DISTRIBUTED SYSTEMS (COMP9243)

Lecture 10: Naming

Slide 1

@ Basic Concepts

@ Naming Services

® Attribute-based Naming (aka Directory Services)
@ Distributed hash tables

WHAT IS NAMING?

Systems manage a wide collection of entifies of different
kinds. They are identified by different kinds of names:

Slide 2 =» Files (/boot/vmlinuz), Processes (1, 14293), Users (chak, ikuz,

¢s9243), Hosts (weill, facebook.com), ...

Examples of naming in distributed systems?
What's the difficulty?

BAsic CONCEPTS

BAsIC CONCEPTS

Name:
=» String of bits or characters
-» Refers to an entity
Entity:
Slide 3 =» Resource, process, user, etc.
=» Operatfions performed on entities at access points
Address:

=» Access point named by an address

=» Entity address = address of entity’s access point
-» Multiple access points per entity

=» Entity’s access points may change

Identifier:

- Name that uniquely identifies entity
=» Properties:
Slide 4 @ Refers to at most one entity
@ Entity referred to by at most one identifier
® Always refers to same entity (i.e. no reuse)
=» Allows easy comparison of references

SYSTEM-ORIENTED VS HUMAN-ORIENTED NAMES

SYSTEM-ORIENTED VS HUMAN-ORIENTED NAMES

System-Oriented Names:
=» Represented in machine readable form (32 or 64 bit strings)
=» Structured or unstructured
v Easy to store, manipulate, compare
x Not easy to remember, hard for humans to use
-» Example: inode (0x00245dad)

Slide 5 Human-Oriented Names:

= Variable length character strings
=» Usually structured

=» Often many human-oriented names map onto a single
system-oriented name

vz Easy to remember and distinguish between
x Hard for machine to process
=» Example: URL (http://www.cse.unsw.edu.au/"cs9243/lectures)

NAME SPACES

Container for a set of related names

Slide 6 Structure opftions:
=» Flat (only leaf nodes)
=» Hierarchical (Strictly hierarchical, DAG, Multiple root nodes)
= Tag-based

NAME SPACES

Slide 7

Slide 8

root
directory table /

ikuz

€s9243

directory
T leaf
d2 d3

€s9243_lectures lectures

@ @ "Ihome/cs9243/lectures”

Path Names (in hierarchies):
=» Sequence of edge labels
=» Absolute: if first node in path name is a root node
-» Relafive: otherwise

Aliasing:
=» Alias: another name for an entity
=» Hard link: two or more paths to an entity in the graph

=» Softf link: leaf node stores a (absolute) path name to another
node

NAME SPACES

Merging:
=» Mounting
e Directory node stores info about a directory node in other
name space
e Need: protocol, server, path name, authentication and
authorisation info, keys for secure communication, etc.

namespacel

Slide 9

namespace2

root
authentication

“Imedia/audio”
“/mnt/media/audio”

-» Combining name spaces

® http://www.cse.unsw.edu.au/"cs9243/naming-slides.pdf
e Name Spaces: Protocol, DNS, File System

Slide 11

NAMING SERVICES

A naming service provides a name space

Name Server:
-» Naming service implemented by name servers
= Implements naming service operations

Operations:
=» Lookup: resolve a path name, or element of a path name
-» Add: add a directory or leaf node

Slide 10

=» Remove: remove a subtree or leaf node
=» Modify: modify the contents of a directory or leaf node

Client:
-» Invokes naming service operations

Centralised vs Distributed Naming Service

NAME RESOLUTION

NAME RESOLUTION

The process of looking up a name

Resolution:
- Mapping a name onto the node referred to by the name
=» Interested in the data stored by the node

Path Name Resolution:
=» Starts at a begin node (first element of the path name)
e Root node for absolute name
e Directory node for relative name

-» Ends with data from (or a reference to) the last node (last
element of path name)

Resolver:
-» Does name resolution on behalf of client
=» In client process, in client’s kernel, process on client’s machine

[terative Resolution:

resolve /home/ikuz/cs9243_lectures
 /' do
home

tmp
B ——
resolver § a1 no
IKuz €s9243
slide 12 \
d2 d3
€s9243_
lectures
lectures
x Caching only at resolver
x Lots of communication
NAME RESOLUTION 6

Recursive Resolution:

resolve /home/ikuz/cs9243_lectures

resolver

Slide 13

v Effective caching at name servers

v Reduced communication (if name servers close together)
v Name servers can be protected from external access

x Higher performance demand placed on servers

NAMING SERVICE IMPLEMENTATION ISSUES

Performance and Scalability:
=» Limit load on name servers
=» Limit communication required
=» Partitioning: split name space over multiple name servers
Slide 14 -» Replication: copy (parts of) name space on multiple name
servers
Fault Tolerance:
-» Replication

Authoritative Name Server:
-» Name server that stores an entity’s original attributes

PARTITIONING

PARTITIONING

Split name space over multiple servers

Structured Partitioning:
=» split name space according to graph structure
=» Name resolution can use zone hints to quickly find appropriate

Slide 15 server
v Improved lookup performance due to knowledge of structure

x Rigid structure

Structure-free Partitioning:
-» content placed on servers independent of name space
v Flexible
x Decreased lookup performance, increased load on root

Slide 16

| 59243 _lectures. ' i |lectures |

REPLICATION

REPLICATION

Copy name space to multiple servers

Full Replication:
=» copy complete name space
v Fast performance
x Size (each server must store whole name space)
x Consistency (any change has to be performed at all replicas)
x Administration (who has rights to make changes where?)

