
Slide 1

DISTRIBUTED SYSTEMS [COMP9243]

Lecture 6: Distributed Shared Memory

➀ DSM

➁ Case study

➂ Design issues

➃ Implementation issues

Slide 2

DISTRIBUTED SHARED MEMORY (DSM)

DSM: shared memory + multicomputer

161 2 3 4 5 6 7 8 10 119 12 13 14 150

Shared global address space

CPU 1 CPU 2 CPU 3 CPU 4

0 2 5

9

1 3 6

8 10

4 7 11

12 14

13 15 16

SHARED ADDRESS SPACE 1

Slide 3

SHARED ADDRESS SPACE

DSM consists of two components:

➀ Shared address space

➁ Replication and consistency of memory objects

Shared address space:

Network

Node 1 Node 2

0x1000 0x1000

0x2000 0x2000

➜ Shared addresses are valid in all processes

Slide 4

Transparent remote access:

Network

Node 1 Node 2

0x1000 0x1000

0x2000 0x2000

Properties:

➜ Remote access is expensive compared to local memory access

➜ Individual operations can have very low overhead

➜ Threads can distinguish between local and remote access

SHARED ADDRESS SPACE 2



Slide 5

Why DSM?:

➜ Shared memory model: easiest to program to

➜ Physical shared memory not possible on multicomputer

➜ DSM emulates shared memory

Benefits of DSM:

➜ Ease of programming (shared memory model)

➜ Eases porting of existing code

➜ Pointer handling

• Shared pointers refer to shared memory

• Share complex data (lists, etc.)

➜ No marshalling

Slide 6

DSM IMPLEMENTATIONS

Hardware:

➜ Multiprocessor

➜ Example: MIT Alewife, DASH

OS with hardware support:

➜ SCI network cards (SCI = Scalable Coherent Interconnect)

➜ SCI maps extended physical address space to remote nodes

➜ OS maps shared virtual address space to SCI range

OS and Virtual Memory:

➜ Virtual memory (page faults, paging)

➜ Local address space vs Large address space

DSM IMPLEMENTATIONS 3

Slide 7

Middleware:

➜ Library:

• Library routines to create/access shared memory

• Example: MPI-2, CRL

➜ Language

• Shared memory encapsulated in language constructs

• Extend language with annotations

• Example: Orca, Linda, JavaSpaces, JavaParty, Jackal

Slide 8

Typical Implementation:

➜ Most often implemented in user space (e.g., TreadMarks, CVM)

➜ User space: what’s needed from the kernel?

• User-level fault handler

[e.g., Unix signals]

• User-level VM page mapping and protection

[e.g., mmap() and mprotect()]

• Message passing layer

[e.g., socket API]

DSM IMPLEMENTATIONS 4



Slide 9

Example: two processes sharing memory pages:

Network

Node 1 Node 2

0x1000 0x1000

Slide 10

Occurrence of a read fault:

Network

Node 1 Node 2

0x1000 0x1000

Fault!

DSM IMPLEMENTATIONS 5

Slide 11

Page migration and replication:

Network

Node 1 Node 2

0x1000 0x1000

Slide 12

Recovery from read fault:

Network

Node 1 Node 2

0x1000 0x1000

Resume

DSM MODELS 6



Slide 13

DSM MODELS

Shared page (coarse-grained):

➜ Traditional model

➜ Ideal page size?

X False sharing

➜ Examples: Ivy, TreadMarks

Shared region (fine-grained):

➜ More fine grained than sharing pages

V Prevent false sharing

X Not regular memory access (transparency)

➜ Examples: CRL (C Region Library), MPI-2 one-sided

communication, Shasta

Slide 14

Shared variable:

➜ Release and Entry based consistency

➜ Annotations

V Fine grained

X More complex for programmer

➜ Examples: Munin, Midway

Shared structure:

➜ Encapsulate shared data

➜ Access only through predefined procedures (e.g., methods)

V Tightly integrated synchronisation

V Encapsulate (hide) consistency model

X Lose familiar shared memory model

➜ Examples: Orca (shared object), Linda (tuple space)

DSM MODELS 7

Slide 15

Tuple Space:

Tuple instance

A

A B T

C

B A

C
BB

Insert a
copy of A

Write A Write B Read T

Insert a
copy of B

Look for
tuple that
matches T

Return C
(and optionally

remove it)

A JavaSpace

Slide 16

LINDA EXAMPLE

main() {

...

eval("function", f()) ;

eval("function", f()) ;

...

for (i=0; i<100; i++)

out("data", i) ;

...

