COMP2511

Decorator Pattern
Adapter Pattern

Prepared by
Dr. Ashesh Mahidadia

Design Patterns

+** Creational Patterns
¢ Abstract Factory
** Factory Method
% Singleton

¢ Structural Patterns
“* Adapter This week
¢ Composite discussed
* Decorator This week

** Behavioral Patterns
’:’ lterator discussed

o

«* Observer discussed
s State discussed
¢ Strategy discussed
s Template

% Visitor

We plan to discuss the rest of the design
patterns above in the following weeks

COMP2511: Decorator and Adapter Patterns

Decorator Pattern

COMP2511: Decorator and Adapter Patterns

Decorator Pattern: Intent

» "Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to sub-classing for extending functionality."
[GOF]

* Decorator design patterns allow us to selectively add functionality to an object (not the
class) at runtime, based on the requirements.

e Original class is not changed (Open-Closed Principle).

* Inheritance extends behaviors at compile time, additional functionality is bound to all the
instances of that class for their life time.

* The decorator design pattern prefers a composition over an inheritance.
Its a structural pattern, which provides a wrapper to the existing class.

e Objects can be decorated multiple times, in different order, due to the recursion involved
with this design pattern. See the example in the Demo.

* Do not need to implement all possible functionality in a single (complex) class.

COMP2511: Decorator and Adapter Patterns 4

Decorator Pattern: Structure

\/
0‘0

\/
0‘0

Client : refers to the Component interface.
Component: defines a common interface for
Componentl and Decorator objects
Componentl : defines objects that get
decorated.

Decorator: maintains a reference to a
Component object, and forwards requests to
this component object (component.operation())
Decoratorl, DecoratorZ2, ... :

Implement additional functionality
(addBehavior()) to be performed before and/or
after forwarding a request.

Client

2AdMpE

Diagram

Component —
ponent
—
operation(’ |
component.
41 operation (),
[
Component] Decorator \
operation(] operation(] - -}
[]
Decoratorl Decorator2
operation (] operation|(]
addBehavior) addBehavior)

See the example in the Demo.

COMP2511: Decorator and Adapter Patterns

Decorator Pattern: Structure

** Given that the decorator has the same

supertype as the object it decorates, Client —>1 Component | _ component
operation(’ |
we can pass around a decorated object in place Al compopent-
.. . operation (),
of the original (wrapped) object. I l
Component] Decorator \
. . . operation (] operation(] - - |
** The decorator adds its own behavior either
before and/or after delegating to the object it [o 1
decorates to do the rest of the job. Sample Decorator] | | Decorator2
el operation] operation]
[g— addBehavior) | | addBehavior)
From the book “Head First Design Pattern”. See the example in the Demo.

COMP2511: Decorator and Adapter Patterns

Decorator Pattern: Example

Beverage is an abstract elass,

subtlassed by all beverages

offeved in the tobfee shop:

The tost() method is
abstraet; subelassses

need o define their T~/ cost()

own im?lCmcn{:a{:ion-

Welcome to Starbuzz Coffee

) -

Beverage The destription instance variable
s sek in eath subtlass and holds a
deseription of the beverage, like

“Most Extellent Dark Roast”.

The gc{:Deeri?{:ion() method
veturns the deseviption.

description

getDescription()

I Other useful methods...

HouseBlend

DarkRoast Decaf

Espresso

cost()

cost()

f\

Each subtlass implements cost() 4o veturn the cost of the beverage.

cost() cost()

)

COMP2511: Decorator and Adapter Patterns

Decorator Pattern: Example

Beverage

description

getDescription()
cost()

I/ Other useful methods...

/

Welcome to Starbuzz Coffee

HouseBlendWithSteamedMilk DarkRoastWithSteamedM - EApSIOIE ATl
ouseBlendWithStea i arkRoa ea y andMocha
andMocha andMocha DecafWithSteamedMilk
HouseBle andMocha cost()
cost() cost() costl)
Espress :
o 7 andCaramel
cost() DmRo?,%“;:?;::Md Milk andCaramel costf)] EspressoWithWhipandMocha
Hou cost() DecafWith
‘ o HouseB! cost() DarkRoastWith st
HouseBlendWi cost()
and$ cost() DarkRoast cost) Dec cos!
cost) costl), cosl = DecafWithSoy
HouseBlendWith cosy) DarkRoastWithSteamedMilk DecafWithSteamedMilk cost()
——] andSoy [and " EspressoWith
g HouseBlendwnhWhip—l-—i—M_.__.| DecafWithSteamedMilk | | . -
cost() il DarkRoas o G DecafWithSoyandMocha
HouseBl cost() cost() Dec:
‘ . cost() cost()
HouseBlendWithWhipandSoy | DarkRoastWie D osy cost()
cost() . EspressoWithSteamedMilk
cost() DecafWithSteame andWhip
DarkRoastWithSteamedMi - a 6ame
Each cost method computes the : Esprescintihipendioy
P DarkRoastWithWhipandSoy DecafWithWhipandSoy
cost of the coffee along with the — oost)
. . cost()
other condiments in the order

