DISTRIBUTED SYSTEMS (COMP9243)

Lecture 3: System Architecture

Slide 1

@ System Architectures
=» Client-server (and multi-tier)
-» Peer fo peer
=» Hybrid architectures

@ Processes & Server Architecture

Slide 2 ARCHITECTURE

BUILDING A DISTRIBUTED SYSTEM

BUILDING A DISTRIBUTED SYSTEM

slide 3 Two questions:

® Where to place the hardware?
® Where to place the software?

System Architecture:

=» identifying hardware and software elements
=» placement of machines

-» placement of software on machines

-» communication patterns

Where to place?:
Slide 4 =» processing capacity, load balancing

-» communication capacity
= locality

Mapping of services to servers:
=» Partitioning

-» Replication

= Caching

ARCHITECTURE ISSUES

ARCHITECTURE ISSUES
Choosing the right architecture involves:
Slide 5 o Splitting of functionality
e Structuring the application

e Reducing complexity

Slide 6 ARCHITECTURAL PATTERNS

CLIENT-SERVER

CLIENT-SERVER

Request
Client l z Server

Slide 7 Reply

Kernel Kernel

Client-Server from another perspective:

. Wait for result
ClieN! ee— - o= - -

Slide 8 Request

Server —----------- - — oo
Provide service Time —>

How scalable is this?

CLIENT-SERVER

Slide 9

Slide 10

Example client-server code in C:

client(void) {

struct sockaddr_in cin;
char buffer[bufsize];
int sd;

// set server address in cin

sd = socket (AF_INET,SOCK_STREAM,O0) ;

connect (sd, (void *)&cin,sizeof(cin));

send (sd,buffer,strlen(buffer),0);
recv(sd,buffer,bufsize,0);
close (sd);

server(void) {
struct sockaddr_in cin, sin;
int sd, sd_client;
... // set server address in sin
sd = socket (AF_INET,SOCK_STREAM,O0) ;

bind(sd, (struct sockaddr *)&sin,sizeof(sin));

listen(sd, queuesize);
while (true) {

sd_client = accept(sd, (struct sockaddr *)&cin,&addrlen));
recv(sd_client,buffer,sizeof (buffer),0);

DoService(buffer) ;

send(sd_client,buffer,strlen(buffer),0);

close (sd_client);
¥
close (sd);

CLIENT-SERVER

Slide 11

Slide 12

Example client-server code in Erlang:

% Client code using the increment server
client (Server) ->
Server ! {self (), 10},

receive

{From, Reply} -> io:format ("Result: “w™n", [Replyl)

end.

% Server loop for increment server
loop () ->

receive

{From, Msg} -> From ! {self (), Msg + 1},

loop ()
stop -> true
end.
% Initiate the server

start_server() -> spawn (fun () -> loop () end).

Splitting Functionality:

Client machine

‘ User inter{@ggl ‘ User imerface‘ ‘ User imerface‘ ‘ User interface ‘ User interface
l\“_,/" ‘ Applicatio‘rl‘l ‘ Application Application

) ”ik --»».,,_g_» N - Databasg_‘

\Us—e‘r interface P y ’——»¢~ >>>>>> \’“:*»——$-;,,_»

Application Application \“A‘F‘Jplication | ‘_,/‘/“\

Database Database Database ‘ Database ‘ F» Database ‘

Server machine

(@) (b) (©

Which is the best approach?

VERTICAL DISTRIBUTION (MULTI-TIER)

VERTICAL DISTRIBUTION (MULTI-TIER)

Request

Reply

App.
(Server

Request

Reply

Kernel

Kernel

Dbase
—(Server

Kernel

Slide 13

Three ‘layers’ of functionality:

e User interface

e Processing/Application logic

e Data

-» Logically different components on different machines

Leads to Service-Oriented architectures (e.g. microservices).

Vertical Distribution from another perspective:

User interface
(presentation)

Application

Slide 14 server

Database
server

Wait for result

Request
operation

How scalable is this?

Request data

Wait for data

Return
result

Return data

Time

HORIZONTAL DISTRIBUTION

HORIZONTAL DISTRIBUTION

Front end

handling

incoming Replicated Web servers each

requests containing the same Web pages
Requests = =] S« Disks
handled in] |
round-robin =] >

| fashion | | |

-» Logically equivalent components replicated on different
machines

Slide 15

How scalable is this?

Note: Scaling Up vs Scaling Out?

Horizontal and Vertical Distribution not the same as Horizontal
and Vertical Scaling.

Vertical Scaling: Scaling UP Increasing the resources of a

Slide 16) ,
single machine

Horizontal Scaling: Scaling OUT Adding more machines.
Horizontal and Vertical Distribution are both examples of
this.

SERVICE ORIENTED ARCHITECTURE (SOA)

SERVICE ORIENTED ARCHITECTURE (SOA)

Stock Service query_stock
bu

sell

Slide 17

XML RPC

./g

Photo Service searn

Auction Service search
get_aucti
manage_ nction

3ok phato
update_photo

MICROSERVICES

‘Extreme’ vertical distribution

Slide 18 =» split application logic into many (reusable) services
=» services limited in scope: single-purpose, do one thing really
well

=» orchestrate execution of services

PEER TO PEER

PEER TO PEER

request

| request

S
@ -

>~
Kernel

Kernel

request
reply / /request

slide 19 @ @

reply

Kernel

-

Kernel

-» All processes have client and server roles: servent

Why is this special?

