DISTRIBUTED SYSTEMS (COMP9243)

Lecture 13: Cloud Computing

Slide 1

- ① What is Cloud Computing?
- ② X as a Service
- 3 Key Challenges
- Developing for the Cloud

WHAT IS CLOUD COMPUTING?

Slide 2

A style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet. (Wikipedia)

Slide 3

Why is it called Cloud?

- → services provided on virtualised resources
- → virtual machines spawned on demand
- → location of services no longer certain
- → similar to network cloud

Flavours of Cloud Computing:

http://www.mazikglobal.com/blog/cloud-computing-stack-saas-paas-iaas/

WHAT IS CLOUD COMPUTING? 1 WHAT IS CLOUD COMPUTING? 2

KEY CHARACTERISTICS OF CLOUD COMPUTING

SP 800-145. The NIST Definition of Cloud Computing:

- ① On-demand, self-service
 - get resources (CPU, storage, bandwidth etc),
 - automated: as needed, right now!
- ② Network access
 - services accessible over the network, standard protocols

Slide 6

- ③ Pooled resources
 - provider: multi-tenant pool of resources
 - dynamically assigned and reassigned per customer demand
- Elasticity
 - Scalability: rapidly adjust resource usage as needed
- ⑤ Measured service
 - monitor resource usage
 - billing for resources used

BENEFITS

Flexibility:

- → Flexible provisioning
- → Add machines on demand

Slide 7

→ Add storage on demand

Effort:

- → Low barrier to entry
- → Initial effort: no need to spec and set up physical infrastructure
- → Continuing effort: no need to maintain physical infrastructure

Cost:

- → Low initial capital expenditure
- → Avoid costs of over-provisioning for scalability
- → Pay for what you use

Slide 8

3

in "Developing and Extending Applications for Windows Azure with Visual Studio"

Reliability:

- → Redundancy
- → Trust reliability of provider

Slide 9

- → Data backups
- → What happens when provider goes down?
- → What about Security? Privacy?

Public vs Private Clouds?

Slide 10

Public: open services available to everyone

Private: owned, operated, and available to specific organisation Is this still cloud computing?

Hybrid: system uses some private cloud services and some public cloud

http://blog.nskinc.com/IT-Services-Boston/bid/32590/Private-Cloud-or-Public-Cloud

INFRASTRUCTURE AS A SERVICE: IAAS

Service provider provides:

- → Server and network hardware
- → Virtual machines
- → IP addresses
- 0

Slide 11

→ Services to manage VMs (create, start, stop, migrate)
 → Optional: storage, database, synchronisation, communication

Client provides:

- → OS and OS environment
- → Web server, DBMS, etc.
- → Middleware
- → Application software

Challenges – Client:

- → Transparency (naming, redirection)
- → Scalability: replication and load balancing decisions
- → Synchronisation and coordination
- → Security
- → Fault tolerance
- → Software maintenance and sys admin

Slide 12

5

Challenges – Provider:

- → Hardware provisioning and maintenance
- → Load management
- → IP address management, DNS management
- → Infrastructure fault tolerance
- → Monitoring, logging, billing
- → Storage

EXAMPLE: AMAZON WEB SERVICES (AWS)

Slide 13

- → Elastic Compute Cloud (EC2)
- → Simple Storage Solution (S3)
- → Simple DB
- → Simple Queue Service

http://vmtoday.com/2013/07/introduction-to-amazon-web-services-aws/

Elastic Compute Cloud (EC2):

- → Instances: virtual cores, memory, storage
 - instance types (cpu,memory,net, storage options):
 - t, m, c, p, g, x, r, i, d
 - micro, small, medium, large, xlarge, ...

Slide 14

- - free tier: limited instances, free CPU hours
 - on-demand: \$0.004 \$30+ per hour
 - reserved: 1-3 years, discounted, fixed cost
- → Launch Amazon Machine Image (AMI) on instances
- → Preconfigured or custom images

Using EC2 Slide 15

7

9

8. Terminate (decommission) or stop (shutdown/hibernate) instances when they are not in use Instances cost you by time – not by actual resource usage III Apps □ via EzProxy □ Keep It! Progress 🗶 SSRG Consider using a script to stop instances at a convenient time (say midnight) Restart instances manually when you next need them. Spot Requests Reserved Instance 880 Instance ID i-0720818ae0d9b98e Bundle Tasks ■ PLASTIC BLOCK STOR IPv6 IPs Security groups Security Groups

Slide 22

RELIABILITY

Slide 24

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

Regions and Availability Zones:

- → 99.95% availability per service region
- → Regions: geographically dispersed, independent
- → Availability zones: contained in Regions
- → Availability zones: isolated from failures in other zones, but connected

Elastic IP addresses:

- → IP address associated with account
- → Dynamic remapping to specific instances
 - instance has private IP address and public IP address
 - Elastic IP can be mapped (and re-mapped) to private IP

Slide 25

Elastic Load Balancing:

- → Distributes traffic across instances
- → Monitors 'health' of instances: customisable
- → Routes to healthy instances