Slide 17

Partial replication:
-» Replicate full name servers
-» Replicate zones
v Improved performance, less consistency overhead
v Less administrative problems

Slide 18

servers

REPLICATION

Caching:

=» Cache query results

v~ No administrative problems
-» Types of caches:

e Directory cache: cache directory node information
e Prefix cache: cache path name prefixes
e Full-name cache: cache full names

. = Cache implementations:
Slide 19)
e Process-local cache: in address space of process

e Kernel cache: cache kept by kernel
e User-process cache: separate shared service
-» Cache updates and consistency

e On use checking
e Timeout

e Invalidation

¢ Slow propagation

DNS (DoOMAIN NAME SYSTEM)

Structure:
=» Hierarchical structure (tree)
=» Top-level domains (TLD) (.com, .org, .net, .au, .nl, ...)
=» Zone: a (group of) directory node
=» Resource records: contents of a node
- Domain: a subtree of the global tree
->

slide 20 Domain name: an absolute path name

Type of Associated Description
record entity

SOA Zone Holds information on the represented zone

A Host Contains an IP address of the host this node represents

MX Domain Refers to a mail server to handle mail addressed to this node

SRV Domain Refers to a server handling a specific service

NS Zone Refers to a name server that implements the represented zone

CNAME Node Symbolic link with the primary name of the represented node

PTR Host Contains the name of a host

HINFO Host Holds information on the host this node represents

TXT Any kind Contains any entity-specific information considered useful

DNS (DoOMAIN NAME SYSTEM)

resolver

query: www.cse.unsw.edu.au
result: A 192.168.211.3
cache:
mail.med.unsw.edu.au
206.112.134.12

Slide 21

serverl server2

Partitioning:
=» Each zone implemented by a name server

Replication:
-» Each zone replicated on at least two servers
-» Updates performed on primary
=» Contents transferred to secondary using zone transfer
=» Higher levels have many more replicas (13 root servers:

. A-M.root-servers.net. Actually 386 replicas using anycast)
Slide 22 .
Caching:

=» Servers cache results of queries
=» Original entries have time-to-live field (TTL)
-» Cached data is non-authoritative, provided until TTL expires

Name Resolution:
-» Query sent to local server
=» If cannot resolve locally then sent to root
-» Resolved recursively or iteratively

ATTRIBUTE-BASED NAMING (& LDAP)

ATTRIBUTE-BASED NAMING (& LDAP)

White Pages vs Yellow Pages:
-» White Pages: Name »»Phone number
= Yellow Pages: Attribute »Set of entities with that attribute

slide 23 =» Example: X.500 and LDAP

Attribute-Based Names:
- Example:/C=AU/0=UNSW/0U=CSE/CN=WWW
Server/Hardware=Sparc/0S=Solaris/Server=Apache
-» Distinguished name (DN): set of attributes (distinguished
attributes) that forms a canonical name for an entity

Attribute-Based Naming:
-» Lookup entities based on attributes
- Example: search("&(C=AU) (0=UNSW) (QU=*) (CN=WWW Server)")
-» Aftributes stored in directfory entry, all stored in directory

Slide 24 Name Space:
=» Flat: no structure in directory service
=» Hierarchical: structured according to a hierarchy

=» Distinguished name mirrors structure of name space

=» All possible attribute types and name space defined by schema

11 ATTRIBUTE-BASED NAMING (& LDAP)

Slide 25

Directory Information

Tree (DIT) _—

O=Slashdot O=UNSW

CN=WWW Server OU=CSE

N

o~

o ~ CN=WWW Server
o]

O

Directory Information —— R i [

Base (DIB)

CN=WWW Server

DIRECTORY SERVICES

A directory service implements a directory

Operations:

->

Slide 26

LR R

->

Lookup: resolve a distinguished name
Add: add an entity

Remove: remove an entity

Modify: modify the aftributes of an entity

Search: search for entities that have particular attributes

Search can use partial knowledge

Search does not have to include distinguished attributes
Most important qualities: allow browsing and allow searching

Client:

->

Invokes directory service operations

DISTRIBUTED DIRECTORY SERVICE

DISTRIBUTED DIRECTORY SERVICE

Partitioning:
=» Partitioned according to name space structure (e.g., hierarchy)

