Knowledge engineering

KR is first and foremost about knowledge

 meaning and entailment find individuals and properties, then encode facts sufficient for entailmentsBefore implementing, need to understand clearly

- what is to be computed?
- why and where inference is necessary?

Example domain: soap-opera world

 people, places, companies, births, marriages, divorces, deaths, events, ...
Task: KB with appropriate entailments

- what vocabulary?
- what facts to represent?

Vocabulary

Domain-dependent predicates and functions main question:
 what are the individuals?
 here: people, places, companies, ...

named individuals

john, countryTown, faultyInsuranceCorp, fic, johnQsmith, ...

basic types

Person, Place, Man, Woman, ...

attributes

Rich, Beautiful, Unscrupulous, ...

relationships

LivesAt, MarriedTo, DaughterOf, HairDresserOf, HadAnAffairWith, Blackmails, ...

functions

fatherOf, ceoOf, bestFriendOf, ...

Basic facts

Usually atomic sentences and negations

type facts
Man(john),
Woman(jane),
Company(faultyInsuranceCorp)
property facts
Rich(john),
\neg HappilyMarried(jim),
WorksFor(jim,fic)
equality facts
john $=\operatorname{ceoOf(fic),~}$
fic $=$ faultyInsuranceCorp,
bestFriendOf(jim) $=$ john

Like a simple database
could store these facts in relational tables

Complex facts

Universal abbreviations

$$
\begin{aligned}
& \forall y[\operatorname{Woman}(y) \wedge y \neq \operatorname{jane} \supset \operatorname{Loves}(y, \text { john })] \\
& \forall y[\operatorname{Rich}(y) \wedge \operatorname{Man}(y) \supset \operatorname{Loves}(y, \text { jane })] \\
& \forall x \forall y[\operatorname{Loves}(x, y) \supset \neg \operatorname{Blackmails}(x, y)]
\end{aligned}
$$

possible to express without quantifiers

Incomplete knowledge

Loves(jane,john) $\vee \operatorname{Loves(jane,jim)~}$ which?
$\exists x[\operatorname{Adult}(x) \wedge \operatorname{Blackmails}(x$, john $)]$ who?
cannot write down more complete version

Closure axioms

$$
\begin{aligned}
& \forall x[\operatorname{Person}(x) \supset x=\operatorname{jane} \vee x=j \text { john } \vee x=j i m ~ . . .] \\
& \forall x \forall y[\operatorname{MarriedTo}(x, y) \supset \ldots] \\
& \forall x[x=\text { fic } \vee x=\operatorname{jane} \vee x=\text { john } \vee x=j i m ~ \ldots]
\end{aligned}
$$

limits domain of discourse
also useful to have jane \neq john ...

Terminological facts

General relationships among predicates. For example:

disjoint

$\forall x[\operatorname{Mammal}(x) \supset \neg \operatorname{Reptile}(x)]$

subtype

$\forall x[\operatorname{Mammal}(x) \supset \operatorname{Animal}(x)]$
exhaustive
$\forall x[\operatorname{Day}(x) \supset \operatorname{Monday}(x) \vee \ldots \vee \operatorname{Sunday}(x)]$
symmetry
$\forall x \forall y[\operatorname{RelatedTo}(x, y) \supset \operatorname{Related} \operatorname{To}(y, x)]$
inverse
$\forall x \forall y[\operatorname{ChildOf}(x, y) \supset \operatorname{ParentOf}(y, x)]$
type restriction
$\forall x \forall y[\operatorname{MarriedTo}(x, y) \supset$
$\operatorname{Person}(x) \wedge \operatorname{Person}(y)]$
full definition

$$
\forall x[\operatorname{RichMan}(x) \equiv \operatorname{Rich}(x) \wedge \operatorname{Man}(x)]
$$

Usually universally quantified conditionals or biconditionals

Entailments: 1

Is there a company whose CEO loves Jane?

```
\existsx[Company (x)^ Loves(ceoOf(x),jane)] ??
```


Suppose $I \mid=\mathrm{KB}$.

Then $\boldsymbol{I} \mid=\operatorname{Rich}(j o h n), \operatorname{Man}(j o h n)$,
and $\boldsymbol{I} \mid=\forall y[\operatorname{Rich}(y) \wedge \operatorname{Man}(y) \supset \operatorname{Loves}(y, j a n e)]$
so $\boldsymbol{I} \mid=\operatorname{Loves(john,jane).~}$
Also $\boldsymbol{I} \mid=$ john $=\operatorname{ceoOf}(f i c)$,
so $\boldsymbol{I} \mid=$ Loves(ceoOf(fic),jane).
Finally $\boldsymbol{I} \mid=$ Company(faultyInsuranceCorp),
and $\boldsymbol{I} \mid=$ fic $=$ faultyInsuranceCorp,
so I $\mid=$ Company(fic).
Thus, $\boldsymbol{I} \mid=$ Company(fic) \wedge Loves(ceoOf(fic),jane),
and so

$$
\boldsymbol{I} \mid=\exists x[\operatorname{Company}(x) \wedge \operatorname{Loves}(\operatorname{ceoOf}(x), j a n e)] .
$$

Can extract identity of company from this proof

Entailments: 2

If no man is blackmailing John, then is he being blackmailed by somebody he loves?

