DISTRIBUTED SYSTEMS (COMP9243)
SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS

Lecture 7 (A): Synchronisation and Coordination Timing model of a distributed systemn

Part 1
Slide 1 Slide 3 Affected by:
® Distributed Algorithms =» Execution speed/time of processes
@ Time and Clocks =» Communication delay
® Global State -» Clocks & clock drift
@ Concurrency Control
DISTRIBUTED ALGORITHMS Synchronous Distributed System:
Algorithms that are intended to work in a distributed Time variance is bounded

environment . . .
Execution : bounded execution speed and time

Used to accompilish tasks such as: Communication : bounded transmission delay

-» Communication
- Accessing resources Clocks : bounded clock drift (and differences in clocks)
Slide 2 -» Allocating resources Slide 4 Effect:

- Consensus = Can rely on timeouts to detect failure

> efe. v Easier to design distributed algorithms
Synchronisation and coordination inextricably linked to x Very restrictive requirements
distributed algorithms e Limit concurrent processes per processor Why?
=» Achieved using distributed algorithms e Limit concurrent use of network \Why?
=» Required by distributed algorithms e Require precise clocks and synchronisation

SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS 1 SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS

Slide 5

Slide 6

Asynchronous Distributed System:

Time variance is not bounded

Execution : different steps can have varying duration
Communication : fransmission delays vary widely
Clocks : arbitrary clock drift

Effect:
=» Allows no assumption about fime intervals
x Cannot rely on fimeouts to detect failure
x Most asynch DS problems hard to solve
v Solution for asynch DS is also a solution for synch DS

=» Most real distributed systems are hybrid synch and asynch

Slide 7

EVALUATING DISTRIBUTED ALGORITHMS

Key Properties:
@ Safety: Nothing bad happens
@ Liveness: Something good eventually happens

General Properties:
=» Performance
e number of messages exchanged
e response/wait time
e delay, throughput: 1/(delay + executiontime)
e complexity: O()
= Efficiency
e resource usage: memory, CPU, etc.
=» Scalability
= Reliability
e number of points of failure (low is good)

Slide 8

SYNCHRONISATION AND COORDINATION

SYNCHRONISATION AND COORDINATION
Important:
Doing the right thing at the right fime.

Two fundamental issues:
=» Coordination (the right thing)
=» Synchronisation (the right time)

COORDINATION

Coordinate actions and agree on values.

Coordinate Actions:
=» What actions will occur
-» Who will perform actions

Agree on Values:
-» Agree on global value
= Agree on environment
-» Agree on state

SYNCHRONISATION

SYNCHRONISATION

Ordering of all actions

-» Total ordering of events
Slide 9 -» Total ordering of instructions
=» Total ordering of communication
=» Ordering of access to resources

=» Requires some concept of time

MAIN ISSUES

Time and Clocks: synchronising clocks and using time in
distributed algorithms

Slide 10 Gjobal State: how to acquire knowledge of the system’s
global state

Concurrency Control: coordinating concurrent access to
resources

TIME AND CLOCKS

Slide 11 TIME AND CLOCKS

TIME

Global Time:
= ‘Absolute’ time
¢ Einstein says no absolute time
e Absolute enough for our purposes
= Astronomical time
Slide 12 ¢ Based on earth’s rotation
e Not stable
=» International Atomic Time (IAT)
e Based on oscillations of Cesium-133
=» Coordinated Universal Time (UTC)

e Leap seconds
e Signals broadcast over the world

TIME

Local Time:
Slide 13 -» Relative not “absolute’
=» Not synchronised to Global source

UsING CLOCKS IN COMPUTERS

Timestamps:
-» Used to denote at which time an event occurred

Synchronisation Using Clocks:
Slide 14 = Performing events at an exact time (turn lights on/off,
lock/unlock gates)
=» Logging of events (for security, for profiling, for debugging)
= Tracking (fracking a moving object with separate cameras)
-» Make (edit on one computer build on another)
=» Ordering messages

PHYsICAL CLOCKS

PHYSICAL CLOCKS

Based on actual time:
= C,(t): current time (at UTC time ¢) on machine p
= |dedlly Cp(t) =¢
x Clock differences causes clocks to drift
=» Must regularly synchronise with UTC

