COMP9024: Structs, Pointers to Structs,
Self Referential Structures (Linked List)

— Term: 20T0 —

[Credits: Lecture slides from COMP1511 (18s2) |

Decimal Representation

e Can interpret decimal number 4705 as:

4 x 103 +7 x 102+ 0 x 10! +5 x 10°
e The base or radix is 10
Digits 0 — 9

e Place values:
1000 100 10 1
103 102 10! 100

e Write number as 470519

> Note use of subscript to denote base

| COMP9024, Term: 20T0 |

Binary Representation

e In a similar way, can interpret binary number 1011 as:

I1x224+0x224+1x214+1x20
e The base or radix is 2
Digits 0 and 1

e Place values:
8 4 2 1
23 22 ot 20
o Write number as 1011,
(: 1110)

Hexadecimal Representation

| COMP9024, Term: 2070 |

e Can interpret hexadecimal number 3AF1 as:

3 x 163 +10 x 16% 4+ 15 x 16 + 1 x 16°
e The base or radix is 16
Digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
e Place values:
4006 256 16 1
163 162 16 16°
e Write number as 3AF114
(= 1508910)

| COMP9024, Term: 2070 |

Binary to Hexadecimal

Binary to Hexadecimal

0 1 2 3 4 5 6 7
0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111
8 9 A B C D E F
1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111

e Idea: Collect bits into groups of four starting from right to left

e “pad” out left-hand side with 0's if necessary

e Convert each group of four bits into its equivalent
hexadecimal representation (given in table above)

e Example: Convert 1011111000101001; to Hex:

1011 | 1110 | 0010 | 1001,
B E 2 916

e Example: Convert 10111101011100, to Hex:

0010 | 1111 | 0101 | 1100
2 F 5 Ci6

[COMP9024, Term: 2070 |

[COMP9024, Term: 2070 |

Hexadecimal to Binary

Memory Organisation

e Reverse the previous process

e Convert each hex digit into equivalent 4-bit binary

representation

e Example: Convert AD51¢ to Binary:

1010 | 1101

0101,

e During execution programs variables are stored in memory.
e Memory is effectively a gigantic array of bytes.
COMP1521 will explain more
e Memory addresses are effectively an index to this array of
bytes.
e These indexes can be very large
up to 232 — 1 on a 32-bit platform
up to 254 — 1 on a 64-bit platform

e Memory addresses usually printed in hexadecimal (base-16).

| COMP9024, Term: 2070 |

| COMP9024, Term: 2070 |

Memory Organisation

In order to fully understand how pointers are used to reference
data in memory, here's a few basics on memory organisation.

OxFFFFFFFF | High Memory
OxFFFFFFFE
0x00000001
0x00000000 | Low Memory

Memory

| COMP9024, Term: 20T0 |

e computer memory is a large array of bytes

e a variable will stored in 1 or more bytes

e on CSE machines a char occupies 1 byte, a an int 4 bytes, a

double 8 bytes

e The & (address-of) operator returns a reference to a variable.

e Almost all C implementations implement pointer values using

a variable's address in memory

e Hence for almost all C implementations & (address-of)

operator returns a memory address.

e |t is convenient to print memory addresses in Hexadecimal

notation.

| COMP9024, Term: 20T0 |

Variables in Memory

int k;
int m;

printf("address of k is %p\n", &k);
// prints address of k is Ozbffffb80

printf("address of m is %p\n", &m);
// prints address of k is Ozbffffb84

e k occupies the four bytes from Oxbffffb80 to Oxbffffb83
e m occupies the four bytes from Oxbffffb84 to Oxbffffb87

Arrays in Memory

| COMP9024, Term: 2070 |

1

Elements of the array will be stored in consecutive memory

locations:

int a[5];

int i = 0;

while (i < 5) {
printf("address of al[%d] is %p\n", i, &alil);

}

// prints:

// address of al[0] is Ozbffffb60

a points to the start of
the array (a[0])

[]

// address of al1] is Ozbffffb64

// address of al[2] is Ozbffffb68
// address of al[3] is Ozbffffb6e

// address of al4] is Ozbffffb70

| COMP9024, Term: 2070 |

12

Size of a Pointer

Just like any other variable of a certain type, a variable that is a
pointer also occupies space in memory. The number of bytes
depends on the computer’s architecture.

e 32-bit platform: pointers likely to be 4 bytes
e.g. CSE lab machines (about to change)

e 64-bit platform: pointers likely to be 8 bytes
e.g. many student machines

e tiny embedded CPU: pointers could be 2 bytes
e.g. your microwave

Pointers

A pointer is a data type whose value is a reference to another
variable

int *ip; // pointer to int

char *cp; // pointer to char

double *fp; // pointer to double

In most C implementations, pointers store the the memory address
of the variable they refer to.