$\forall x[\operatorname{Man}(x) \supset \neg \operatorname{Blackmails}(x$, john $)] \supset$ $\exists y[\operatorname{Loves}($ john,$y) \wedge$ Blackmails $(y, j o h n)]$??

Note: $\mathrm{KB} \mid=(\alpha \supset \beta) \quad$ iff $\mathrm{KB} \cup\{\alpha\} \mid=\beta$
Assume: $\boldsymbol{I} \mid=\mathrm{KB} \cup\{\forall x[\operatorname{Man}(x) \supset \neg \operatorname{Blackmails}(x$, john $)]\}$
Show: $\quad \boldsymbol{I} \mid=\exists y[\operatorname{Loves}(\mathrm{john}, y) \wedge$ Blackmails $(y$,john)

Have:	$\exists x[\operatorname{Adult}(x) \wedge \operatorname{Blackmails}(x, \text { john })]$
and	$\forall x[\operatorname{Adult}(x) \supset \operatorname{Man}(x) \vee \operatorname{Woman}(x)]$
so	$\exists x[\operatorname{Woman}(x) \wedge$ Blackmails $(x$, john $)]$.
Then:	$\forall y[\operatorname{Rich}(y) \wedge \operatorname{Man}(y) \supset \operatorname{Loves}(y, \mathrm{jane})]$
and	Rich(john) ^ Man(john)
so	Loves(john,jane)!
But:	$\forall y[\operatorname{Woman}(y) \wedge y \neq \mathrm{jane} \supset \operatorname{Loves}(y, \mathrm{john})]$
and	$\forall x \forall y[\operatorname{Loves}(x, y) \supset \neg \operatorname{Blackmails}(x, y)]$
so	$\forall y[\operatorname{Woman}(y) \wedge y \neq$ jane $\supset \neg$ Blackmails(y,john)]
and...	Blackmails(jane,john)

Finally: Loves(john,jane) ^ Blackmails(jane,john)
so: $\quad \exists y[\operatorname{Loves}(j o h n, y) \wedge$ Blackmails $(y, j o h n)]$

Proof as sequence of sentences

What individuals?

Sometimes useful to reduce n-ary predicates to 1 -place predicates and 1-place functions

- involves reifying properties: new individuals
- typical of description logics / frame languages

Flexibility in terms of arity:

Purchases(john,sears,bike) or
Purchases(john,sears,bike,feb14) or
Purchases(john,sears,bike,feb14,\$100)

Instead introduce purchase objects
$\operatorname{Purchase}(p) \wedge \operatorname{agent}(p)=\operatorname{john} \wedge$
$\operatorname{obj}(p)=\operatorname{bike} \wedge \operatorname{source}(p)=\operatorname{sears} \wedge$
$\operatorname{amount}(p)=\ldots \wedge \ldots$
allows purchase to be described at various levels of detail

Complex relationships:

$\operatorname{MarriedTo}(x, y) \quad$ vs.
$\operatorname{PreviouslyMarriedTo}(x, y) \quad$ vs.
$\operatorname{ReMarriedTo}(x, y)$

Define marital status in terms of existence of marriages and divorces.

```
Marriage (m) ^ partner1(m)=x ^
partner2(m)=y ^ date (m)=... ^
witness}(m)=...^ ..
```


Abstract individuals

Also need individuals for numbers, dates, times, addresses, etc.

objects about which we ask wh-questions

Quantities as individuals

$$
\begin{aligned}
& \operatorname{age}(\text { suzy })=14 \\
& \text { age-in-years(suzy) }=14 \\
& \text { age-in-months }(\text { suzy })=168
\end{aligned}
$$

perhaps better to have an object for the age of Suzy, whose value in years is 14

$$
\begin{aligned}
& \operatorname{years}(\operatorname{age}(\operatorname{suzy}))=14 \\
& \operatorname{months}(x)=12 * \operatorname{years}(x) \\
& \operatorname{centimeters}(x)=100 * \operatorname{meters}(x)
\end{aligned}
$$

Similarly with locations and times

instead of

$$
\text { time }(m)=\text { "Jan } 51992 \text { 4:47:03EST" }
$$

can use

$$
\operatorname{time}(m)=t \wedge \operatorname{year}(t)=1992 \wedge \ldots
$$

Other sorts of facts

Statistical / probabilistic facts

- Half of the companies are located on the East Side.
- Most of the employees are restless.
- Almost none of the employees are completely trustworthy,

Default / prototypical facts

- Company presidents typically have secretaries intercepting their phone calls.
- Cars have four wheels.
- Companies generally do not allow employees that work together to be married.

Intentional facts

- John believes that Henry is trying to blackmail him.
- Jane does not want Jim to think that she loves John.

Others ...

