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Replication and Consistency

Replication

Replication involves creating and maintaining copies of services and data provided by a distributed
system. Unlike communication, without which it is impossible to build a distributed system,
replication is not a fundamental principle. This means that it is possible to build a distributed
system that does not make use of replication.

Replication does, however, become important when reliability, performance, and scalability of
a distributed system are key concerns. In the case of reliability, creating many redundant copies
of a service improves that service’s availability. With multiple servers available to clients, it is less
likely that a malfunction of one of them will render the whole service unavailable. Likewise, if the
data on a server becomes corrupt, data stored at replicas can be used to restore the correct state.
With regards to performance, replicating services helps to reduce the load on individual servers.
Likewise, by placing replicas close to clients the impact of communication can be greatly reduced.
Finally, replication is a key technique for improving a system’s scalability. As a service grows,
creating more replicas allows the service to scale along with the growth.

When considering the replication of services, there are two types of replication possible: data
replication and control replication. In the first case, only a service’s data is replicated. Processing
and manipulation of the data is performed either by a non-replicated server, or by clients accessing
the data. A typical example of data replication is a replicated (also known as mirrored) FTP site.
Web browsers with caches are another example of data replication. In the second case, only
the control part of the service is replicated while the data remains at a single centralised server.
This form of replication is generally used to to improve or maintain performance by spreading
the computational load over multiple servers. It is also possible to combine data and control
replication, in which case both the data and control are replicated. They may be replicated
together (i.e., both control and data are placed on the same replica servers), or separately (i.e.,
data is replicated on different servers than control).

During the design and implementation of replication in a distributed system, there are a number
of issues that must be addressed. The most important of these is keeping the copies of replicated
data consistent. Furthermore, it is important to decide how replicas propagate updates amongst
each other, where to place the replicas, how many replicas to create, when to add and remove
replicas, etc.

Distributed Data-Store

The following model of a distributed data-store will be used during the further discussion of
replication. A data store is a generic term for a service that stores data. Examples of data stores
include: shared memory, databases, file systems, objects, web servers, etc. A data store stores
data items (depending on the data store, a data item could be a page of memory, a record, a file,
a variable, a Web page, etc.). Clients wishing to access data from a data store connect to the
data store and perform read and write operations on it. The exact nature of a client connection
depends on the underlying data store and could be through a network connection or direct access.
We abstract from this detail by assuming that, from the clients point of view, the time required
to communicate with the data store is insignificant.

From a client’s point of view a data store acts like a centralised service hosted on a single
server. Internally, however, the data store consists of multiple servers (called replica servers) each
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containing a copy of all the data items stored in the data store. Each replica server runs a replica

manager process, which receives operation invocation requests from clients and executes the oper-
ations locally on its copy of the data. The replica manager is also responsible for communicating
with replica managers running on the other replica servers. We refer to the combination of a
replica manager running on a replica server as a replica. A client always connects to a single
replica. Figure 1 illustrates this model.

Client A Client B Client C Client D

Replica 1 Replica 2 Replica 3 Replica 4

Data Store

Figure 1: The data store model

The operations performed by clients on a data store will be represented on a time line, an
example of which is shown in Figure 2. In this figure, time flows to the right (the figure assumes
an absolute global time, and the position of the operations on the timeline reflect their ordering
according to this time). For the operations there are three relevant times: the time of issue, the
time of execution, and the time of completion. Arrows show the time of execution of operations
on remote replicas. Read operations are always performed locally, while writes are assumed to be
performed locally first and then propagated to remote replicas.

Client B/
Replica 2

W(x)1

R(x)1R(x)1R(x)−

W(x)0
Client A/

R(x)0

Replica 1

Figure 2: An example timeline of two clients accessing a distributed data-store

Consistency

When we replicate data we must ensure that when one copy of the data is updated all the other
copies are updated too. Depending on how and when these updates are executed we can get
inconsistencies in the data store (i.e., all the copies of the data are not the same). There are
two ways in which the data store can be inconsistent. First the data could be stale, that is, the
data at some replicas has not been updated, while others have. Staleness is typically measured
using time or versions. As long as updates are reliably propagated to all replicas, given enough
time (and a lack of new updates) stale data will eventually become up to date. The other type of
inconsistency occurs when operations are performed in different orders at different replicas. This
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can cause more problems than staleness because applying operations in different orders can lead to
different results that cannot be consolidated by simply ensuring that all replicas have received all
updates. In the following we concentrate on consistency with regards to the ordering of operations
at different replicas.