Say 45 is stored at
address oxbffffb64

ip oxbffffb64} 45
cp| oxal221c3 % —/ b

fp| oxad231522 —>(24.7

For example, conceptually

ip points to an int value,
cp points to a char and
fp points to a double value.

| COMP9024, Term: 2070 | 13 | COMP9024, Term: 20T0 | 14

Pointers Pointers
e The & (address-of) operator returns a reference to a variable.

e ————
® The x (dereference) operator accesses the variable refered to e Like other variables, pointers need to be initialised before they
by the pointer.
are used .

For example: T
I p= o e Like other variables, its best if novice programmers initialise
o 4 o e iggrlefsat pointers as soon as they are declared.
printf ("%d\n", *ip); // prints 7 oxbff£fb64

*ip = *ip * 6;
printf("%d\n", i);
i = 24;
printf("%d\n", *ip); // prints 24

//prints 42

|

| COMP9024, Term: 20T0 | 15

e The value NULL can be assigned to a pointer to indicate it
does not refer to anything.

e NULL is a #define in stdio.h
e NULL and 0 interchangable (in modern C).
o Most programmers prefer NULL for readability.

| COMP9024, Term: 2070 |

16

Pointer Arguments

We've seen that when primitive types are passed as arguments to
functions, they are passed by value and any changes made to them
are not reflected in the caller
void increment(int n) {
n=mn-+1;

}

This attempt fails. But how does a function like scanf manage to
update variables found in the caller? scanf takes pointers to those
variables as arguments!

void increment(int *n) {
*n = *n + 1;

}

int variable at
oxbffffb64

n| oxbffffb64d

Pointer Arguments

We use pointers to pass variables by reference! By passing the
address rather than the value of a variable we can then change the
value and have the change reflected in the caller.

int i = 1;
increment (&i);
printf("%d\n", 1i);
//prints 2

In a sense, pointer arguments allow a function to ‘return’ more
than one value. This greatly increases the versatility of functions.
Take scanf for example, it is able to read multiple values and it

uses its return value as error status.

| COMP9024, Term: 2070 | 17 | COMP9024, Term: 20T0 | 18
Passing values by Reference Array Reference i e
while(i<size){
afi] = 1.1 * a[i];
. . #include <stdio.h> : f it
Simple example to illustrate / Simple example to illustrate how to , }
void fl(int a, int *p modify an array passed as an
pass by value and reference a _(a + 5 0t) { v y pass — _—
= N argument to a functlon. void printArray(double a[], int size){
e N *P=tp+T; .
function “f1” } / function “addGST” 1:§11 =0;
int variable pointer to int - e — 5 pointer to double int variable i ;ﬁ;:iﬁsgo'zu ", afil);
int main(int argc, char *argv [oxffab1452 | ; i44;
a| 25 | Pl oxbEE£Fb64 | Tt)((_ 25.9 ovil) { aw S'ZBE } "
L) x : - 4 1 printf("\n");
1 Il *p refers toy int y = 33; || a and values point to the same array }
! . . in the main function - only one array!
1 1 printf("Before calling fl: x=%d y=%d\n", X, y); il n funct: y Y int main(int argc, char *argv([]) {
' - - .
copylxtoa copy address of y to p copy values to a double values[] = { 25.0, 32.5, 12.25, 52.50} ;
1 (oxbfE££D64) fl(x, &y); (ox££abl452) printf("Before calling addGST: ");
1 1 X . 1 printArray(values, 4);
1 1 printf("After calling fl: x=%d y=%d\n", x, y);
x| 25 | y| 33 | // x is unchanged, y changed values| ox££fabl1452 | addGsT(values , 4); ——
variable y at . printf("After calling addGsT: ");
oxbffffb64 } return:Q; [25.0]32.5]12.2552.50 printArray(values, 4);
return 0;

_function “main”)

| COMP9024, Term: 20T0 | 19

__function “main”

| COMP9024, Term: 2070 |

20

Pointer Arguments

Classic Example

Write a function that swaps the values of its two integer
arguments.