Slide 27

O=Slashdot

i CN=WWW Server

|| CN=WWW Server CN=WWW Server

Replication:
-» Replicate whole directory
-» Replicate partitions
-» Read/Write and read only replicas (e.g. primary-backup)
=» Catalog and cache replicas

Slide 28

CN=WWW Server 3 CN=WWW Server

SEARCHING AND LOOKUP IN A DISTRIBUTED DIRECTORY

X.500 AND LDAP
SEARCHING AND LOOKUP IN A DISTRIBUTED DIRECTORY

X.500:
Client Client
F— =-» ISO standard
search: CN=WWW Server search: C=AU, O=UNSW,
CN=WWW Server - Global DIT
-» Defines DIB, DIB partitioning, and DIB replication
O=Slashdot
slide 29 slide 31 LDAP (Lightweight Directory Access Protocol):
CN=WWW Server -» X.500 access over TCP/IP
e X.500 is defined for OSI Application layer
CN=WWW Server CN=WWW Server =» Textual X.500 name representation
=» Popular on Internet
g % =» Also X.500 free implementations (e.g. openldap)
-» Used in Windows for Active Directory
Approaches:

=» Chaining (recursive)

=» Referral (iterative)

- Multicasting (uncommon) ADDRESS RESOLUTION OF UNSTRUCTURED NAMES

Performance of Searching: Unstructured Names:
Slide 30 =» Searching whole name space: must visit each directory server slide 32 =» Practically random bit strings

x bad scalability -» Example: random key, hash value

=» Limit searches by specifying context =» No location information whatsoever

-» Catalog: stores copy of subset of DIB information in each server =» How to find corresponding address of entity?

=» Main problem: multiple attributes mean multiple possible

decompositions for partitioning BUT only one decomposition
can be implemented

X.500 AND LDAP 15 ADDRESS RESOLUTION OF UNSTRUCTURED NAMES

Simple Solution: Broadcasting:
=» Resolver broadcasts query to every node
=» Only nodes that have access point will answer

Example - ARP:

Slide 33 Protocol to resolve MAC addresses from IP addresses.

-» Resolver broadcasts:
Who has 129.94.242.2017 Tell 129.94.242.200
= 129.94.242.201 answers to 129.94.242.200:
129.94.242.201 is at 00: 15:C5.FB:AD:95

DISTRIBUTED HASH TABLES
Hash table (key value store) as overlay network:
=» put(key, value), value = get(key), remove(key)

Example: look up unstructured host names:

put (weill, 129.94.242.49)
put (beethoven, 129.94.172.11)
put (maestro, 129.94.242.33)

Slide 34

address = get(beethoven)

=» How high is performance cost of lookup?

CHORD: DISTRIBUTED HASH TABLE

CHORD: DISTRIBUTED HASH TABLE

General Structure:

Slide 35

=» keys and node IP addresses mapped to identifier
=» consistent hashing (SHA-1 m-bits)
= key assigned to first node with id > key — successor (key)

A simple lookup:

N1

lookup(K54)

[ksa]nsg

Slide 36

N32

=» use successors function
=» recursive RPCs until node with key is found
=» O(n) cost

17 CHORD: DISTRIBUTED HASH TABLE

A scalable lookup: Adding a node:

N2 /0 N21
N Finger table succcssur(NZ/ /
N8+ 1 [N14 L f/‘st
N8 + 2 [N14 Prea o=/
N8 + 4 [N14 N:Z N3
e
N8 +32[N42 K30 K30
Slide 37 Slide 39
/‘ N21 Q N21
\
2/
N26 /9 N26
o
-K30
=» routing table at every node: finger table o
= ith entry is successor(n + 2°~1)
= finger[1] Is successor =» stabilize: ensure successor pointers up-to-date
=» fix_fingers: ensure that finger tables updated
N1
lookup(54)
N56
Dealing with node failure:
N51
N = successor list: r successors o handle r — 1 failures
N48
=» higher level must handle loss of data relating to failure
Slide 38 N21 Slide 40 Analysis:

=» finger table size: O(logn).
=» O(logn) nodes contacted for lookup
= 1/2logn average

N32

=» lookup greatest node id in table < k
=» ask it fo lookup the key
=» exponentially smaller jumps

CHORD: DISTRIBUTED HASH TABLE 19 HOMEWORK

HOMEWORK
=» How could you use a DHT to implement a directory service?
-» How could you use a DHT to implement a file system?
Slide 41 Hqgcker's edition:

=» Use an existing DHT implementation to implement a simple file
system.
=» Implement the DHT yourself

READING LIST

Domain Names - Implementation and Specification RFC 1035

DNS

Slide 42
The Lightweight Directory Access Protocol: X.500 Lite LDAP

Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications Chord

READING LisT