Because clients on different machines can access the data store concurrently, it is possible for
clients to invoke conflicting operations. Two (or more) operations on the same data item are
conflicting if they may occur concurrently (that is each is invoked by a different client), and at
least one of them is a write. We distinguish between read-write conflicts (where only one operation
is a write) and write-write conflicts (where more than one operation is a write). In order for a
data store to be consistent all write-write conflicting operations must be seen in an agreed upon
order by the clients.

All operations executed at a single replica occur in a particular order. This is called the
replica’s partial ordering. Central to reasoning about consistency is the notion of an interleaving
of all the partial orderings into a single timeline (as though the operations were all performed on
a single non-replicated data store). This is called the total ordering.

Consistency Models

In a nondistributed data-store the program order of operations is always maintained (i.e., the
order of writes as performed by a single client must be maintained). Likewise, data coherence is
always respected. This means that if a value is written to a particular data item, subsequent reads
will return that value until the data item is modified again. Ideally, a distributed data-store would
also exhibit these properties in its total ordering. However, implementing such a distributed data
store is expensive, and so weaker models of consistency (that are less expensive to implement)
have been developed.

A consistency model defines which interleavings of operations (i.e., total orderings) are accept-
able (admissible). A data store that implements a particular consistency model must provide a
total ordering of operations that is admissible.

Data-Centric Consistency Models

The first, and most widely used, class of consistency models is the class of data-centric consistency
models. These are consistency models that apply to the whole data store. This means that any
client accessing the data store will see operations ordered according to the model. This is in
contrast to client-centric consistency models (discussed later) in which clients request a particular
consistency model and different clients may see operations ordered in different ways.

Strict Consistency The strict consistency model requires that any read on a data item returns
a value corresponding to the most recent write on that data item. This is what one would expect
from a single program running on a uniprocessor. A problem with strict consistency is that the
interpretation of ‘most recent’ is not clear in a distributed data store. A strict interpretation re-
quires that all clients have a notion of an absolute global time. It also requires instant propagation
of writes to all replicas. Due to the fact that it is not possible to achieve absolute global time in a
distributed system and the fact that communicating between replicas can never be instantaneous,
strict consistency is impossible to implement in a distributed data store.

A model that is close to strict consistency, but that is possible to implement in a distributed
data store, is the linearisable consistency model. In this model the requirement of absolute global
time is dropped. Instead all operations are ordered according to a timestamp taken from the
invoking client’s loosely synchronized local clock. Linearisable consistency requires that all oper-
ations be ordered according to their timestamp. This means that all operations are executed in
the same order at all replicas. Note that although it is possible for a distributed data store to
implement this model, it is still very expensive to do so. For this reason linearisable consistency
is rarely implemented.
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Sequential Consistency Linear consistency is expenisve to implement because of the time
ordering requirement. The sequential consistency model drops this requirement. In a data store
that provides sequential consistency, all clients see all (write) operations performed in the same
order. However, unlike in the linearisable consistency model where there is exactly one valid total
ordering, in sequential consistency there are many valid total orderings. The only requirement is
that all clients see the same total ordering.

Client A

Client B

R(x)b

R(x)b

R(x)a

R(x)a

Client C

Client D

W(x)b

W(x)a
Client A

Client B

R(x)b R(x)a

Client C

Client D

R(x)a R(x)b

W(x)a

W(x)b

sequential not sequential

Figure 3: An example of a valid and an invalid ordering of operations for the sequential consistency
model

Figure 3 shows an example of a valid and an invalid ordering of operations for the sequential
consistency model. In the example of invalid ordering the two write operations are executed in a
different order on the replicas associated with client C and client D. This is not admissible with
the sequential consistency model.

It has been shown that there is fixed minimum cost for implementations of sequential con-
sistency. It is possible to provide an implementation where reads are instantaneous but writes
have a significant overhead, or an implementation where writes are instantaneous but reads have
a significant overhead. In other words, changing the implementation to improve read performance
makes write performance worse and vice versa.