Decorator Pattern: Example Welcome to Starbuzz Coffee

Beverage atts as owr -
abstract tomponent £13ss

component

Beverage
description
getDescription()
cost()

I/ other useful methods

CondimentDecorator
getDescription()

DarkRoast

HouseBlend

cost() cost()

Espresso Decaf
cost() cost()
Milk Mocha
The ‘cou\r ConCYC‘hC Beverage beverage Beverage beverage Beverage beverage
tomponents, one pev cost) cost) cost)
LOA(:ECC {',\/YC getDescription() getDescription()

N 722

And heve are our tondiment detorators; notice
‘f:thnccd to implement not onl\/ tost() but also

36{: CSCV‘iP"Zion(). We'll see wh\/ in @ moment...
COMP2511: Decorator and Adapter Patterns

Decorator Pattern: Example

Constructing a drink order with Decorators

Whip is a detorator, so it also
mivrors DarkRoast's type and
intludes a eost() method.

(You'll see how !
«— 3 few Ya‘b“')

4

Motha calls cost() on
T DarkRoast.

© whip calls eost() on Motha.

© First, we call costO) on the
ou{'}nost dCCOVM) W‘“?

O DavkRoast veturns
|{:s Cos{:. q? CCh{}S-

O Whip adds its total, 10 eents,
to the vesult from Mocha, and

‘Q \M;cha adds its cost, 20 cents,
vetuens the final vesult—fl.29.

4o the vesult from Da\rkRoa's{‘.,
and veturns the new total, £1.19.

COMP2511: Decorator and Adapter Patterns 10

Decorator Pattern: Code

Beverage beverage = new Espresso();

System.out.println(beverage.getDescription()
+ " $" + beverage.cost());

System.out.println(”

public double cost() {
double beverage cost = beverage.cost();
System.out.println(“Whipe: beverage.cost() is: " + beverage cost);
System.out.println("
System.out.println(”

- adding One Whip cost of 0.10c ");
- new cost is: " + (0.10 + beverage cost));

return 0.10 + beverage cost ;

Beverage beverage2 = new DarkRoast();

beverage2 = new Mocha(beverage2);
beverage2 = new Mocha(beverage2);
beverage2 = new Whip(beverage2);

System.out.println(beverage2.getDescription()
+ " $" + beverage2.cost());

System.out.println("”

Beverage beverage3 = new HouseBlend();

beverage3 = new Soy(beverage3);

beverage3 = new Mocha(beverage3);

beverage3 = new Whip(beverage3);

System.out.println(beverage3.getDescription()
+ " $" + beverage3.cost());

System.out.println(”

e code
d the examp i
Pc\i?:cussed/ o\e\le\oped \tmS e
d also proV'\ded for
an

public double cost() {

COMP2511: Decorator and Adapter Patterns

double beverage cost = beverage.cost();

System.out.println(“Mocha: beverage.cost() is: " + beverage cost);
System.out.println(" - adding One Mocha cost of 0.20c ");
System.out.println(" - new cost is: " + (0.20 + beverage cost));

return 0.20 + beverage cost ;

11

Decorator Pattern: Java I/O Example

LineN mbcrfn?u{',g{‘,rcam is

also a tontrete detorator.
[t adds the ability 5

tount the line numbers as

it veads data.

A text file for reading.

CO"‘YO“C“) | J(S{—,rcam
Bu-u:cvcthu{'S{'xcam 1S S{'X.‘“SBW“TY‘:& A \f::
a tontrete decorator. BY&,(AW&\\{ n Dhese give ¥ 2 pe®
B “crcdln?u{;gtrcam adds obhers: A feom whi W Lo ved
b:“cring behavior to 3 w,,.\aonen‘\: Fo

F’l\dn\w{:g{:rcam: it bwﬂ:crs
input {o improve ycrgormanu-

COMP2511: Decorator and Adapter Patterns

12

Decorator Pattern: Java I/O Example

\f\crc s
Filter|nputStream
InputStream 1S an absi\rac’c
/\ detovator.
FilelnputStream StnngBufferlnputStream

ByteArraylnputStream

/—\/—_,_f

FilterinputStream

| PushbackInputStream . BufferedinputStream DatalnputStream

These [nputStreams act as the contrete F\ 7 / C
3::::;;::‘;5 tmr:ca:’c'“aw;:j ::-: we And finally, heve ave all our tontrete detorators.
didn't show, like OBJCC‘Elnyu‘bgfrcam

COMP2511: Decorator and Adapter Patterns

LineNumberinputStream

13

Decorator Pattern: Code

InputStream fl = new FilelnputStream(filename);
InputStream bl = new BufferedInputStream(fl);
InputStream lCasel = new LowerCaselnputStream(bl);
InputStream rotl3 = new Rotl3(bl);

while ((c = rotl3.read()) >= 0) {
System.out.print((char) c);

}

Read the examp!

discussed/ae” .
and also POVt

COMP2511: Decorator and Adapter Patterns

e code

\oped "

the lectures:

14

Decorator Pattern:

* Demo ...

