
COMP9024: Structs, Pointers to Structs,
Self Referential Structures (Linked List)

Term: 20T0

1

[Credits: Lecture slides from COMP1511 (18s2)]

| COMP9024, Term: 20T0 |

Decimal Representation

2

| COMP9024, Term: 20T0 |

Binary Representation

3 | COMP9024, Term: 20T0 |

Hexadecimal Representation

4

| COMP9024, Term: 20T0 |

Binary to Hexadecimal

5 | COMP9024, Term: 20T0 |

Binary to Hexadecimal

6

| COMP9024, Term: 20T0 |

Hexadecimal to Binary

7 | COMP9024, Term: 20T0 |

Memory Organisation

8

| COMP9024, Term: 20T0 |

Memory Organisation

9 | COMP9024, Term: 20T0 |

Memory

10

| COMP9024, Term: 20T0 |

Variables in Memory

11 | COMP9024, Term: 20T0 |

Arrays in Memory

12

a points to the start of
the array (a[0])

| COMP9024, Term: 20T0 |

Size of a Pointer

13 | COMP9024, Term: 20T0 |

Pointers

14

oxbffffb64ip

oxa1221c32cp

oxa4231522fp

45

Say 45 is stored at
address oxbffffb64

b

24.7

For example, conceptually

ip points to an int value,
cp points to a char and
fp points to a double value.

| COMP9024, Term: 20T0 |

Pointers

15

oxbffffb64ip

7

Say i is at
address
oxbffffb64

i

| COMP9024, Term: 20T0 |

Pointers

16

| COMP9024, Term: 20T0 |

Pointer Arguments

17

oxbffffb64n

6

int variable at
oxbffffb64

| COMP9024, Term: 20T0 |

Pointer Arguments

18

| COMP9024, Term: 20T0 |

Passing values by Reference

Simple example to illustrate

pass by value and reference

19

25x

25

int variable

y

oxbffffb64

pointer to int

33

variable y at
oxbffffb64

a p

copy x to a copy address of y to p
(oxbffffb64)

function “f1”

function “main”

*p refers to y

| COMP9024, Term: 20T0 |

Array Reference

20

Simple example to illustrate how to
modify an array passed as an
argument to a function.

values

4

pointer to double int variable

a size

copy values to a
(oxffab1452)

function “addGST”

function “main”

a and values point to the same array
in the main function - only one array!

oxffab1452

25.0 | 32.5 | 12.25 | 52.50

oxffab1452

| COMP9024, Term: 20T0 |

Pointer Arguments

21

n

5

int variable

m

8

int variable

Calling function

| COMP9024, Term: 20T0 |

Pointer Return Value

22

*

| COMP9024, Term: 20T0 |

Array Representation

23

H i ! \0

s points to the start of
the array (s[0])

| COMP9024, Term: 20T0 |

Array Representation

24

nums

1 | 2 | 3 | 4 | 5

p

*n is *p
n[0] is p[0]
n[1] is p[1]
n[2] is p[2]
n[3] is p[3]
n[4] is p[4]

| COMP9024, Term: 20T0 |

Array Representation

25

nums

1 | 2 | 3 | 4 | 5

p

*p is 3
p[0] is 3
p[1] is 4
p[2] is 5

*n is 1
n[0] is 1
n[1] is 2
n[2] is 3
n[3] is 4
n[4] is 5

| COMP9024, Term: 20T0 |

Pointer Comparison

26

| COMP9024, Term: 20T0 |

Pointer Summary

27 | COMP9024, Term: 20T0 |

typedef

28

| COMP9024, Term: 20T0 |

Using typedef to make programs portable

29 | COMP9024, Term: 20T0 |

structs

30

| COMP9024, Term: 20T0 |

structs - example

31 | COMP9024, Term: 20T0 |

combining structs and typedef

32

| COMP9024, Term: 20T0 |

Assigning structs

33 | COMP9024, Term: 20T0 |

structs and functions

34

| COMP9024, Term: 20T0 |

Pointers to structs

35

s

(*s).zid = 1234567;
(*s).lab_marks[2]=7;
strcpy((*s).name, “John”)
… …
Alternatively,
s->zid = 1234567;
s->lab_marks[2]=7;
strcpy(s->name, “John”)

| COMP9024, Term: 20T0 |

Nested Structures

36

| COMP9024, Term: 20T0 |

Dynamic memory allocation: malloc
● malloc allocates memory of a requested size (in bytes)
● Memory is allocated in “the heap”, and it lives forever until we free it (or the program

ends)
● Important: We MUST free memory allocated by malloc, should not rely on the

operating system for cleanup.

malloc(number of bytes to allocate);

� returns a pointer to the block of allocated memory (i.e. the address of the
memory, so we know how to find it!).

� returns NULL if insufficient memory available - you must check for this!

For example, let’s assume we need a block of memory to hold 100,000 integers:

int *p = malloc(100000 * sizeof(int));

37 | COMP9024, Term: 20T0 |

malloc : when it fails !

What happens if the allocation fails?

malloc returns NULL, and we need to check this:

38

| COMP9024, Term: 20T0 |

sizeof

39 | COMP9024, Term: 20T0 |

free

● when we’re done with the memory allocated by malloc function,
we need to release that memory using free function.

● For example,

40

| COMP9024, Term: 20T0 |

free

41 | COMP9024, Term: 20T0 |

Scope and Lifetime

● the variables inside a function only exist as long as the function does

● once your function returns, the variables inside are “gone”

What if we need something to “stick around” for longer?