Computer Clocks:
Slide 15 =» Crystal oscillates at known frequency
=» Oscillations cause timer interrupts
=» Timer interrupts update clock

Clock Skew:
=» Crystals in different computers run at slightly different rates
=» Clocks get out of sync
-» Skew: instantaneous difference
=» Drift: rate of change of skew

SYNCHRONISING PHYSICAL CLOCKS

Internal Synchronisation:
=» Clocks synchronise locally
=» Only synchronised with each other

slide 16 External Synchronisation:
=» Clocks synchronise to an external time source
=» Synchronise with UTC every ¢ seconds

Time Server:
=» Server that has the correct time
=» Server that calculates the correct time

BERKELEY ALGORITHM

BERKELEY ALGORITHM

Time daemon
3:00

Y 500 5
@? oD @9
e ==

Slide 17 @ @ @ @

2:50 3:25 2:50 3:25 3:05 3:05
(a) (b) (c)

3:00 0 3:05

Accuracy: 20-25 milliseconds

When is this useful?

CRISTIAN’S ALGORITHM

Time Server:
=» Has UTC receiver
-» Passive

Algorithm:
slide 18 =» Clients periodically request the time
=» Don’t set time backward Why not?
=» Take propagation and interrupt handling delay into account
o (T1—T0)/2
e Ortake a series of measurements and average the delay
=» Accuracy: 1-10 millisec (RTT in LAN)

What is a drawback of this approach?

NETWORK TIME PROTOCOL (NTP)

NETWORK TIME PROTOCOL (NTP)

Hierarchy of Servers:
=» Primary Server: has UTC clock
=» Secondary Server: connected to primary
= efc.
Slide 19
Synchronisation Modes:
Multicast: for LAN, low accuracy
Procedure Call: clients poll, reasonable accuracy

Symmetric: Between peer servers. highest accuracy

Synchronisation:
=» Estimate clock offsets and tfransmission delays between two
nodes
Slide 20 =» Keep estimates for past communication
-» Choose offset estimate for lowest transmission delay
=» Also determine unreliable servers
=» Accuracy 1-50 msec

LAMPORT

LAMPORT

Safety, Liveness

Logical clocks and vector
clocks

Snapshots

Byzantine generals

Paxos consensus

TLA+, LaTeX

Turing Award 2013

+d

Slide 21

i il

Comments about his pa-
pers: Google: lamport my
writings

LoGicAL CLOCKS

Event ordering is more important than physical time:
-» Events (e.g., state changes) in a single process are ordered
-» Processes need to agree on ordering of causally related events
(e.g., message send and receive)

Local ordering:
=» System consists of N processes p;, i € {1,...,N}
Slide 22 =» Local event ordering —;:
If p; observes e before e, we have e —; €’

Global ordering:
=» Leslie Lamport’s happened before relation —
=» Smallest relation, such that
1. e —; ¢ implies e — ¢’
2. For every message m, send(m) — receive(m)
3. Transitivity: e — ¢’ and e’ — ¢’ implies e — ¢”

LoGicAL CLOCKS

The relation — is a partial order:
= If a = b, then a causally affects b
=» We consider unordered events to be concurrent:

Example® Aband b A aimpliesa || b

éz\ E;z =%} Eoq
Real Time
=» Causally related: Ei1 — FEis, E13, E14, B2z, Eou, . ..
E21 — FEaz, Ea3, Eos, Ei3, Eng, . ..
= Concurrent: E11||Es1, E12||E22. Ers||Eas, Fi1]|Ea2, E1s||E2a,
Ev4||Eas, . ..

Lamport’s logical clocks:
=» Software counter to locally compute the happened-before
relation —
=» Each process p; maintains a logical clock L;
=» Lamport fimestamp:
e L;(e): fimestamp of event e at p;
e L(e): timestamp of event e at process it occurred at

Implementation:
@ Before timestamping a local event p; executes L; := L; + 1
® Whenever a message m is sent from p; to p;:

Slide 24

e p;, executes L; := L, + 1 and sends L; with m
e p; receives L; with m and executes L; := max(L;, L;) + 1
(receive(m) is annotated with the new L;)

Properties:
= a — bimplies L(a) < L(b)
= L(a) < L(b) does not necessarily imply a — b

LoGicAL CLOCKS 12

Example:
Eie Ei7
I | Py
6 7
Slide 25 7
T T P2
Epq4 Eos
Real Time

How can we order E3 and Es3 ?