Slide 26

Auto Scalina:

- → Automatically start or stop new instances
- → User-defined conditions
 - manual (minimum group size), schedule
 - instance health, CloudWatch input

Security:

- → Infrastructure Security
 - Data centre physical security
 - Software and hardware maintenance
 - Monitoring and Testing (automatic and manual)

Slide 27

- → Application Security
 - API access control (access keys)
 - Firewall settings for instances (security groups)
 - Virtual Private Cloud (VPC): private or public subnetworks
 - Encrypted storage support
 - Logging

STORAGE

Elastic Block Store:

- → Network Attached Storage (NAS) (servers with disks)
- → Block level storage volumes

Slide 28

- → Mounted as block device (e.g. disk) on an instance
- → Physical Servers and Disks shared by customers (no caching, competing for disk and net IO)
- → Replicated in Availability zone
- → Cost: per GB/per month

Simple Storage Service (S3):

- → Buckets: store objects
 - Can be placed in specific regions
- → Objects: data and metadata
 - metadata: key-value pairs describing the object
 - identified by key (unique within a bucket)
 - versioned
- → Consistency:
 - highly replicated
 - eventual consistency, no locking
 - atomic object update
- → Access control

Snapshots:

- → Point in time copy of EBS volume
- → Stored in S3
- → Differential
- → Can be used to bootstrap image

Simple Database Service (SimpleDB):

Slide 30

Slide 29

- → Non-relational database: key-value
- → Partitioned into domains
- → Consistency
 - highly replicated
 - eventual consistency
- → Typical uses: logging, indexing S3 data
- → Erlang!
- → Replaced by DynamoDB

COMMUNICATION

Slide 31

Simple Queue Service (SQS):

- → Message-queue oriented communication service
- → Persistent, asynchronous messaging
- → At-least once delivery guarantee
- → No ordering guarantee
- → Access control

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/

PLATFORM AS A SERVICE

Service provider provides:

- → Hardware infrastructure
- → OS and platform software (middleware)

Slide 32

- → Distributed storage management
- → Load balancing, replication, migration
- → Management and Monitoring services

Client provides:

→ Application

COMMUNICATION 15 PLATFORM AS A SERVICE 16

Challenges - Client:

- → Learn new API and environment
- → Follow API
- → Optimise to limits of API and platform
- → Security for own app

Challenges - Provider:

Slide 33

- → Transparency (naming, redirection)
- → Scalability: replication and load balancing decisions
- → Synchronisation and coordination
- → Security
- → Fault tolerance
- → Monitoring
- → Software maintenance and sys admin

EXAMPLE 2: APP ENGINE

Slide 34

- → Various development languages (Python, Java, PHP, Go)
- → ... and runtime environments
- → Storage based on Big Table
- → Optimisation via Memcache
- → Lots of APIs
- → Per use billing
- → Transparent scaling

EXAMPLE 2: APP ENGINE 17 EXAMPLE 2: APP ENGINE 18

sup, World!

Slide 37

5. Running application.

Scale up/down, load balancing, replication, database management, ... many services are provided by GAE.

SOFTWARE AS A SERVICE

Service provider provides:

- → Hardware infrastructure
- → OS and platform software (middleware)

Slide 39

- → Distributed storage management
- ightharpoonup Load balancing, replication, migration
- → Management and Monitoring services
- → Application

Client provides:

→ Data

Challenges - Client:

- → Learn new application
- → Deal with potential restrictions
 - Web interface, restricted functionality
 - No offline access, no local storage

Challenges – Provider:

Slide 40

- → Transparency (naming, redirection)
- → Scalability: replication and load balancing decisions
- → Synchronisation and coordination
- → Security
- → Fault tolerance
- → Monitoring
- → Software maintenance and sys admin
- → Application development and maintenance

KEY CHALLENGES OF CLOUD COMPUTING

Scalability:

- → Datacentre vs Global
- → Partitioning

Slide 41

- Services and Data
- → Replication

Consistency:

- → Dealing with consequences of CAP Theorem
- → Dealing with un-usability of eventual consistency

Reliability:

- → SLA (Service Level Agreement): guarantees given by provider
 - How reliable are the guarantees?
 - What is the consequence if they aren't met?
- Slide 42

 → Redundancy and Replication
 - within same provider (e.g. Availability Zones, Regions, etc.)
 - migration across providers
 - → Geographically distributed architecture

- → Design for failure: Chaos Monkey
 - test how well system deals with failure
 - regularly and randomly kill system services

Security and Privacy:

- → External threats
 - Denial of Service
 - Infrastructure or platform service compromise
 - SaaS compromise: data theft

Slide 44

- → Co-located threats: other customers
 - Isolation: but, covert channels, bugs in isolation
- → Privacy: data collected by providers
 - laaS and PaaS providers: encryption only helps a bit
 - SaaS providers: at mercy of service provider
 - Governments and others: where is your data stored or processed? Which laws apply?

DEVELOPING FOR THE CLOUD

Examples from Amazon:

Slide 45

http://aws.amazon.com/architecture/