COMP4418: Knowledge Representation and Reasoning-Solutions to Exercise 1 Propositional Logic

1. (i) $(\neg J a \wedge \neg J o) \rightarrow T$

Where:
Ja: Jane is in town
Jo: John is in town
T : we will play tennis
(ii) $R \vee \neg R$

Where:
R : it will rain today
(iii) $\neg S \rightarrow \neg P$

Where:
S : you study
P : you will pass this course
(iv) $D \rightarrow(B \vee S)$

Where:
$D: I$ ate dinner
B: I drink bubble tea
S: I drink soft drink
(v) $(V \wedge D) \rightarrow(R \wedge \neg F)$

Where:
$V: 80 \%$ of adults are fully vaccinated
D: COVID-19 cases begin to drop
R : lockdown restrictions are eased
F : international flights immediately resume
2. (i) $P \rightarrow Q$
$\neg P \vee Q($ remove $\rightarrow)$
(ii) $(P \rightarrow \neg Q) \rightarrow R$
$\neg(\neg P \vee \neg Q) \vee R$ (remove \rightarrow)
$(\neg \neg P \wedge \neg \neg Q) \vee R$ (De Morgan)
$(P \wedge Q) \vee R$ (Double Negation)
$(P \vee R) \wedge(Q \vee R)($ Distribute \vee over $\wedge)$
(iii) $\neg(P \wedge \neg Q) \rightarrow(\neg R \vee \neg Q)$
$\neg \neg(P \wedge \neg Q) \vee(\neg R \vee \neg Q)$ (remove \rightarrow)
$(P \wedge \neg Q) \vee(\neg R \vee \neg Q)$ (Double Negation)
$(P \vee \neg R \vee \neg Q) \wedge(\neg Q \vee \neg R \vee \neg Q)$ (Distribute \vee over \wedge)
This can be further simplified to: $((P \vee \neg R \vee \neg Q) \wedge(\neg Q \vee \neg R)$
And in fact this cab be simplified to $\neg Q \vee \neg R$ since $(\neg Q \vee \neg R) \vdash$ $(P \vee \neg R \vee \neg Q)$
(iv) $(\neg P \rightarrow Q) \rightarrow(Q \rightarrow \neg R)$
$\neg(\neg P \rightarrow Q) \vee(Q \rightarrow \neg R)($ remove $\rightarrow)$

```
\(\neg(P \vee Q) \vee(\neg Q \vee \neg R)\) (remove \(\rightarrow\) )
\((\neg P \wedge \neg Q) \vee(\neg Q \vee \neg R)\) (De Morgan)
\((\neg P \vee \neg Q \vee \neg R) \wedge(\neg Q \vee \neg R)(\) Distribute \(\vee\) over \(\wedge)\)
```

(v) $\neg(\neg P \vee Q) \vee(\neg R \rightarrow S)$
$\neg(\neg P \vee Q) \vee(\neg \neg R \vee S)$ (remove \rightarrow)
$(\neg \neg P \wedge \neg Q) \vee(\neg \neg R \vee S)$ (De Morgan)
$(P \wedge \neg Q) \vee(R \vee S)$ (Double Negation)
$(P \vee R \vee S) \wedge(\neg Q \vee R \vee S)($ Distribute \vee over $\wedge)$
3. (i)

P	Q	$P \rightarrow Q$	$\neg Q$	$\neg P$
T	T	T	F	F
T	F	F	T	F
F	T	T	F	T
F	F	T	T	T

In all rows where both $P \rightarrow Q$ and $\neg Q$ are true, $\neg P$ is also true. Therefore, inference is valid.
(ii)

P	Q	$\neg P$	$\neg Q$	$P \rightarrow Q$	$\neg Q \rightarrow \neg P$
T	T	F	F	T	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	T	T	T

In all rows where $P \rightarrow Q$ is true, $\neg Q \rightarrow \neg P$ is also true. Therefore, inference is valid.

P	Q	R	$P \rightarrow Q$	$Q \rightarrow R$	$P \rightarrow R$
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	F	T	T
T	F	F	F	T	F
F	T	T	T	T	T
F	T	F	T	F	T
F	F	T	T	T	T
F	F	F	T	T	T

In all rows where both $P \rightarrow Q$ and $Q \rightarrow R$ are true, $P \rightarrow R$ is also true. Therefore, inference is valid.