Pointer Return Value

You should not find it surprising that functions can return pointers.
However, you have to be extremely careful when returning pointers.

Returning a pointer to a local variable is illegal - that variable is

. .) } N .
Before we knew about pointer arguments this would have been Calling function destroyed when the function returns.
impossible, but now it is straightforward. it variable int variable But you can return a pointer that was given as an argument:
void swap(int *n, int *m) { | S | | p | int xincrement(int *n) {
int tmp; *n = *n + 1;
return n;
tmp = *n; }
*n = *m; ”’ ‘ m’ ‘
*m = tmp; Nested calling is now possible: increment (increment (&i));
} & J
| COMP9024, Term: 2070 | 21 | COMP9024, Term: 20T0 | 22
Array Representation Array Representation
A C array has a very simple underlying representation, it is stored
in a contiguous (unbroken) memory block and a pointer is kept to Since array variables are pointers, it now should become clear why ~
the beginning of the block. we pass arrays to scanf without the need for address-of (&) and
char s[] = "Hi!"; why arrays are passed to functions by reference! nums
printf("s: %p *s: %c\n\n", s, *s); Vs ~ We can even use another pointer to act as the array name!
printf("&s[0]: %p s[0]: %c\n", &s[0], s[01); Jeren ={1. 2. 3. 4. 5}: 112]13]4|5
printf ("gs[1]: %p s[11: %c\n", &s[1], s[11); S points to the start of ot nums L] { 0 7o 8o dlo i
printf ("&s[2]: %p s[2]: %c\n", &s[2], s[2]); the array (s[0]) int *p = nums; b
printf("&s[3]: %p s[3]: %c\n", &s[3], s[31); v
7/ prants printf("%d\n", nums[2]); *n is *p
// s: OTTfff4b741060 *s: H rintf ("%d\n", pl[21); n[0] is p[0]
// 8s[0]: OzTfff4b741060 s[0]: H nn };/ both print: g n[;] is p[;]
// ©s[1]: 0x7fff40741061 s[1]: 1 p : 2{3} i: IE;H
// 8s[2]: OzTfff4b741062 s[2]: ! '
V) Es[3]: OxTffI4b741063 5[3]: L) S;n.c:enunis acts as a pointer we can directly assign its value to the n[4] is p[4])
pointer p!
Array variables act as pointers to the beginning of the arrays!
| COMP9024, Term: 20TO | 23

| COMP9024, Term: 2070 |

24

Array Representation

We can even make a pointer point to the middle of an array:

int nums[] = {1, 2, 3, 4, 5};
int *p = &nums[2];
printf("%d %d\n", *p, pl0]);

So is there a difference between an array variable and a pointer?

int i = 5;

p = &i; // this is OK
nums = &i; // this is an error

Unlike a regular pointer, an array variable is defined to point to the
—_— .

beginning of the array, it is constant and may not be modified.
S

*n is 1
n[0] is
n[l] is
n[2] is
n[3] is
n[4] is

s WN -

nUl’li

(.

1]12|3|4]|5

Pointer Comparison

| COMP9024, Term: 20T0 |

25

Pointers can be tested for equality or relative order.
double ff[] = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6};
double *fpl = ff;
double *fp2 = &ff[0];
double *fp3 = &ff[4];

printf("%d %d\n", (fpl > £fp3), (fpl == £p2));
// prints: 0 1

-
Note that we are comparing the values of the pointers, i.e.,
memory addresses, not the values the pointers are pointing to!

| COMP9024, Term: 20T0 | 26

Pointer Summary

Pointers:

are a compound type

usually implemented with memory addresses

are manipulated using address-of(&) and dereference()
should be initialised when declared

can be initialised to NULL

should not be dereferenced if invalid

are used to pass arguments by reference

are used to represent arrays

should not be returned from functions if they point to local
variables

| COMP9024, Term: 2070 |

27

typedef

We can use the keyword typedef to give a name to a type:
[typedef double real;

This means variables can be declared as numeric but they will

actually be of type double.