Causal Consistency Often the requirement that all operations are seen in the same order is not
important. The causal consistency model weakens sequential consistency by requiring that only
causally related write operations are executed in the same order on all replicas. Two writes are
causally related if the execution of one write possibly influences the value written by the second
write. Specifically two operations are causally related if:

• A read is followed by a write in the same client

• A write of a particular data item is followed by a read of that data item in any client.

If operations are not causally related they are said to be concurrent. Concurrent writes can be
executed in any order, as long as program order is respected.

Figure 4 shows an example of a valid and an invalid ordering of operations for the causal
consistency model. In the example of an invalid ordering we see that the write performed by client
B (W(x)b) is causally related to the previous write performed by client A (W(x)a). As such, these
writes must appear in the same (causal) order at all replicas. This is not the case for client D
where we see that W(x)a is executed after W(x)b.

FIFO Consistency The FIFO (or Pipelined RAM) consistency model, weakens causal consis-
tency in that it removes limitations about the order of any concurrent operations. FIFO con-
sistency requires only that any total ordering respect the partial orderings of operations (i.e.,
program order).

Figure 5 provides an example of a valid and invalid ordering for FIFO consistency. In the
invalid ordering example client D does not observe the writes coming from client A in the correct
order (i.e., W(x)c is executed before W(x)a).
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Client A

Client B

W(x)a

R(x)a

W(x)b

R(x)a R(x)b

R(x)b

Client C

Client D

W(x)c

R(x)c

R(x)c

Client A

Client B

W(x)a

R(x)bR(x)a

R(x)a

Client C

Client D

W(x)b

R(x)b R(x)a

W(x)c

R(x)c

R(x)c

causally consistent not causally consistent

Figure 4: An example of a valid and an invalid ordering of operations for the causal consistency
model

Client A
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W(x)a

W(x)bR(x)a

R(x)a

R(x)b

R(x)cR(x)b

R(x)a R(x)c

W(x)c

Client C

Client D

Client A

Client B

W(x)a

W(x)bR(x)a

R(x)a R(x)b R(x)c

R(x)b

W(x)c

Client C

Client D
R(x)c R(x)a

FIFO consistent not FIFO consistent

Figure 5: An example of a valid and an invalid ordering of operations for the FIFO consistency
model

Weak Consistency Whereas the previous consistency models specified the ordering require-
ments for all operations on the data store, the following data-centric models drop this requirement
dealing instead with the ordering of groups of instructions. They do this by defining groups of
operations (comparable to critical sections) and only dictating requirements for the ordering of
these groups, rather than individual operations.

The first of these models is the weak consistency model. in this model critical sections are
delimited using operations on synchronisation variables (e.g., locks). In this model performing a
synchronise operation on a synchronisation variable causes the following to happen. First, all local
writes are completed and the updated data items are propagated to all other replicas. Second, all
updates from other clients are executed locally (that is, the replica makes sure that its copy of
the data is up-to-date). Essentially, weak consistency imposes a sequentially consistent ordering
of synchronise operations.

Release Consistency The functionality of the synchronise operation as defined in the weak
consistency model can be split into two separate functions: bringing local state up-to-date and
propagating local updates to all other replicas. Because there is only one operation weak consis-
tency requires both to occur whenever entering and leaving a critical section. This is generally not
necessary. The release consistency model makes the distinction between the two functions explicit
by associating the first with an acquire() operation and the second with a release() operation.
The model requires a client to call acquire() when entering a critical section and release()

when leaving it. This ensures that when entering a critical section all data is up-to-date, while
when leaving the section all updates are made available to other replicas.

A slight modification of the release consistency model, called lazy release consistency, requires
that updates are only propagated and executed when an acquire() operation is performed. This
saves much communication when a critical section is performed repeatedly by a single client.

Entry Consistency The entry consistency model is similar to lazy release consistency, except
that the synchronisation variables are explicitly associated with specific data items. These data

5



items are called guarded data-items. Use of synchronisation variables in the entry consistency
model is as follows. In order to write to a guarded data-item a client must acquire that item’s
synchronisation variable in exclusive mode. This means that no other clients can hold that variable.
When the client is done updating the data item it releases the associated synchronisation variable.
When a client wishes to read a particular data item it must acquire the associated synchronisation
variable in nonexclusive mode. Multiple clients may hold a synchronisation variable in nonexclusive
mode.

