COMP2511
Observer Pattern

Prepared by
Dr. Ashesh Mahidadia

Observer Pattern

These lecture notes use material from the wikipedia page at: https://en.wikipedia.org/wiki/Observer pattern

and

the reference book “Head First Design Patterns”.

COMP2511: Observer Pattern

Observer Pattern

* The Observer Pattern is used to implement distributed event handling systems, in
"event driven" programming.

* In the observer pattern

* an object, called the subject (or observable or publisher) , maintains a list of its
dependents, called observers (or subscribers), and

* notifies the observers automatically of any state changes in the subject, usually by
calling one of their methods.

* Many programming languages support the observer pattern,
Graphical User Interface libraries use the observer pattern extensively.

COMP2511: Observer Pattern 3

Observer Pattern

* The Observer Pattern defines a one-to-many dependency between objects so that

when one object (subject) changes state, all of its dependents (observers) are
notified and updated automatically.

* The aim should be to,

» define a one-to-many dependency between objects without making the objects
tightly coupled.

* automatically notify/update an open-ended number of observers (dependent
objects) when the subject changes state

* be able to dynamically add and remove observers

COMP2511: Observer Pattern 4

Observer Pattern: Possible Solution

* Define Subject and Observer interfaces, such that when a subject changes state, all
registered observers are notified and updated automatically.

* The responsibility of,

* a subject is to maintain a list of observers and to notify them of
state changes by calling their update () operation.

e observers is to register (and unregister) themselves on a subject (to get
notified of state changes) and to update their state when they are notified.

* This makes subject and observers loosely coupled.
* Observers can be added and removed independently at run-time.

 This notification-registration interaction is also known as publish-subscribe.

COMP2511: Observer Pattern 5

Java Observer and Observable : Deprecated

The following java library classes have been deprecated in Java 9 because the model
implemented was quite limited.

* java.util.Observer and

* java.util.Observable

Limitations

 Observable is a class, not an interface !
* Observable protects crucial methods, the setChanged () method is protected.

* we can’t call setChanged () unless we subclass Observable! Inheritance is must, bad
design ©

* we can’t add on the Observable behavior to an existing class that already extends
another superclass.

* there isn’t an Observable interface, for a proper custom implementation

COMP2511: Observer Pattern 6

Multiple Observers and Subjects

Change propagation

Observer-n

Observers / Subscribers / Listeners Observables / Subjects / Publishers

Thermometer
(subject)

Change propagation

A Hydrometer
(subject)

COMP2511: Observer Pattern

«interface»
Subject

attach(Observer):void
detach(Observer):void

notify():void
< >3

Al
.

.

Observer Pattern: Possible Solution

«interface»
Observer

+ update(Subject): void

r
1
L
r
L

= Thermometer

= Hydrometer

=) Observer-1

=) Observer-2

+ attach(Observer): void

+ detach(Observer): void
+ notify(): void

+ attach(Observer): void

+ detach(Observer): void
+ notify(): void

+ update(Subject): void

+ update(Subject): void

ArrayList<Observer> listObservers = new ArrayList<Observer>();

public void notifyObservers() {

for(Observer obs

: listObservers) {

obs.update(this);

}

Read the example code
discussed/developed in the lectures,
and also provided for this week

= Observer-n

+ update(Subject): void

COMP2511: Observer Pattern

Passing data: Push or Pull

The Subject needs to pass (change) data while notifying a change to an Observer. Two
possible options,

Push data

* Subject passes the changed data to its observers, for example:
update(datal,data2,...)

* All observers must implement the above update method.

Pull data

e Subject passes reference to itself to its observers, and the observers need
to get (pull) the required data from the subject, for example:
update(this)

* Subject needs to provide the required access methods for its observers.
For example, public double getTemperature() ;

COMP2511: Observer Pattern

public interface Subject {

public void registerObserver(Observer o);
public void removeObserver(Observer o);
public void notifyObservers();

Read the example code
discussed/developed in the lectures,
and also provided for this week

COMP2511: Observer Pattern

public class Thermometer implements Subject {

ArrayList<Observer> listObservers = new ArraylList<Observer>();
double temperatureC = 0.0;

@0verride
public void registerObserver(Observer o) {
if(! listObservers.contains(o)) { listObservers.add(o); }

}

@0verride
public void removeObserver(Observer o) {
listObservers.remove(o);

}

@0verride
public void notifyObservers() {
for(Observer obs : listObservers) {
obs.update(this);
}
}

public double getTemperatureC() {
return temperatureC;

}

public void setTemperatureC(double temperatureC) {
this.temperatureC = temperature(; -
notifyObservers(); Notify Observers

} after every update

public class DisplayUSA implements Observer {
Subject subject;