Total event ordering:
-» Complete partial to total order by including process identifiers
- Given local time stamps Li(e) and L;(e’). we define global fime
stamps (L;(e), i) and (L;(e"), j)
Slide26 - Lexicographical ordering: (Li(e), i) < (L; ('), 5) iff
e Li(e) < Lj(e") or
o Li(e)=Lj(e')andi < j

E13 = 3, Fay = 4. Did E13 happen before Ey4?

VECTOR CLOCKS 13

VECTOR CLOCKS

Main shortcoming of Lamport’s clocks:
= L(a) < L(b) does not imply a — b
-» We cannot deduce causal dependencies from time stamps:

Eqr Eip
} } P4
1 2
Ea Ep
N } } P2
Slide 27 1 3

Eg Es2 Esg

f } f Ps

1 2 3

Real Time

- We have L1(E11) < L3(E33), but E11 4 Ess
- Why?
e Clocks advance independently or via messages
e There is no history as to where advances come from

Vector clocks:
=» At each process, maintain a clock for every other process
= l.e., each clock V; is a vector of size N
= V;[j] contains i's knowledge about j’s clock
=» Events are fimestamped with a vector

Implementation:
@ Inifially, V;[j] :=0fori,j € {1,...,N}
Slide 28 @ Before p; timestamps an event: V;[i] := V;[i] + 1
® Whenever a message m is sent from p; to p;:
e p; executes V;[i] := V;[i] + 1 and sends V; with m

e p; receives V; with m and merges the vector clocks V; and
Vj:

vilk] :{ max(Vilk], ViR #1105 = k
max(V;[k], Vi[k]) , otherwise

VECTOR CLOCKS 14

Properties:

= Foralls,j, Vi[i] > V;li]

= o — biff V(a) < V(b) where
o V=V'iff V[i] = V'[i]fori e {1,...,N}
o V>V'iff V[i] > V'[i]fori e {1,...,N}
e VSVIfVEV AV £V
o VIV'If VEV AV 2V

Example:
Slide 29
Eq1 1 2E Ei3 6
}11 ‘ﬂz J‘13 P,
(1,0,0) (2,0,0) (3,4,1)
Exl o2 Epz 4 Epy/S P
2
010 (2201231 (241
1E E3s 2
\ 2 P3
(0,0,1) (0,0,2)
Real Time
- For L1(E12) and Lg(E32), 2 = 2 versus (2, 0, 0) #* (O7 0, 2)
Slide 30 GLOBAL STATE
GLOBAL STATE

GLOBAL STATE

Determining global properties:

=» Distributed garbage collection:
Do any references exist to a given object?

=» Distributed deadlock detection:
Do processes wait in a cycle for each other?

=» Distributed termination detection:
Did a set of processes cease all activity? (Consider messages in
transit!)

=» Distributed checkpoint:
What is a correct state of the system to save?

Slide 31

CONSISTENT CUTS

Determining global properties:
-» We need to combine information from multiple nodes

=» Without global time, how do we know whether collected local

Slide 32 information is consistent?

=» Local state saompled at arbitrary points in fime surely is not
consistent

-» We need a criterion for what constitutes a globally consistent

collection of local information

15 CONSISTENT CUTS 16

Cuts:

) =» Similar fo the global history, we can define cuts based on
Local history:

k-prefixes:
- N processes p;. i € {1,...,N} N
= Foreach p;, O = U R
e event: ¢/ local action or communication =1
e history: hf = (e?, e, ... ef) = 1 s history of p; up to and including event e
Slide 33 e May be finite or infinite Slide 35 = The cut C corresponds to the state
Process state: S = (st st
- s¥: state of process p; immediately before event ef
= s¥ records all events included in the history h¥~* = The final events in a cut are ifs frontier:
- Hence, s? refers to p;’s initial state (5 lie{l,...,N}}

Global history and state:
=» Using a fotal event ordering, we can merge all local histories

intfo a global history: P3
N
H=Jh
slide 34 = slide36 P2
=» Similarly, we can combine a set of local states s1,...,sy intfo a
global state:
S =(81,...,5N) P1

=» Which combination of local state is consistent?