Do not overuse typedef - it can make programs harder to read, e.g.:
typedef int andrew;

andrew main(void) {
andrew i,j;

| COMP9024, Term: 20T0 | 28

Using typedef to make programs portable

Suppose have a program that does floating-point calculations.
If we use a typedef'ed name for all variable, e.g.:
typedef double real;

real matrix[1000] [1000] [1000];

real my_atanh(real x) {
real u = (1.0 - x)/(1.0 + x);
return -0.5 * log(u);

}

If we move to a platform with little RAM, we can save memory
(and lose precision) by changing the typedef:

[typedef float real;]

structs

| COMP9024, Term: 20T0 | 29

e We have seen simple types e.g. int, char, double
» variables of these types hold single values

e We have seen a compound type: arrays
» array variables hold multiple values
» arrays are homogenous - every array element is the same type
> array element selected using integer index
> array size can be determined at runtime

e Another compound type: structs

structs hold multiple values (fields)

struct are heterogeneous - fields can be differenttype
struct field selected using name

struct fields fixed

vvyVvyy

| COMP9024, Term: 20T0 |

30

structs - example

If we define a struct that holds COMP1511 student details:
#define MAX_NAME 64
#define N_LABS 10

struct student {
int zid;
char name[64];
double lab_marks[N_LABS]
double assignmentl_mark;
double assignment2_mark;

3

We can declare an arry to hold the details of all students:
E struct student compl1511_students[900];

combining structs and typedef

| COMP9024, Term: 20T0 | 31

Common to use typedef to give name to a struct type.

struct student {
int zid;
char name[64];
double lab_marks[N_LABS]
double assignmentl_mark;
double assignment2_mark;

typedef struct student student_t;

student_details_t comp1511_students[900];

Programmer often use convention to separate type names
e.g. _t suffix.

| COMP9024, Term: 2070 |

32

Assigning structs

structs and functions

Unlike arrays, it is possible to copy all components of a structure in
a single assignment:
struct student_details studentl, student2;

student2 = studentl;

It is not possible to compare all components with a single
comparison:
{ if (studentl == student2) // NOT allowed! j

If you want to compare two structures, you need to write a
function to compare them component-by-component and decide
whether they are “the same”.

A structure can be passed as a parameter to a function:

void print_student(student_t student) {
printf("%s z%d\n", d.name, d.zid);

}

Unlike arrays, a copy will be made of the entire structure, and only
this copy will be passed to the function.
Unlike arrays, a function can return a struct:

student_t read_student_from_file(char filename[]) {

}

| COMP9024, Term: 20T0 | 33

| COMP9024, Term: 20T0 |

34

Pointers to structs

Nested Structures

)
/

If a function needs to modify a structs field or if we want to avoid ~
the inefficiency of copying the entire struct, we can instead pass a int zid;

pointer to the struct as a parameter: char name[64] ;

double lab_marks [N_LABS]
double assignmentl_mark;
double assignment2_mark;

int scan_zid(student *s) {
return scanf ("%d", &((*s).zid));
}

The “"arrow” operator is more readable : (*s) .zid = 1234567;
(*s) .lab marks[2]=7;
strcpy ((*s) .name, “John”)

int scan_zid(student *s) {
return scanf("/d", &(s->zid));

¥ Alternatively,

If s is a pointer to a struct s->field is equivalent to (*s).field g=2elel S d2SEET
s->lab_marks[2]=7;

strcpy (s->name, “John”)

One structure can be nested inside another
typedef struct date Date;
typedef struct time Time;
typedef struct speeding Speeding;

struct date {
int day, month, year;
8
struct time {
int hour, minute;
i
struct speeding {
Date date;
Time time;
double speed;
char plate[MAX_PLATE];

| COMP9024, Term: 20T0 | 35

| COMP9024, Term: 2070 |

36

Dynamic memory allocation: malloc

malloc : when it fails !

e malloc allocates memory of a requested size (in bytes)
Memory is allocated in “the heap”, and it lives forever until we free it (or the program
ends)

e Important. We MUST free memory allocated by malloc, should not rely on the
operating system for cleanup.

malloc (number of bytes to allocate);

- returns a pointer to the block of allocated memory (i.e. the address of the
memory, so we know how to find it!).
= returns NULL if insufficient memory available - you must check for this!