PEER TO PEER AND OVERLAY NETWORKS

How do peers keep track of all other peers?
=» static structure: you already know

=» dynamic structure: Overlay Network
@ structured
Slide 20 @ unstructured

Overlay Network:

=» Application-specific network

-» Addressing

-» Routing

-» Specialised features (e.g., encryption, multicast, etc.)

PEER TO PEER AND OVERLAY NETWORKS

Example:

Slide 21

Example:

Slide 22

PEER TO PEER AND OVERLAY NETWORKS

Example:

Slide 23

Example:

Slide 24

PEER TO PEER AND OVERLAY NETWORKS

Example:

F) g

Slide 25 D) D

UNSTRUCTURED OVERLAY

Slide 26

(b) Scale-free network

(a) Random network

=» Data stored at random nodes
=» Partial view: node’s list of neighbours
-» Exchange partial views with neighbours to update

What's a problem with this?

STRUCTURED OVERLAY

STRUCTURED OVERLAY
Distributed Hash Table:

Actual node

Pogimol
147 (131415} {01} 123

{8,9,10,11,12}

Associated
data keys

Slide 27

{5.6,7}

@

9

=» Nodes have identifier and range, Data has identifier
-» Node is responsible for data that falls in its range

=» Search is routed to appropriate node
-» Examples: Chord, Pastry, Kademlia

What's a problem with this?

HYBRID ARCHITECTURES

Combination of architectures.
Examples:
Slide 28
e Superpeer networks
e Collaborative distributed systems

e Edge-server systems

13 HYBRID ARCHITECTURES

Slide 29

Slide 30

Superpeer Networks:

-» Regular peers are clients of superpeers

=» Superpeers are servers for regular peers

=» Superpeers are peers among themselves

=» Superpeers may maintain large index, or act as brokers
=» Example: Skype

Regular peers

Superpeer
network /

What are potential issues?

Collaborative Distributed Systems:

Example: BitTorrent
=» Node downloads chunks of file from many other nodes
-» Node provides downloaded chunks to other nodes
=» Tracker keeps track of active nodes that have chunks of file
=» Enforce collaboration by penalising selfish nodes

Node 1
File server O

Tracker

What problems does Bit Torrent face?

HYBRID ARCHITECTURES

Edge-Server Networks:
=» Servers placed at the edge of the network
=» Servers replicate content
-» Mostly used for content and application distribution
=» Content Distribution Networks: Akamai, CloudFront, CoralCDN

Origin server

Ve

Slide 31
Replica nterprlse networks
server E E
What are the challenges?
SERVER DESIGN
. Request dispatched
Dispatcher thread to a worker thread Server
|+ Worker thread
A
Request coming in
. from the network
Slide 32
Operating system
Model Characteristics
Single-threaded process | No parallelism, blocking system calls
Threads Parallelism, blocking system calls
Finite-state machine Parallelism, non-blocking system calls
15 STATEFUL VS STATELESS SERVERS 16

STATEFUL VS STATELESS SERVERS

Stateful:
=» Keeps persistent information about clients
v Improved performance
x Expensive crash recovery
x Must tfrack clients

Slide 33 Stateless:
-» Does not keep state of clients
=» soft state design: limited client state
vz Can change own state without informing clients
v No cleanup after crash
v Easy to replicate
x Increased communication

Note: Session state vs. Permanent state

CLUSTERED SERVERS

Logical switch Application/compute servers Distributed
(possibly multiple) file/database
system

! -
Slide 34 Dispatched @
Client requests request

O .=

First tier Second tier Third tier

REQUEST SWITCHING 17

REQUEST SWITCHING

Transport layer switch:

Logically a

single TCP Response Server
connection
Request Redues,
Client q Switch | (handed off)

Slide 35 omver
DNS-based:
=» Round-robin DNS
Application layer switch:
-» Analyse requests
-» Forward to appropriate server
VIRTUALISATION
Virtual Machines
Server Server Server
Guest { Guest { Guest
0S oS oS
Slide 36
{ Virtual Machine Monitor }
[Host OS]
{ Hardware }
What are the benefits?
CONTAINERISATION 18

CONTAINERISATION

Slide 37 2

Host Operating System

What are the benefits?

What are the drawbacks?

(from https://www.docker .com/resources/what - container)

SERVERLESS

serverless
architectures
Slide 38 s s e

(from https://martinfowler.com/bliki/Serverless.html)

SERVERLESS 19

Serverless does use servers!
=» You don’t maintain them yourself
=» You only provide functions to run
=» Transparently run on servers

Slide 39 =» Functions as a Service (FaaS)

e code components have a short lifecycle (per request)
e environment manages loading, starting, stopping code
e client-side management of control-flow, application logic

CoDE MOoBILITY

Why move code?
=» Optimise computation (load balancing)
=» Optimise communication

Weak vs Strong Mobility:
Weak transfer only code
Slide 40 Strong fransfer code and execution segment
Sender vs Receiver Initiated migration:
Sender Send program to compute server
Receiver Download applets
Examples: Java, JavaScript, Virtual Machines, Mobile Agents

What are the challenges of code mobility?

HOMEWORK

20

HOMEWORK

Client Server:
Slide 41 =» Do Exercise Client server exercise (Erlang) Part A

Hacker’s Edition: Client-Server vs Ring:
=» Do Exercise Client-Server vs. Ring (Erlang)

HOMEWORK

21