When performing an acquire, the client fetches the most recent version of the data item from
the synchronisation variable’s owner (A synchronisation variable’s owner is the last client that
performed an exclusive acquire on it).

Although this, and the previous weak consistency models, result in extra complexity for the
programmer, it is possible to hide the use of synchronisation variables by associating guarded data-
items with objects. Invoking a method on an object then automatically invokes the associated
acquire and release operations.

CAP Theory and Eventual Consistency

In 2000 Eric Brewer claimed (and in 2002 it was proven [GL02]) that in a replicated data store, of
the three desired properties, consistency, availability, and partition tolerance, only two can ever be
guaranteed at once. This is called the CAP theorem. What it means is that in a system that can
survive a network partition (that is, a system that continues to function, and does not outright
fail, when it is split into two or more parts that are (temporarily) unable to communicate with
each other) it is only possible to provide consistency (specifically the property that a read provides
the results of the latest write) or availability (that a write is always accepted and processed in a
timely fashion), but not both.

Since network partitions are statistically very likely in large distributed systems, the CAP
theorem presents a real limitation for modern, large-scale distributed systems. This has led to the
increasing popularity of eventual consistency [Vog08].

The eventual consistency model weakens the temporal aspect of consistency, guaranteeing only
that, if no updates take place for a while, eventually all the replicas will contain the same data.
This model generally applies when there are few conflicting operations and means that only the
ordering of writes to the same data item is respected.

The eventual consistency model requires that the data store experience few read-write conflicts
(e.g., because there are many more reads than writes), and that there are few if any write-write
conflicts (e.g., because all writes are performed by the same client). Also, it is imperative that
clients accept temporary inconsistencies (i.e., staleness). Typical examples of systems that allow
eventual consistency are DNS and the Web. In both systems it takes new data a while to propagate
and replace old data stored in caches.

Client-Centric Consistency Models

The data-centric consistency models had an underlying assumption that the number of reads
was approximately equal to the number of writes, and that concurrent writes occur often. Client-
centric consistency models, on the other hand, assume that clients perform more reads than writes
and that there are few concurrent writes. They also assume that clients can be mobile, that is,
they will connect to different replicas during the course of their execution.

Client-centric consistency models are based on the eventual consistency model but offer per-
client models that hide some of the inconsistencies of eventual consistency. Client-centric consis-
tency models are useful because they are relatively cheap to implement.

For the discussion of client-centric consistency models we extend the data store model and
notation somewhat. The change to the data store model is that the client can change which
replica it communicates with (i.e., the client is mobile). We also introduce the concept of a write

set (WS). A write set contains the history of writes that led to a particular value of a particular
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data item at a particular replica. When showing timelines for client-centric consistency models we
are now concerned with only one client performing operations while connected to different replicas

Monotonic Reads The monotonic-reads model ensures that a client will always see progres-
sively newer data and never see data older than what it has seen before. This means that when a
client performs a read on one replica and then a subsequent read on a different replica, the second
replica will have at least the same write set as the first replica. This is shown in Figure 6. The
figure also shows an invalid ordering for monotonic reads. This ordering is invalid because the
write set at the second replica does not yet contain that from the first.

not monotonic−read consistent

Replica 1

Replica 2

WS(x1)

WS(x1;x2)

R(x1)

R(x2)

Replica 1

Replica 2

WS(x1) R(x1)

R(x2) WS(x1;x2)WS(!x1;x2)

monotonic−read consistent

Figure 6: An example of a valid and invalid ordering for the monotonic reads consistency model

Monotonic Writes The monotonic-writes model ensures that a write operation on a particular
data item will be completed before any successive write on that data item by the same client.
In other words, all writes that a client performs on a particular data item will be sequentially
ordered. This is essentially a client-centric version of FIFO consistency (the difference being that
it only applies to a single client). Figure 7 shows an example of a valid and invalid ordering for
monotonic writes consistency. The example of the invalid ordering shows that the write performed
at replica 1 has not yet been executed at replica 2 when the second write is performed at that
replica.