. . ,) double temperatureC =
public void update(Subject obj); double humidity = 0.0;

public interface Observer {
0.0;

} @0verride
public void update(Subject obj) {

if(obj instanceof Thermometer) {
update((Thermometer) obj);

}
Update for / else if(obj instanceof Hygrometer) {
Multiple Subjects update((Hygrometer)obj);

}

}

public void update(Thermometer obj) {
this.temperatureC = obj.getTemperature(C();

Display after an update —Jp display();
}

public void update(Hygrometer obj) {
this.humidity = obj.getHumidity();

display();
}
Read the example code
discussed/developed in the lectures, public void display() { _ .
. . System.out.printf(“From DisplayUSA: Temperature is %.2f F, "
and also provided for this week + "Humidity is %.2f\n", convertToF(), humidity);
}

public double convertToF() {
return (temperatureC *(9.0/5.0) + 32);

COMP2511: Observer Pattern } 11

COMP2511: Observer Pattern

public class Testl {

public static void main(String[] args) {
// TODO Auto-generated method stub

Thermometer thermo =

thermo.

new Thermometer();

Observer usaDisplay = new DisplayUSA(); add / register
registerObserver(usaDisplay); /

Observer ausDisplay = new DisplayAustralial();

thermo.

System.
thermo.
System.
thermo.

registerObserver(ausDisplay);

out.println("\n-----------------
setTemperatureC(30);
out.println("\n-----------------
setTemperatureC(12); <

thermo.setTemperatureC(30)

thermo.setTemperatureC(12)

= change state

Hygrometer hyg = new Hygrometer();
hyg.registerObserver(usaDisplay);

System.

out.println("\n----------------- hyg.setHumidity(77)

hyg.setHumidity(77);

System.

out.println(“\n----------------- hyg.setHumidity(96)

hyg.setHumidity(96);

System.
thermo.

thermo
System.

System.
thermo.
System.

out.println(“\n-----------------
setTemperatureC(35);

thermo.setTemperatureC(35)

/ remove
.removeObserver(usaDisplay);

out.println("\n----------------- thermo.removeObserver(usaDisplay)
out.println("\n-----------------
setTemperatureC(41);

out.println("\n-------ccmmmmmmnn ceiiia

thermo.setTemperatureC(41)

12

Demos ...

e Live Demos ...

* Make sure you properly understand the demo example code
available for this week.

COMP2511: Observer Pattern

13

Observer Pattern: Example

cd: Observer Newspublisher E xam ple - UML Class Diagram)

for all o in subscribers {
o.update(this);
¥

NewsPublisher

-subscribers Arraylist<Subscriber=
-latestNews: String

Subscriber

+attach(subscriber.Sub scriber): void
+detach(subscriber.Sub scriber): void
+notifyObservers() void
+addNews(news:intX void
+getLatestNews():String

+update(newsPublisher:NewsPublisher):voiki

i

Bussinesh ewsPublisher

SMSSubscriber

EmailSubscriber

|
|
+update(newsPublisher:NewsPublisher): void | +update(newsPublisher:NewsPublisher): void
|
I
|

void update(Ne wsP ublisher newsPublisher) {

System .out printin(newsPublisher.getLatestNews())

AN

The above image is from https://www.oodesign.com/observer-pattern.html

COMP2511: Observer Pattern

14

Observer Pattern: Ul Example

TextAreat

Button1

COMP2511: Observer Pattern

Summary

Advantages:

* Avoids tight coupling between Subject and its Observers.

* This allows the Subject and its Observers to be at different levels of abstractions
In a system.

* Loosely coupled objects are easier to maintain and reuse.

* Allows dynamic registration and deregistration.

Be careful:

* A change in the subject may result in a chain of updates to its observers and in
turn their dependent objects — resulting in a complex update behaviour.

* Need to properly manage such dependencies.

COMP2511: Observer Pattern

16

Summary

7

BULLET POINTS
The Observer Pattern defines a one-to-many relationship between objects.
Subjects, or as we also know them, Observables, update Observers using a common interface.

Observers are loosely coupled in that the Observable knows nothing about them, other than that they
implement the Observer interface.

You can push or pull data from the Observable when using the pattern (pull is considered more “correct”).

Don’t depend on a specific order of notification for your Observers.

Java has several implementations of the Observer Pattern, including the general purpose
java.util.Observable.

Watch out for issues with the java.util.Observable implementation.
Don’t be afraid to create your own Observable implementation if needed.
Swing makes heavy use of the Observer Pattern, as do many GUI frameworks.

You’ll also find the pattern in many other places, including JavaBeans and RMI.

From the reference book: “Head First Design Pattern”

COMP2511: Observer Pattern

17