CONSISTENT CUTS 17 CONSISTENT CUTS

Consistent cut:
=» We call a cut consistent iff,

forallevents e’ € C,e — ¢ implies e € C

-» A global state is consistent if it corresponds to a consistent cut
-» Note: we can characterise the execution of a system as a
sequence of consistent global states

Slide 37 So— 51— Sy — -

Linearisation:
-» A global history that is consistent with the happened-before
relation — is also called a linearisation or consistent run
=» Alinearisation only passes through consistent global states
= Astate §’ is reachable from state S if there is a linearisation that
passes thorough S and then S’

CHANDY & LAMPORT’S SNAPSHOTS

-» Determines a consistent global state
-» Takes care of messages that are in fransit
-» Useful for evaluating stable global properties

Properties:
Slide 38 =» Reliable communication and failure-free processes
-» Point-to-point message delivery is ordered
=» Process/channel graph must be strongly connected
=» On termination,
e processes hold only their local state components and
e a set of messages that were in transit during the snapshot.

CHANDY & LAMPORT'S SNAPSHOTS 19

Outline of the algorithm:
@ One process initiates the algorithm by
e recording its local state and
e sending a marker message * over each outgoing channel
@ On receipt of a marker message over incoming channel ¢,
¢ if local state not yet saved, save local state and send marker
messages, or

e if local state already saved, channel snapshot for ¢ is

Slide 39 complete

® Local contribution complete after markers received on all
incoming channels

Result for each process:
=» One local state snapshot
=» For each incoming channel, a set of messages received after
performing the local snapshot and before the marker came
down that channel

P1

Y

Slide 40 P2

P3

SPANNER AND TRUETIME

20

SPANNER AND TRUETIME
Globally Distributed Database

=» Want external consistency (linearisability)
Slide 41 =» Want lock-free read transactions (for scalability)

WWGD? (what would Google do?)

EXTERNAL CONSISTENCY WITH A GLOBAL CLOCK
Data:

=» versioned using timestamp

Read:

-» Read operations performed on a snapshot
=» Snapshot: latest version of data items <= given timestamp
Slide 43 Write:

-» Each write operation (fransaction actually) has unique
timestamp
e Timestamps must not overlap!

-» Write operations are protected by locks
- Means they don’t overlap

=» So get global fime during the transaction
=» Means timestamps won't overlap

Slide 42 Use A GLOBAL CLock!

BUT CLOCKS ARE NOT PERFECTLY SYNCHRONISED.

BUT CLOCKS ARE NOT PERFECTLY SYNCHRONISED.

Slide 44 So transaction A could get the same fimestamp as

transaction B

21 TRUE TIME 22

TRUE TIME

Add uncertainty to timestamps:
=» TT.now(: current local clock value
Slide 45 =» TT.now(.earliest(), TT.now().latest: maximum skew of clock

Add delay to transaction:
=» so timestamps can’t possibly overlap

=>» s = TT.now(); wait until TT.now().earliest > s.latest

TRUETIME ARCHITECTURE

GPS GPS GPS
timemaster timemaster timemaster
GPS Atomic-clock GPS
timemaster timemaster timemaster
Slide 46
Datacenter 1 Datacenter 2 = Datacenter n

Compute reference [earliest, latest] = now * €

(from http://research.google.com/archive/spanner-o0sdi2012. pptx)

SYNCHRONISATION

23

SYNCHRONISATION

€
+6ms

200 ps/sec

Slide 47
@
reference @ ¢)
uncertainty time
Osec 30sec 60sec 90sec
(from http://research.google.com/archive/spanner-o0sdi2012. pptx)
Slide 48 CONCURRENCY

CONCURRENCY

24

CONCURRENCY

Concurrency in a Non-Distributed System:

Typical OS and multithreaded programming problems
=» Prevent race conditions
=» Ciritical sections
Slide 49 =» Mutual exclusion
e Locks
e Semaphores
e Monitors
=» Must apply mechanisms correctly
e Deadlock
e Starvation

Concurrency in a Distributed System:

Distributed System infroduces more challenges
-» No directly shared resources (e.g., memory)
Slide 50 - No global state
-» No global clock
=» No centralised algorithms
-