P	Q	R	$Q \wedge R$	$P \rightarrow Q$	$P \rightarrow R$	$P \rightarrow(Q \wedge R)$
T						
T	T	F	F	T	F	F
T	F	T	F	F	T	F
T	F	F	F	F	F	F
F	T	T	T	T	T	T
F	T	F	F	T	T	T
F	F	T	F	T	T	T
F	F	F	F	T	T	T

In all rows where both $P \rightarrow Q$ and $P \rightarrow R$ are true, $P \rightarrow(Q \wedge R)$ is also true. Therefore, inference is valid.
(v)

P	Q	R	$P \wedge Q$	$Q \rightarrow R$	$P \rightarrow(Q \rightarrow R)$	$(P \wedge Q) \rightarrow R$
T						
T	T	F	T	F	F	F
T	F	T	F	T	T	T
T	F	F	F	T	T	T
F	T	T	F	T	T	T
F	T	F	F	F	T	T
F	F	T	F	T	T	T
F	F	F	F	T	T	T

In all rows where $P \rightarrow(Q \rightarrow R)$ is true, $(P \wedge Q) \rightarrow R$ is also true. Therefore, inference is valid.
4. (i) $\operatorname{CNF}(P \rightarrow Q)$
$\equiv \neg P \vee Q$
$\operatorname{CNF}(\neg Q)$
$\equiv \neg Q$
CNF ($\neg \neg P)$
$\equiv P$ (Double Negation)
Proof:

1. $\neg P \vee Q$ (Hypothesis)
2. $\neg Q \quad$ (Hypothesis)
3. P (Negation of Conclusion)
4. $Q \quad 1,3$ Resloution
5. $\square \quad 2,4$ Resloution
(ii) $\operatorname{CNF}(P \rightarrow Q)$
$\equiv \neg P \vee Q$
$\operatorname{CNF}(\neg(\neg Q \rightarrow \neg P))$
$\equiv \neg(\neg \neg Q \vee \neg P)$ (Remove \rightarrow)
$\equiv \neg(Q \vee \neg P)$ (Double Negation)
$\equiv \neg Q \wedge \neg \neg P$ (De Morgan)
$\equiv \neg Q \wedge P$ (Double Negation)
Proof:

Proof.		
1.	$\neg P \vee Q$	(Hypothesis)
2.	$\neg Q$	(Negation of Conclusion)
3.	P	(Negation of Conclusion)
4.	$\neg P$	1,2 Resolution
5.	\square	3,4 Resolution

(iii) $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$
$\operatorname{CNF}(P \rightarrow Q)$
$\equiv \neg P \vee Q$
$\operatorname{CNF}(Q \rightarrow R)$
$\equiv \neg Q \vee R$
$\operatorname{CNF}(\neg(P \rightarrow R))$
$\equiv \neg(\neg P \vee R)$ (Remove \rightarrow)
$\equiv \neg \neg P \wedge \neg R$ (De Morgan)
$\equiv P \wedge \neg R$ (Double Negation)
Proof:

1. $\neg P \vee Q \quad$ (Hypothesis)
2. $\neg Q \vee R \quad$ (Hypothesis)
3. P (Negation of Conclusion)
4. $\neg R \quad$ (Negation of Conclusion)
5. $Q \quad 1,3$ Resolution
6. $R \quad 2,5$ Resolution
7.

4, 6 Resolution
(iv) $P \rightarrow Q, P \rightarrow R \vdash P \rightarrow(Q \wedge R)$
$\operatorname{CNF}(P \rightarrow Q)$
$\equiv \neg P \vee Q$
$\operatorname{CNF}(P \rightarrow R)$
$\equiv \neg P \vee R$
$\operatorname{CNF}(\neg(P \rightarrow(Q \wedge R)))$
$\equiv \neg(\neg P \vee(Q \wedge R))$ (Remove \rightarrow)
$\equiv \neg \neg P \wedge \neg(Q \wedge R)$ (De Morgan)
$\equiv P \wedge(\neg Q \vee \neg R)$ (Double Negation, De Morgan)
Proof:

1. $\neg P \vee Q \quad$ (Hypothesis)
2. $\neg P \vee R \quad$ (Hypothesis)
3. P (Negation of Conclusion)
4. $\neg Q \vee \neg R \quad$ (Negation of Conclusion)
5. $Q \quad 1,3$ Resolution
6. $R \quad 2,3$ Resolution
7. $\neg R \quad 4,5$ Resolution
8.

6, 7 Resolution
(v) $P \rightarrow(Q \rightarrow R) \vdash(P \wedge Q) \rightarrow R$
$\operatorname{CNF}(P \rightarrow(Q \rightarrow R))$
$\equiv P \rightarrow(\neg Q \vee R)$ (Remove \rightarrow)
$\equiv \neg P \vee(\neg Q \vee R)($ Remove $\rightarrow)$
$\equiv \neg P \vee \neg Q \vee R$
$\operatorname{CNF}(\neg((P \wedge Q) \rightarrow R))$
$\equiv \neg(\neg(P \wedge Q) \vee R)$ (Remove \rightarrow)
$\equiv \neg \neg(P \wedge Q) \wedge \neg R$ (De Morgan)
$\equiv(P \wedge Q) \wedge \neg R$ (Double Negation)
$\equiv P \wedge Q \wedge \neg R$