COMP2511: Decorator and Adapter Patterns

15

Adapter Pattern

COMP2511: Decorator and Adapter Patterns

Adapter Pattern : Intent

s "Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of incompatible
interfaces." [GoF]

*» The adapter pattern allows the interface of an existing class to be used as another
interface, suitable for a client class.

* The adapter pattern is often used to make existing classes (APIs) work with a client class
without modifying their source code.

** The adapter class maps / joins functionality of two different types / interfaces.

** The adapter patter offers a wrapper around an existing useful class, such that a client
class can use functionality of the existing class.

s The adapter pattern do not offer additional functionality.

COMP2511: Decorator and Adapter Patterns 17

Adapter Pattern: Structure

Client

—

Sample
Class

f’ll_]l 1N

amerfce

Target

operation|)

Object
Adapter

A

Adapter

operation|)

Adaptee

adaptS;
specafic

Operation()

adaptee.
specificOperation ()

*» The adapter contains an instance of the class it wraps.

** In this situation, the adapter makes calls to the instance of the wrapped object.

COMP2511: Decorator and Adapter Patterns

18

Adapter: Example

interface LightningPhone {
void recharge();
void useLightning();

interface MicroUsbPhone {
void recharge();
void useMicroUsb();

class Iphone implements LightningPhone {
private boolean connector;

@override

public void useLightning() {
connector = true;
System.out.println("Lightning connected");

@Ooverride
public void recharge() {
if (connector) {
System.out.println("Recharge started");
System.out.println("Recharge finished");
} else {
System.out.println("Connect Lightning first");

class Android implements MicroUsbPhone {
private boolean connector;

@override
public void useMicroUsb() {

connector = true;
System.out.println("MicroUsb connected");

@Ooverride
public void recharge() {
if (connector) {
System.out.println("Recharge started");
System.out.println("Recharge finished");

} else {
System.out.println("Connect MicroUsb first");

}

COMP2511: Decorator and Adapter Patterns

19

Adapter: Example

public class AdapterDemo {
static void rechargeMicroUsbPhone(MicroUsbPhone phone) {
phone.useMicroUsb();
phone.recharge();

}

static void rechargelLightningPhone(LightningPhone phone) {
phone.useLightning();
phone.recharge();

}

public static void main(String[] args) {
Android android = new Android();
Iphone iPhone = new Iphone();

System.out.println("Recharging android with MicroUsb");
rechargeMicroUsbPhone (android);

System.out.println("Recharging iPhone with Lightning");
rechargeLightningPhone(iPhone);

System.out.println("Recharging iPhone with MicroUsb");
rechargeMicroUsbPhone (new LightningToMicroUsbAdapter (iPhone));

class LightningToMicroUsbAdapter implements MicroUsbPhone {
private final LightningPhone lightningPhone;

public LightningToMicroUsbAdapter (LightningPhone lightningPhone) {
this.lightningPhone = lightningPhone;

@Override

public void useMicroUsb() {
System.out.println("MicroUsb connected");
lightningPhone.useLightning();

@override
public void recharge() {
lightningPhone.recharge();

QOutput

Recharging android with MicroUsb
MicroUsb connected

Recharge started

Recharge finished

Recharging iPhone with Lightning
Lightning connected

Recharge started

Recharge finished

Recharging iPhone with MicroUsb
MicroUsb connected

Lightning connected

Recharge started

Recharge finished

COMP2511: Decorator and Adapter Pattern 20

Design Patterns: Discuss Differences

+** Creational Patterns
¢ Abstract Factory
** Factory Method
% Singleton

+* Structural Patterns
X Adapter discussed
o Composite discussed
0:0 Decorator discussed

** Behavioral Patterns
’:’ lterator discussed

¥

«* Observer discussed

s State discussed

¢ Strategy discussed

s Template

* Visitor

est of the design

We plan to discuss the r

patterns above |
many more other topics.

COMP2511: Decorator and Adapter Patterns

in the following weeks; and

21

End

COMP2511: Decorator and Adapter Patterns

22