Replica 1

Replica 2

W(x1)

W(x2)W(x1) WS(x1)

Replica 1

Replica 2

W(x1)

W(x2)WS(!x1;x0)

monotonic−write consistent not monotonic−write consistent

Figure 7: An example of a valid and invalid ordering for the monotonic writes consistency model

Read Your Writes In the read you writes consistency model, a client is guaranteed to always
see its most recent writes. Figure 8 shows an example of read your writes ordering. The figure
also shows an example where the client does not see its most recent write at another replica. In
this case, the write set at replica 2 does not contain the most recent write operation performed on
replica 1.

Replica 1

Replica 2

W(x1)

WS(x1;x2) R(x2)

Replica 1

Replica 2

W(x1)

WS(!x1;x2) R(x2)

not read−your−writes consistentread−your−writes consistent

Figure 8: An example of a valid and invalid ordering for the read your writes consistency model

Write Follows Reads This model states the opposite of read your writes, and guarantees that
a client will always perform writes on a version of the data that is at least as new the last version

7



it saw. Figure 9 shows an example of write follows reads ordering. In the example of the non write
follows reads ordering, the two replicas do not have the same write set (and the one on replica 2
is also not newer than the one on replica 1). This means that the read and the write operations
are not performed on the same state.

Replica 1

Replica 2
WS(x1;x2)

R(x1)W(x1)

W(x3)

Replica 1

Replica 2

WS(x1) R(x1)

WS(!x1;x2) W(x3)

writes−follow−reads consistent not writes−follow−reads consistent

Figure 9: An example of a valid and invalid ordering for the write follows reads consistency model

Consistency Protocols

Having discussed various consistency models, it is now time to focus on the implementation of
these models. A consistency protocol provides an implementation of a consistency model in that it
manages the ordering of operations according to its particular consistency model. In this section
we focus on the various ways of implementing data-centric consistency models, with an emphasis
on sequential consistency (which includes the weak consistency models as well).

There are two main classes of data-centric consistency protocols: primary-based protocols
and replicated-write based protocols. Primary-based protocols require that each data item have
a primary copy (or home) on which all writes are performed. In contrast, the replicated-write
protocols require that writes are performed on multiple replicas simultaneously.

The primary-based approach to consistency protocols can further be split into two classes:
remote-write and local-write. In remote-write protocols writes are possibly executed on a remote
replica. In local-write writes are always executed on the local replica.

Single Server The first of the remote-write protocols is the single server protocol. This protocol
implements sequential consistency by effectively centralising all data and foregoing data replication
altogether (it does, however, allow data distribution). All write operations on a data item are
forwarded to the server holding that item’s primary copy. Reads are also forwarded to this server.
Although this protocol is easy to implement, it does not scale well and has a negative impact on
performance. Note that due to the lack of replication, this protocol does not provide a distributed
system with reliability.

Primary-Backup The primary-backup protocol allows reads to be executed at any replica,
however, writes can still only be performed at a data item’s primary copy. The replicas (called
backups) all hold copies of the data item, and a write operation blocks until the write has been
propagated to all of these replicas. Because of the blocking write, this protocol can easily be
used to implement sequential consistency. However, this has a negative impact on performance
and scalability. It does, however, improve a system’s reliability. Furthermore, while it is possible
to make the write nonblocking, greatly improving performance, such a system would no longer
guarantee sequential consistency.

Migration The migration protocol is the first of the local-write protocols. This protocol is
similar to single server in that the data is not replicated. However, when a data item is accessed
it is moved from its original location to the replica of the client accessing it. The benefit of this
approach is that data is always consistent and repeated reads and writes occur quickly, with no
delay. The drawback is that concurrent reads and writes can lead to thrashing behaviour where
the data item is constantly being copied back and forth. Furthermore the system must keep track
of every data item’s current home. There are many techniques for doing this including broadcast,
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forwarding pointers, name services, etc. A number of these techniques will be discussed in a future
lecture on naming.