For example, let's assume we need a block of memory to hold 100,000 integers:
int *p = malloc(100000 * sizeof(int));

What happens if the allocation fails?
malloc returns NULL, and we need to check this:

int *p = malloc(1000 * sizeof(int));

if (p == NULL) {
fprintf(stderr, "Error: couldn't allocate memory!\n");
exit(1l);

| COMP9024, Term: 20T0 |

37

| COMP9024, Term: 20T0 |

38

sizeof

free

e sizeof - C operator yields bytes needed for type or variable
e sizeof (type) or sizeof variable

e note unusual (badly designed) syntax - brackets indicate
argument is a type

e use sizeof for every malloc call

printf("%1d", sizeof (char)); /7 1

printf("%1d", sizeof (int)); // 4 commonly
printf ("%1d", sizeof (double)); // 8 commonly
printf ("%1d", sizeof (int[101)); // 40 commonly
printf ("%1d", sizeof (int *)); // 4 or 8 commonly
printf ("}1d", sizeof "hello"); // 6

e when we're done with the memory allocated by malloc function,
we need to release that memory using £ree function.
e For example,

int *p = malloc(1000 * sizeof(int));

if (p == NULL) {
fprintf(stderr, "Error: couldn't allocate memory!\n");
exit(1);

// do some thing here with the memory allocation
//

// free up the memory that was used

—_— free(p);

| COMP9024, Term: 2070 |

39

| COMP9024, Term: 2070 |

40

free

Scope and Lifetime

e free() indicates you've finished using the block of memory

e Continuing to use memory after free() results in very nasty

bugs.

e free() memory block twice also cause bad bugs.

o if program keeps calling malloc() without corresponding
free() calls program's memory will grow steadily larger
called a memory leak.

e Memory leaks major issue for long running programs.

e Operating system recovers memory when program exists.

e the variables inside a function only exist as long as the function does
e once your function returns, the variables inside are “gone”

What if we need something to “stick around” for longer?

Two options:

e make it in a “parent” function
e dynamically allocate memory

| COMP9024, Term: 20T0 |

41

| COMP9024, Term: 20T0 |

42

Lifetimes

Lifetimes

Make it in a “parent” function,
for example:

void changeA(int *b, int size){

b[2] = 55; _— Allocate in a “parent” function

}

void main(void) {

int a[10] V

changeA(a“, 10);

printf("%d", a[2]); // prints 55

| —passa pointer

Dynamically allocate memory in a function and return a pointer,

For example:
Dynamically allocate in a
int *getA(void){ — function
int *b = malloc(10 * sizeof(int));
b[2] = 55;
return b; return a pointer

}
void main(void) {
int *a = getA();
printf("%d", a[2]); // prints 55

free(a); free

| COMP9024, Term: 2070 |

43

| COMP9024, Term: 2070 |

44

Self-Referential Structures

Linked List

We can define a structure containing
a pointer to the same type of structure:

struct node {
struct node *next;
int data;

};

These “self-referential” pointers can be used to build larger
“dynamic” data structures out of smaller building blocks.

The most fundamental of these dynamic data structures is the
Linked List:

e based on the idea of a sequence of data items or nodes

e linked lists are more flexible than arrays:

> items don't have to be located next to each other in memory
items can easily be rearranged by altering pointers

the number of items can change dynamically

items can be added or removed in any order

vYyy

| COMP9024, Term: 20T0 | 45

| COMP9024, Term: 20T0 |

46

Linked List

Example of List Item

First element of list
—— | next = next — next —s= next —= NULL

data data data data

e a linked list is a sequence of items

e each item contains data and a pointer to the next item

e need to separately store a pointer to the first item or “head”
of the list

e the last item in the list is special
it contains NULL in its next field instead of a pointer to an
item

Example of a list item used to store an address:

next —

name

address

telephone

| COMP9024, Term: 20T0 | 47

| COMP9024, Term: 2070 |

48

Example of List Item

-

char
char
char
char
char

struct address_node {
struct address_node *next;

*telephone;
*email;
*address;
*telephone;
*email;

List Items

| COMP9024, Term: 20T0 |

49

List items may hold large amount of data or many fields.
For simplicity, we'll assume each list item need store only a single
int

struct node {
struct node *next;
int data;

};

| COMP9024, Term: 20T0 |

50

List Operations

Basic list operations:

Many other operations are possible.

create a new item with specified data

search for a item with particular data

insert a new item to the list

remove a item from the list

Creating a List Iltem

| COMP9024, Term: 2070 |

51

// Create a new struct node containing the specified dat
// and next fields, return a pointer to the new struct n

struct node *create_node(int data, struct node *next) {
struct node *n;
n = malloc(sizeof (struct node));
if (n == NULL) {
fprintf (stderr, "out of memory\n");
exit(1);
}
n->data = data;
n->next = next;
return n;

| COMP9024, Term: 2070 |

52

Building a list Recap: Self-Referential Structures

We can define a structure containing

Building a list containing the 4 ints: 13, 17, 42, 5 a pointer to the same type of structure:
struct node *head = create_node(5, NULL); struct node {
head = create_node(42, head); struct node *next;
head = create_node(17, head); int data;
head = create_node(13, head); Y