Proof:

Proof.		
1.	$\neg P \vee \neg Q \vee R$	(Hypothesis)
2.	P	(Negation of Conclusion)
3.	Q	(Negation of Conclusion)
4.	$\neg R$	(Negation of Conclusion)
5.	$\neg Q \vee R$	1,2 Resolution
6.	R	3,5 Resolution
7.	\square	4,6 Resolution

5. (i) $((P \vee Q) \wedge \neg P) \rightarrow Q$

P	Q	$\neg P$	$P \vee Q$	$(P \vee Q) \wedge \neg P$	$((P \vee Q) \wedge \neg P) \rightarrow Q$
T	T	F	T	F	T
T	F	F	T	F	T
F	T	T	T	T	T
F	F	T	F	F	T

Last column is always true no matter what truth assignment to the atoms P and Q. Therefore $((P \vee Q) \wedge \neg P) \rightarrow Q$ is a tautology.
(ii) $((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)$

P	Q	R	$P \rightarrow Q$	$\neg(P \rightarrow R)$	$(P \rightarrow Q) \wedge \neg(P \rightarrow R)$	$((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)$
T	T	T	T	F	F	T
T	T	F	T	T	T	T
T	F	T	F	F	F	T
T	F	F	F	T	F	T
F	T	T	T	F	F	T
F	T	F	T	F	F	T
F	F	T	T	F	F	T
F	F	F	T	F	F	T

Last column is always true no matter what truth assignment to the atoms P, Q and R. Therefore $((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)$ is a tautology.
(iii) $\neg(\neg P \wedge P) \wedge P$

P	$\neg P$	$\neg P \wedge P$	$\neg(\neg P \wedge P)$	$\neg(\neg P \wedge P) \wedge P$
T	F	F	T	T
F	T	F	T	F

Last column is not always true. Therefore $\neg(\neg P \wedge P) \wedge P$ is not a tautology.
(iv) $(P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q)$

P	Q	$\neg P$	$\neg Q$	$P \vee Q$	$\neg P \wedge \neg Q$	$\neg(\neg P \wedge \neg Q)$	$(P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q)$
T	T	F	F	T	F	T	T
T	F	F	T	T	F	T	T
F	T	T	F	T	F	T	T
F	F	T	T	F	T	F	T

(v) $(P \vee Q) \wedge \neg(P \wedge Q)$

P	Q	$P \vee Q$	$P \wedge Q$	$\neg(P \wedge Q)$	$(P \vee Q) \wedge \neg(P \wedge Q)$
T	T	T	T	F	F
T	F	T	F	T	T
F	T	T	F	T	T
F	F	F	F	T	F

Last column is not always true. Therefore $(P \vee Q) \wedge \neg(P \wedge Q)$ is not a tautology.
6. (i) $\operatorname{CNF}(\neg(((P \vee Q) \wedge \neg P) \rightarrow Q)) \equiv \neg(\neg((P \vee Q) \wedge \neg P) \vee Q)$ (Remove \rightarrow)
$\equiv \neg \neg((P \vee Q) \wedge \neg P) \wedge \neg Q)($ DeMorgan $)$
$\equiv(P \vee Q) \wedge \neg P) \wedge \neg Q$ (Double Negation)

Proof:

1. $\quad P \vee Q \quad$ (Negated Conclusion)
2. $\neg P \quad$ (Negated Conclusion)
3. $\neg Q \quad$ (Negated Conclusion)
4. $Q \quad 1,2$ Resolution
5.

3, 4 Resolution
Therefore $\neg(((P \vee Q) \wedge \neg P) \rightarrow Q)$ is a tautology.
(ii) $\operatorname{CNF}(\neg(((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)))$
$\equiv \neg(\neg((\neg P \vee Q) \wedge \neg(\neg P \vee R)) \vee(\neg P \vee Q))$ (Remove $\rightarrow)$
$\equiv \neg \neg((\neg P \vee Q) \wedge \neg(\neg P \vee R)) \wedge \neg(\neg P \vee Q)$ (De Morgan)
$\equiv(\neg P \vee Q) \wedge(\neg \neg P \wedge \neg R) \wedge(\neg \neg P \wedge \neg Q)$ (Double Negation and De Morgan)
$\equiv(\neg P \vee Q) \wedge(P \wedge \neg R) \wedge(P \wedge \neg Q)$ (Double Negation)
Proof:

1. $\neg P \vee Q \quad$ (Negated Conclusion)
2. $P \quad$ (Negated Conclusion)
3. $\neg R \quad$ (Negated Conclusion)
4. $\neg Q \quad$ (Negated Conclusion)
5. $Q \quad$ 1, 2 Resolution
6.