Migrating Primary (multiple reader/single writer) An improvement on the migration
protocol is to allow read operations to be performed on local replicas and to migrate the primary
copy only on writes. This improves on the write performance of primary-backup (only if nonblock-
ing writes are used), and avoids some of the thrashing of the migration approach. It is also good
for (mobile) clients operating in disconnected mode. Before disconnecting from the network the
client becomes the primary allowing it to perform updates locally. When the client reconnects to
the network it updates all the backups.

Active Replication The active replication protocol is a replicated write protocol. In this
protocol write operations are propagated to all replicas, while reads are performed locally. The
writes can be propagated using either point-to-point communication or multicast. The benefit of
this approach is that all replicas receive all operations at the same time (and in the same order),
and it is not necessary to track a primary, or send all operations to a single server. However it
does require atomic multicast or a centralised sequencer, neither of which are scalable approaches.

Quorum-Base Protocols With quorum based protocols write operations are executed at a
subset of all replicas. When performing read operations clients must also contact a subset of
replicas to find out the newest version of the data. In this protocol all data items are associated
with a version number. Every time a data item is modified its version number is increased.

This protocol defines a write quorum and a read quorum, which specify the number of replicas
that must be contacted for writes and reads respectively. The write quorum must be greater than
half of the total replicas, while the sum of the read quorum and the write quorum must be greater
than the total number of replicas. In this way a client performing a read operation is guaranteed
to contact at least one replica that has the newest version of the data item. The choice of quorum
sizes depends on the expected read-write ratio and the cost of group communication.

Update Propagation

Another important aspect of implementing replication and consistency protocols is the question
of how updates are propagated to other replicas. There are three approaches to this: send the
data, send the operation, and send an invalidation. In the first approach the updated data item
is simply sent to the other replicas. In the second approach the operation that caused an update
to the data item is sent to all replicas. This operation is then performed by the remote replicas,
updating their local store. Finally sending an invalidation involves notifying the replicas that the
copy of the data item that they hold is no longer valid. It is then up to each replica to contact
the sender of the invalidation to retrieve the new state of the data item. Which approach to use
largely depends on the context.

The benefits of sending the updated data are that the replicas do not need to perform any
actions other than simply replacing their copy of the appropriate data item. Sending the data
is a good approach if the data items are small, or if few updates are performed. The benefits
of propagating the update operation are that the messages may be significantly smaller than the
actual data items, this is useful when bandwidth is limited. Likewise replicas can store logs of
operations, and it may be possible to resolve write conflicts if the updates affect different parts of
the data item. Invalidation is a useful approach if data items are large, and many updates occur.

Push vs Pull

Besides deciding what to send in an update message, it is also important to decide whether updates
are pushed to all replicas when they occur or pulled from replicas when they are needed. The push
model is a useful approach when a high degree of freshness is required (i.e., clients always want to
access the newest data), as well as when there are few updates and many reads. A drawback of
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this approach, however, is that the writer must keep track of all replicas. This is not a problem
when the set of replicas is small and stable, but does become a problem when there are many
replicas (e.g., web browser caches) and they are unstable (e.g., browsers purging their caches,
being stopped and started, etc.)

On the other hand, when there are many updates and few reads it is more efficient to have
the reader pull the update, that is, send a request for the newest version whenever a read is
performed. It is also efficient to do this when the server does not want to keep track of all replicas.
The drawback of this approach is that it may incur a polling delay, meaning that replicas must
check for the most up to date version every time a read request is made. It is possible to avoid
the poll delay by periodically checking the freshness of the replicated data, however, this means
that replicas may contain stale data (as happens in the Web).

Leases Because the push approach is inefficient if a replica has no interested clients, the concept
of timed leases can be used to keep track of and push to interested replicas only. When a replica
is interested in receiving updates for a particular data item it acquires a lease for that item.
Whenever updates occur they are then propagated to that replica. When the lease expires the
replica no longer receives updates. It is up to each replica to renew its lease if it is still interested
in updates.