Two options:

● make it in a “parent” function
● dynamically allocate memory

42

| COMP9024, Term: 20T0 |

Lifetimes

Make it in a “parent” function,
for example:

43

Allocate in a “parent” function

pass a pointer

| COMP9024, Term: 20T0 |

Lifetimes

Dynamically allocate memory in a function and return a pointer,

For example:

44

Dynamically allocate in a
function

return a pointer

free

| COMP9024, Term: 20T0 |

Self-Referential Structures

45 | COMP9024, Term: 20T0 |

Linked List

46

| COMP9024, Term: 20T0 |

Linked List

47 | COMP9024, Term: 20T0 |

Example of List Item

48

| COMP9024, Term: 20T0 |

Example of List Item in C

49 | COMP9024, Term: 20T0 |

List Items

50

| COMP9024, Term: 20T0 |

List Operations

51 | COMP9024, Term: 20T0 |

Creating a List Item

52

| COMP9024, Term: 20T0 |

Building a list

53 | COMP9024, Term: 20T0 |

Recap: Self-Referential Structures

54

| COMP9024, Term: 20T0 |

Recap: Linked List

55 | COMP9024, Term: 20T0 |

Recap: Linked List

56

| COMP9024, Term: 20T0 |

Recap: Example of List Item

57 | COMP9024, Term: 20T0 |

Recap: Example of List Item in C

58

| COMP9024, Term: 20T0 |

Recap: List Items

59 | COMP9024, Term: 20T0 |

Recap: List Operations

60

| COMP9024, Term: 20T0 |

Creating a Node (List Item)

61 | COMP9024, Term: 20T0 |

Link Nodes

62

| COMP9024, Term: 20T0 |

Link list

63 | COMP9024, Term: 20T0 |

Link List - Traversal

64

Process node data here

| COMP9024, Term: 20T0 |

Linked List: Previous pattern

65

Later we will see examples of this previous
pattern, for example in deleting a node.

| COMP9024, Term: 20T0 |

Creating a List Item/Node

66

| COMP9024, Term: 20T0 |

Building a list

67 | COMP9024, Term: 20T0 |

Summing a List

68

| COMP9024, Term: 20T0 |

Summing a List: For Loop

69 | COMP9024, Term: 20T0 |

Finding an Item in a List

70

| COMP9024, Term: 20T0 |

Finding an Item in a List: For Loop

● Same function but using a for loop instead of a while loop.
● Compiler will produce same machine code as previous function.

71 | COMP9024, Term: 20T0 |

Finding an Item in a List: Shorter While Loop

● Same function but using a more concise while loop.
● Shorter does not always mean more readable.
● Compiler will produce same machine code as previous functions.

72

| COMP9024, Term: 20T0 |

Printing a List - Python Syntax

73

For example,
[45, 67, 2, 43]

We print “,” if there is a next node,
otherwise skip printing “,”

| COMP9024, Term: 20T0 |

Finding Last Item in List

74

See the difference:
We are checking,

n->next != NULL
(in place of n != NULL)

n
The loop stops here

because,
n->next == NULL

| COMP9024, Term: 20T0 |

Appending to List

75

last(head) n

value

| COMP9024, Term: 20T0 |

Deleting all items from a List

76

We cannot do the following
in the body of while loop!

free(n);
n = n->next;

| COMP9024, Term: 20T0 |

Insert a Node into an Ordered List

● Case-2: Insert a node in the middle or at the end

77

● Case-1: Insert a node at the beginning

nprevious

nprevious

NULL
Insert value 5

Insert value 30

| COMP9024, Term: 20T0 |

Insert a Node into an Ordered List

78

Case-1

Case-2

Find correct
position

| COMP9024, Term: 20T0 |

Delete a Node from a List

● Case-2: Remove a node in the middle or at the end

79

● Case-1: Remove first node

nodeprevious

node

Delete node
with value
“42”

Delete node
with value
“13”

| COMP9024, Term: 20T0 |

Delete a Node from a List

80

Case-1

Case-2

Find correct
position

| COMP9024, Term: 20T0 |

Recursion

● Recursion is a programming pattern where a function calls itself

● For example, we define factorial as below,

n! = 1*2*3* … *(n-1)*n

● We can recursively define factorial function as below,

f(n) = 1 , if (n=0)
f(n) = n * f(n-1) , for others

81 | COMP9024, Term: 20T0 |

Pattern for a Recursive function

● Base case(s)
○ Situations when we do not call the same function (no recursive call),

because the problem can be solved easily without a recursion.
○ All recursive calls eventually lead to one of the base cases.

● Recursive Case
○ We call the same function for a problem with smaller size.

○ Decrease in a problem size eventually leads to one of the base cases.

82

Base case

Recursive case,
Recursive call for a
smaller problem
(size-1)

| COMP9024, Term: 20T0 |

Linked List with Recursion

83

Recursive call

1st Recursive call (returns 3)

2nd Recursive call (returns 2)

3rd Recursive call (returns 1)

Head == NULL
returns 0

Base case

| COMP9024, Term: 20T0 |

Last Node using Recursion

8484

1st recursive call (returns head of 3rd
call)

2nd recursive call (returns head of 3rd call)

3rd Recursive call
(returns head of this list)

Base case
head->next == NULL

returns head of 3rd call

| COMP9024, Term: 20T0 |

Find Node using Recursion

85

Recursive call

| COMP9024, Term: 20T0 |

Delete From List using Recursion

86

Recursive call

node (to delete)

1st recursive call (node to delete is same as “head” of
this call, returns updated list, pointing to node with 42)

| COMP9024, Term: 20T0 |

Linked List with Recursion

Recursive call

| COMP9024, Term: 20T0 |

Print Python List using Recursion

88

Recursive function

Recursive call