}

f(){

in("data", ?x) ;

y = g(x) ;

out("function", x, y) ;

}

What’s good about this?

APPLICATIONS OF DSM 8



Slide 17

APPLICATIONS OF DSM

➜ Scientific parallel computing

• Bioinformatics (gene sequence analysis)

• Simulations (climate modeling, economic modeling)

• Data processing (physics, astronomy)

➜ Graphics (image processing, rendering)

➜ Data server (distributed FS, Web server)

➜ Data storage

Slide 18

DSM ENVIRONMENTS

➜ Multiprocessor

• NUMA

➜ Multicomputer

• Supercomputer

• Cluster

• Network of Workstations

• Wide-area

REQUIREMENTS OF DSM 9

Slide 19

REQUIREMENTS OF DSM

Transparency:

➜ Location, migration, replication, concurrency

Reliability:

➜ Computations depend on availability of data

Performance:

➜ Important in high-performance computing

➜ Important for transparency

Scalability:

➜ Important in wide-area

➜ Important for large computations

Slide 20

Consistency:

➜ Access to DSM should be consistent

➜ According to a consistency model

Programmability:

➜ Easy to program

➜ Communication transparency

CASE STUDY 10



Slide 21

CASE STUDY

TreadMarks:

➜ 1992 Rice University

➜ Page based DSM library

➜ C, C++, Java, Fortran

➜ Lazy release consistency model

➜ Heterogeneous environment

Slide 22

DESIGN ISSUES

Granularity

➜ Page based, Page size: minimum system page size

Replication

➜ Lazy release consistency

Scalability

➜ Meant for cluster or NOW (Network of Workstations)

Synchronisation primitives

➜ Locks (acquire and release), Barrier

Heterogeneity

➜ Limited (doesn’t address endianness or mismatched word sizes)

Fault Tolerance

➜ Research

No Security

USING TREADMARKS 11

Slide 23

USING TREADMARKS

Compiling:

➜ Compile

➜ Link with TreadMarks libraries

Starting a TreadMarks Application:

app -- -h host1 -h host2 -h host3 -h host4

Anatomy of a TreadMarks Program:

➜ Starting remote processes

Tmk_startup(argc, argv);

➜ Allocating and sharing memory

shared = (struct shared*) Tmk_Malloc(sizeof(shared));

Tmk_distribute(&shared, sizeof(shared));

Slide 24

➜ Barriers

Tmk_barrier(0);

➜ Acquire/Release

Tmk_lock_acquire(0);

shared->sum += mySum;

Tmk_lock_release(0);

TREADMARKS IMPLEMENTATION 12



Slide 25

TREADMARKS IMPLEMENTATION

Consistency Protocol:

➜ Multiple writer

➜ Twins

➜ Reduce false sharing

P1

R

x(0)

x=1
P1

x(0)

x=1

x(0)

RW twin

P1
x=1

x(0)

RW twin

x(1)

RW

x(1)
P1

10

diff

x

2. After page fault1. Write causes page fault

3. Write is executed 4. At release or barrier

Slide 26

Update Propagation:

➜ Modified pages invalidated at acquire

➜ Page is updated at access time

➜ Updates are transferred as diffs

Lazy Diffs:

➜ Normally make diffs at release time

➜ Lazy: make diffs only when they are requested

Communication:

➜ UDP/IP or AAL3/4 (ATM)

➜ Light-weight, user-level protocols to ensure message delivery

➜ Use SIGIO for message receive notification

TREADMARKS IMPLEMENTATION 13

Slide 27

Data Location:

➜ Know who has diffs because of invalidations

➜ Each page has a statically assigned manager

Modification Detection:

➜ Page Fault

➜ If page is read-only then do consistency protocol

➜ If not in local memory, get from manager

Memory Management:

➜ Garbage collection of diffs

Slide 28

Initialisation:

➜ Processes set up communication channels between themselves

➜ Register SIGIO handler for communication

➜ Allocate large block of memory

• Same (virtual) address on each machine

• Mark as non-accessible

• Assign manager process for each page, lock, barrier (round

robin)

➜ Register SEGV handler

READING L IST 14



Slide 29

READING LIST

Distributed Shared Memory: A Survey of Issues and Algorithms

An overview of DSM and key issues as well as older DSM

implementations.

TreadMarks: Shared Memory Computing on Networks of Workstations

An overview of TreadMarks, design decisions and

implementation.

Latency-Tolerant Software Distributed Shared Memory A

modern (2015) DSM for modern applications.

Slide 30

HOMEWORK

Do Assignment 1!

HOMEWORK 15