To cut down on the costs of constantly renewing leases and to prevent sending unnecessary
updates, it is possible to base the length of leases on characteristics of the replicas and data items.
Lease length can be based on the age of the data item, on the renewal frequency of a replica,
and on the overhead that lease management incurs. With age based leases, data items that were
recently modified will receive shorter leases. This is based on the expectation that they will be
modified again soon and will therefore generate many update messages. As such it is important to
make sure that the receivers of the updates are still interested in them. For data items that are not
expected to be modified soon the lease age can be longer, as they will not generate many update
message. With renewal-frequency based leases, replicas that often request to have their copy of
a data item updated will receive longer leases than those that do so infrequently. Finally state-
space-overhead based leases base the lease length on available resources for storing and processing
lease state as well as propagating updates. When available resources are low, lease lengths will
also be low.

Multicast vs Unicast

As has been mentioned previously, multicast communication can often be used to propagate up-
dates to other replicas. This is particularly useful when updates have to be propagated to many
replicas. Furthermore atomic multicast is very useful for maintaining operation order. In atomic
multicast a message is guaranteed to be delivered to all recipients or none at all. Also all messages
are delivered in the same order to all recipients. Unfortunately it is difficult to implement atomic
multicast in a scalable way.

In the situation where all replicas are on the same LAN, broadcast can also be used. This is
obviously not geographically scalable, but in many situations (e.g., a cluster of replicated servers)
such scalability is not required. Unicast (or point-to-point communication) is more useful when
updates are pulled by clients, or when multicast cannot be implemented efficiently. A further
consideration is that unicast communication mechanisms are also more readily available to pro-
grammers.

Replica Placement

A final issue with regards to the implementation of replication is the question of where to place
replicas, how many replicas to create, who is responsible for creating and maintaining them, and
how clients find the most appropriate replicas to connect to. Replicas can be categorised into
permanent replicas, server-initiated replicas, and client-initiated replicas as shown in Figure 10.
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Figure 10: Different kinds of replicas

Permanent replicas are created by the data store owner and function as permanent storage for
the data. Often this is a single server, but it may also be a cluster or group of mirrors maintained
by the data store owner. This category also includes replicas that are created for fault tolerance
(availability) reasons. Writes are usually only performed by clients directly connected to permanent
replicas. Server-initiated replicas are replicas created in order to enhance the performance of the
system. They are created at the request of the data store owner but are often placed on servers
maintained by others. The replicas are not as long lived as the permanent replicas, although
exceptions where server-initiated replicas exist for as long as the permanent replicas are possible.
In order to improve performance these replicas are placed close to large concentrations of clients.
Finally, client-initiated replicas are temporary copies that the data store owner is not generally
aware of. They are created by clients to improve their own performance and access to the data.
A typical example of client-initiated replicas are Web browser caches and proxy caches.

Dynamic Replication

In many cases the patterns of use that a distributed system will experience will change over time.
For example, the number of clients accessing the system can change (grow or shrink), the amount
of data that the system contains will tend to grow, the access characteristics may change (i.e.,
the R/W ratio may change), etc. The changes can be steady or bursty. Bursty changes are often
characterised by sudden, heavy, increases in usage, followed by sharp declines.

In order to adapt to these changes many systems apply dynamic replica placement. With
dynamic replica placement the decisions about where to place replicas and when to create new
ones is made automatically by the system. This kind of automatic replication requires a specific
infrastructure which allows the collection of usage pattern data and the migration of replicas to
and from other servers. It generally also requires the availability of a supporting network of servers
willing to host replicas.

An example of a dynamic replica placement strategy comes from the RaDaR Web hosting
service [RA99]. In that system clients send all requests to a nearest server, where they are for-
warded on to a server that contains the actual replica. All servers keep track of where requests for
replicated data originated. The system defines a number of thresholds: replication, migration and
deletion. These threshold are used to determine what should happen with replicas - whether new
ones should be created, existing ones destroyed, or existing ones moved to different servers. For
example, when the number of requests at a particular replica exceeds the replication threshold a
new replica will be created.
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Request Routing

So far it has been assumed that clients always connect to the most appropriate replica. Determining
where a client’s most appropriate replica is, or even what is most appropriate for a client is
a difficult problem. Most notably it is difficult to integrate replication solutions into existing
distributed systems (e.g., the Web, FTP, etc.) precisely because of this problem. Ideally a client
would transparently connect to its most appropriate replica, without user intervention, or without
a noticeable detour to a redirection service. The details of identifying and finding replicas and other
resources in a distributed system will be discussed in a future lecture on naming in distributed
systems.
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