during checkpointing

Slide 80

SYNCHRONOUS CHECKPOINTING

Processes coordinate local checkpointing so that

most recent local checkpoints constitute a consistent

checkpoint

Assumptions:

➜ Communication is via FIFO channels.

➜ Message loss dealt with via

• Protocols (such as sliding window), or

• Logging of all sent messages to stable storage

➜ Network will not partition

Local checkpoints:

permanent: part of a global checkpoint

tentative: may or may not become permanent

SYNCHRONOUS ALGORITHM 40

Slide 81

SYNCHRONOUS ALGORITHM

➜ Global checkpoint initiated by a single coordinator

➜ Based on 2PC

First Phase:

➀ Coordinator Pi takes tentative checkpoint

➁ Pi sends t message to all other processes Pj to take tentative

checkpoint

➂ Pj reply to Pi whether succeeded in taking tentative

checkpoint

➃ Pi receives true reply from each Pj → decides to make

permanent

Pi receives at least one false → decides to discard the tentative

checkpoints

Slide 82

Second Phase:

➀ Coordinator Pi informs all other processes Pj of decision

➁ Pj convert or discard tentative checkpoints accordingly

Consistency ensured because no messages sent

between two checkpoint messages from Pi

REDUNDANT CHECKPOINTS 41

Slide 83

REDUNDANT CHECKPOINTS

Algorithm performs unnecessary checkpoints

P1

P2

P3

R11

R21

R31 R32

R12

R22

m

➜ {R11, R21, R31} form a (strongly) consistent checkpoint

➜ Checkpoint {R12, R22, R32} initiated by P1 is strongly consistent

➜ R32 is redundant, as {R12, R22, R31} is consistent

Slide 84

ROLLBACK RECOVERY

First Phase:

➀ Coordinator sends “r” messages to all other processes to ask

them to roll back

➁ Each process replies true, unless already in checkpoint or

rollback

➂ If all replies are true, coordinator decides to roll back, otherwise

continue

Second Phase:

➀ Coordinator sends decision to other processes

➁ Processes receiving this message perform corresponding action

HOMEWORK 42

Slide 85

HOMEWORK

➜ Look up a recent failure of a large distributed system. What

went wrong? How could the problem has been avoided? What

lessons were learned?

➜ Find a Paxos or Raft library and implement a replicated state

machine using it.

Hacker’s edition:

➜ Implement the Paxos or Raft library (e.g., in Erlang).

Slide 86

READING LIST

Optional

In Search of an Understandable Consensus Algorithm Paper

describing (and motivating) Raft.

Paxos Made Live - An Engineering Perspective Experiences

implementing Paxos for Google’s Chubby lock server. It

turns out to be quite complicated.

READING L IST 43

