
COMP4418: Knowledge Representation
and Reasoning
Horn Logic

Maurice Pagnucco
School of Computer Science and Engineering

COMP4418, Week 3

1



Horn clauses

Clauses are used two ways:
• as disjunctions: (rain ∨ sleet)
• as implications: (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use
Horn clause = at most one +ve literal in clause
• positive / definite clause = exactly one +ve literal

[¬p1,¬p2, . . . ,¬pn, q]
• negative clause = no +ve literals

[¬p1,¬p2, . . . ,¬pn]

Note:
[¬p1,¬p2, . . . ,¬pn, q] is a representation for
(¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn ∨ q) or
[(p1 ∧ p2 ∧ . . . ∧ pn) → q]

So can read as
If p1 and p2 and . . . and pn then q

and write sometimes as
p1 ∧ p2 ∧ . . . ∧ pn → q

2
B&L (2005)



Resolution with Horn clauses
Only two possibilities:

It is possible to rearrange derivations (of negative clauses) so that all new derived clauses are negative clauses

Can also change derivations such that each derived clause is a resolvent of the previous derived one (-ve) and
some +ve clause in the original set of clauses
• Since each derived clause is negative, one parent must be positive (and so from original set) and one

negative
• Continue working backwards until both parents of derived clause are from the original set of clauses
• Eliminate all other clauses not on direct path

3
B&L (2005)



SLD Resolution
Recurring pattern in derivations

See previously:
• Example 1
• Example 3
• Arithmetic example

But not:
• Example 2
• 3 block example

An SLD-derivation of a clause c from a set of clauses S is a sequence of clause c1, c2, . . . cn such that cn = c,
and

1. c1 ∈ S

2. ci+1 is a resolvent of ci and a clause in S

Write: S `SLD c
Note: SLD derivation is just a special form of derivation and where we leave out the elements of S (except

c1)
SLD means S(elected) literals, L(inear) form, D(efinite) clauses

4
B&L (2005)



Completeness of SLD

In general, cannot restrict Resolution steps to always use a clause that is in the original set
Proof:

S = {[p,q], [p,¬q], [¬p,q], [¬p,¬q]}
then S ` [].

Need to resolve some [l ] and [¬l ] to get [].
But S does not contain any unit clauses.
So will need to derive both [l ] and [¬l ] and then resolve them together.

But can do so for Horn clauses . . .
Theorem: for Horn clauses, H ` [] iff H `SLD []

So: H is unsatisfiable iff H `SLD []
This will considerably simplify the search for derivations

Note: in Horn version of SLD-Resolution, each clause c1, c2, . . . cn will be negative
So clauses H must always contain at least one negative clause, c1.

5
B&L (2005)



Example 1 (again)
KB:

FirstGrade
FirstGrade→ Child
Child ∧ Male→ Boy
Kindergarten→ Child
Child ∧ Female→ Girl
Female

Show KB ∪ {¬Girl} unsatisfiable

6
B&L (2005)



Prolog

Horn clauses form the basis of Prolog
Append(nil,y ,y )
Append(x ,y ,z)→ Append(cons(w ,x),y ,cons(w ,z))

So goal succeeds with u = cons(a,cons(b,cons(c,nil)))
that is: Append([a b],[c],[a b c])

With SLD derivation, can always extract answer from proof
H ` ∃xα(x) iff for some term t , H ` α(t)

Different answers can be found by finding other derivations

7
B&L (2005)



Back-chaining procedure

Satisfiability of a set of Horn clauses with exactly one negative clause

Solve [q1, q2, . . . , qn] = /* to establish conjunction of qi */
If n = 0 then return YES; /* empty clause detected */
For each d ∈ KB do

If d = [q1,¬p1,¬p2, . . . ,¬pm] /* match first q */
and /* replace q by -ve lits */

Solve [p1, p2, . . . , pm, q2, . . . , qn] /* recursively */
then return YES

end for; /* can’t find a clause to eliminate q */
Return NO

Depth-first, left-right, back-chaining
• depth-first because attempt pi before trying qi

• left-right because try qi in order, 1, 2, 3, . . .
• back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog
First-order case requires unification etc.

8
B&L (2005)



Problems with back-chaining
Can go into infinite loop

tautologous clause: [p,¬p]
corresponds to Prolog program with p :- p.

Previous back-chaining algorithm is inefficient
Example:

consider 2n atoms: p1, . . . , pn, q1, . . . , qn,
and 4n − 4 clauses:

(pi ⇒ pi+1), (qi ⇒ qi+1),
(pi ⇒ qi+1), (qi ⇒ qi+1).

with goal pn has execution tree like this:

search eventually fails after 2n steps!
Is this inherent in Horn clauses?

9
B&L (2005)



Forward-chaining

Simple procedure to determine if Horn KB ` q.
main idea: mark atoms as solved

1. If q is marked as solved, then return YES
2. Is there a {p1,¬p2, . . . ,¬pn} ∈ KB such that p2, . . . , pn are marked as solved, but the positive
literal p1 is not marked as solved?

no: return NO
yes: mark p1 as solved, and go to 1.

FirstGrade example:
Marks: FirstGrade, Child, Female, Girl

then done!
Observe:

• only letters in KB can be marked, so at most a linear number of iterations

• not goal-directed, so not always desirable

A similar procedure with better data structures will run in linear time overall

10
B&L (2005)



First-order undecidability

Even with just Horn clauses, in the first-order case we still have the possibility of generating an
infinite branch of resolvents

KB: LessThan(succ(x),y )→ LessThan(x ,y )
Q: LessThan(zero,zero)

As with full clauses, the best that can be expected is to give control of the deduction to the user
To some extent this is what is done in Prolog, but we will see more in “Procedural Control”

11
B&L (2005)


	Introduction