4,5 Resolution
Therefore $((P \rightarrow Q) \wedge \neg(P \rightarrow R)) \rightarrow(P \rightarrow Q)$ is a tautology.
(iii) $\operatorname{CNF}(\neg(\neg(\neg P \wedge P) \wedge P))$
$\equiv \neg \neg(\neg P \wedge P) \vee \neg P$ (De Morgan)
$\equiv(\neg P \wedge P) \vee \neg P$ (Double Negation)
$\equiv(\neg P \vee \neg P) \wedge(P \vee \neg P)$ (Distribute \wedge over \vee)
$\equiv \neg P$ (Can simplify to this by removing repetition and tautologies)
Proof:

1. $\neg P \quad$ (Negated Conclusion)

Cannot obtain empty clause using resolution so $\neg(\neg P \wedge P) \wedge P$ is not a tautology.
(iv) $\operatorname{CNF}(\neg((P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q)))$
$\equiv \neg(\neg(P \vee Q) \vee \neg(\neg P \wedge \neg Q))$ (Remove $\rightarrow)$
$\equiv \neg \neg(P \vee Q) \wedge \neg \neg(\neg P \wedge \neg Q))$ (De Morgan)
$\equiv(P \vee Q) \wedge(\neg P \wedge \neg Q))$ (Double Negation)

Proof:

1. $(P \vee Q) \quad$ (Negated Conclusion)
2. $\neg Q \quad$ (Negated Conclusion)
3. $\neg P \quad$ (Negated Conclusion)
4. $Q \quad 1,2$ Resolution
5. $\square \quad 3,4$, Resolution

Therefore $(P \vee Q) \rightarrow \neg(\neg P \wedge \neg Q)$ is a tautology.
(v) $\operatorname{CNF}(\neg((P \vee Q) \wedge \neg(P \wedge Q)))$
$\equiv \neg(P \vee Q) \vee \neg \neg(P \wedge Q)$ (De Morgan)
$\equiv \neg(P \vee Q) \vee(P \wedge Q)$ (Double Negation)
$\equiv(\neg P \wedge \neg Q) \vee(P \wedge Q)$ (De Morgan)
$\equiv(\neg P \vee P) \wedge(\neg P \vee Q) \wedge(\neg Q \vee P) \wedge(\neg Q \vee Q)$ (Distribution)
$\equiv(\neg P \vee Q) \wedge(P \vee \neg Q)$ (Removal of tautologies)

Proof:

1. $(\neg P \vee Q) \quad$ (Negated Conclusion)
2. $(P \vee \neg Q) \quad$ (Negated Conclusion)

Cannot obtain empty clause using resolution so $(P \vee Q) \wedge \neg(P \wedge Q)$ is not a tautology.
7. P: I will listen to the album "SOUR" by Olivia Rodrigo

Q: I will watch another episode of The Queen's Gambit
Truth table:
$P \vee Q, \neg Q \models \neg P$

P	Q	$P \vee Q$	$\neg Q$	$\neg P$
T	T	T	F	F
T	F	T	T	F
F	T	T	F	T
F	F	F	T	T

This inference is not valid as $\neg P$ is not always true when $(P \vee Q)$ and $\neg Q$ are both true.

Resolution:
$P \vee Q, \neg Q \vdash \neg P$
CNF ($\neg \neg P)$
$\equiv P$ (Double Negation)

Proof:

1. $\quad P \vee Q \quad$ (Hypothesis)
2. $\neg Q \quad$ (Hypothesis)
3. P (Negated Conclusion)
4. $P \quad 1,2$ Resolution

This inference is not valid as we cannot derive the empty clause using resolution.
8. B: I will drink too much bubble tea

S: I feel sick
Truth table:
$(B \rightarrow S) \vee(S \rightarrow B)$

B	S	$B \rightarrow S$	$S \rightarrow B$	$(B \rightarrow S) \vee(S \rightarrow B)$
T	T	T	T	T
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

Last column is always true. Therefore the statement is a tautology.
Resolution:
$\vdash(B \rightarrow S) \vee(S \rightarrow B)$
$\operatorname{CNF}(\neg((B \rightarrow S) \vee(S \rightarrow B)))$
$\equiv \neg((\neg B \vee S) \vee(\neg S \vee B))$ (Remove \rightarrow)
$\equiv \neg(\neg B \vee S) \wedge \neg(\neg S \vee B)$ (De Morgan)
$\equiv(\neg \neg B \wedge \neg S) \wedge(\neg \neg S \wedge \neg B)$ (De Morgan)
$\equiv(B \wedge \neg S) \wedge(S \wedge \neg B)$ (Double Negation)

Proof:

1.	$B \wedge \neg S$	(Negated Conclusion)
2.	$S \wedge \neg B$	(Negated Conclusion)
3.	\square	(1, 2 Resolution)

Therefore the sentence is a tautology.