More concurrency

DISTRIBUTED MUTUAL EXCLUSION

DISTRIBUTED MUTUAL EXCLUSION

=» Concurrent access to distributed resources
=» Must prevent race conditions during critical regions

Requirements:
Slide 51 @ Safety: At most one process may execute the critical section at
a time
@ Liveness: Requests to enter and exit the critical section
eventually succeed
® Ordering: Requests are processed in happened-before
ordering (also Fairness)

RECALL: EVALUATING DISTRIBUTED ALGORITHMS

General Properties:
= Performance
¢ number of messages exchanged
e response/wait time
e delay
Slide 52 e throughput: 1/(delay + executiontime)
e complexity: O()
= Efficiency
e resource usage: memory, CPU, etc.
=» Scalability
= Reliability

e number of points of failure (low is good)

25 METHOD 1: CENTRAL SERVER 26

METHOD 1: CENTRAL SERVER METHOD 2: TOKEN RING

Implementation:
=» All processes are organised in a logical ring structure
-» A token message is forwarded along the ring
=» Before entering the critical section, a process has to wait unfil
the token comes by
-» Must retain the token until the critical section is left

Simplest approach:
-» Requests to enter and exit a critical section are sent to a lock
server
=» Permission to enter is granted by receiving a token
=» When critical section left, foken is returned to the server

Slide 53 Slide 55

OO OO OJOXO)

Request oK Request 4 Release

O O On 9090900000 @

(a) (b) (©)

Properties:
=» Number of message exchanged?

Properties:

=> Number of message exchanged?

. " . =» Delay before entering critical section?
=» Delay before entering critical section? o
. il 0 . = Reliability?
Slide 54 ™ felapiiy Slide 56 =» Ring imposes an average delay of N/2 hops (limits scalability)
-» Easy to implement gimpe 9 Y) / P
-» Token messages consume bandwidth
= Does not scale well - .)
, =» Failing nodes or channels can break the ring (foken might be
-» Cenfral server may fail

lost)

METHOD 2: TOKEN RING 27 METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS

Algorithm by Ricart & Agrawala:
=» Processes p; maintain a Lamport clock and can communicate

slide 57 painwise
-» Processes are in one of three states:
1. Released: Outside of critical section
2. Wanted: Waiting to enter critical section
3. Held: Inside critical section

Process behaviour:
@ If a process wants to enter, it
e multicasts a message (L;, p;) and
o waits unfil it has received a reply from every process

@ If a process is in Released, it immediately replies to any request
Slide 58 to enter the critical section
® If aprocess is in Held, it delays replying until it is finished with the
critical section
@ If a process is in Wanted, it replies to a request immediately only
if the requesting timestamp is smaller than the one in its own
request

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS

Enters
critical
region

oK oK OK
Enters
G0 O O

region

Slide 59

Properties:
=» Number of message exchanged?
=» Delay before entering critical section?
=» Reliability?
-» Multicast leads to increasing overhead
(try using only subsets of peer processes)
=» Susceptible to faults

MuTuAL EXCLUSION: A COMPARISON

Messages Exchanged:
-» Messages per entry/exit of critical section
e Centralised: 3
e RiNg: 1 — oo
e Multicast: 2(n — 1)
Delay:
Slide 60 =» Delay before entering critical section

e Centralised: 2
e RNG:0—n—1
e Multicast: 2(n — 1)

Reliability:
=» Problems that may occur

e Centralised: coordinator crashes
e Ring: lost token, process crashes
e Multicast: any process crashes

HOMEWORK

30

READING LIST

HOMEWORK Optional
-» How would you use vector clocks to implement causal
slide 61 consistency? slide 63 Time, C;Iockcs;,| quld theLOrderlr:rg T)f Elllenis in a Distribted
=» Could you use logical clocks to implement sequential system LIassic on LAmMpOort Clocks.
consistency? Distributed Snapshots: Determining Global States of
Distributed Systems Chandy and Lamport algorithm.
HOMEWORK

Hacker’s edition:
Slide 62 = Modify the Ricart Agrawala mutual exclusion algorithm to only
require sending to a subset of the processes.
=» Can you modify the centralised mutual exclusion algorithm to
tolerate coordinator crashes?

READING LisT 31 READING LisT