These “self-referential” pointers can be used to build larger
“dynamic” data structures out of smaller building blocks.

| COMP9024, Term: 20T0 | 53 | COMP9024, Term: 20T0 |

Recap: Linked List Recap: Linked List

The most fundamental of these dynamic data structures is the First element of list
. . ————— | next |[—® next |[—®{ next |[—m next |[— NULL
Linked List:
data data data data
e based on the idea of a sequence of data items or nodes
e linked lists are more flexible than arrays:
> items don't have to be located next to each other in memory ® a linked list is a sequence of items
> items can easily be rearranged by altering pointers e each item contains data and a pointer to the next item
> the number of items can change dynamically e need to separately store a pointer to the first item or “head”
> items can be added or removed in any order of the list

e the last item in the list is special
it contains NULL in its next field instead of a pointer to an
item

| COMP9024, Term: 20T0 | 55 | COMP9024, Term: 20T0 |

Recap: Example of List Item

Recap: Example of List ltem in C

Example of a list item used to store an address:

next -—1

address

telephone

email

struct address_node {
struct address_node *next;
char *telephone;
char *email;
char *address;
char *telephone;
char *email;

| COMP9024, Term: 20T0 |

57

| COMP9024, Term: 20T0 |

58

Recap: List Items

Recap: List Operations

List items may hold large amount of data or many fields.
For simplicity, we'll assume each list item need store only a single
int

struct node {

struct node *next;

int data;

1rg

| COMP9024, Term: 2070 |

59

Basic list operations:

e create a new item with specified data
e search for a item with particular data
e insert a new item to the list

e remove a item from the list

Many other operations are possible.

| COMP9024, Term: 2070 |

60

Creating a Node (List ltem)

struct node *a = malloc(sizeof (struct node));
a->data = 27;
a->next = NULL;

struct node *b = malloc(sizeof (struct node));
b->data = 12;
b->next = NULL;

struct node *c = malloc(sizeof (struct node));
c->data = 32;
c->next = NULL;

struct node *d =
d->data = 42;
d->next = NULL;

malloc(sizeof (struct node));

Link Nodes

a |0xf5500710

Xf5500710
datn
next xﬁSOOG[

a->next b;
b->next (o7}
c->next = d;
d->next= NULL;

.,

b [oxf55006f c 0x/55006d0
0xf55006b0

Xf55006f Xf55006d0
dutu dam
next xf55006d0 next 0xf55006b0 next NULL

., b o500 c a
0xf5500710 Oxf55006f 0xf55006d0 0xf55006b0
data data datal 32 | datal 42 |
next next next | NULL next| NULL
| COMP9024, Term: 2070 | 61 [COMPS024, Term: 2070 | 62
p=a; P =p->next; P =p->next; P =p->next; P =p->next;
p n n P P
a 0xf5500710
a 0x/5500710 l l
0)(/5500710 axfssoas/ 0xf55006d0 0xf$5006b0 NULL
xf5500710 0x/55006f Dx/SSDUGdD 0xf55006b0 data[27 | data[32 | dm
data| 27 | data| 12| data[32 | dntn next xfssaaaj next xf55006d0 next xf55006b0 next NULL
[nen xf55006f next xf55006d0 next xf55006b0 |‘next NULL
a->data a->next->data a->next- >next >data a->next->next->next->data
printf("------------c-n i \n\n");
printf("// Below: process_list(a) \n\n");
: " wy. list(a);
1] 5 T \n\n"); PLOCESS: ;
printf("// After linking nodes: \n"); void process list(struct node *head) {
printf("// a->next is same as b\n"); struct node *p = head;
printf("// a->next->next is same as c\n"); !
printf("// a->next->next->next is same as d\n"); 4 =
DRINLE(S iNGd@ B-Satas % \n", aisdata); while[(p '= NULL) Process node data here
printf(" Node a->next->data: %d \n", a->next->data); . 0 i - o . "
printf(" Node a->next->next->data: %d \n", a->next->next->data); printf(p->data=%d \n", p->data);
printf(" Node a->next->next->next->data: %d \n", a->next->next->next->data);
}
}
[COMP9024, Term: 2070 | 63 [COMP9024, Term: 2070 | 64

Linked List: Previous pattern

prev = NULL; prev=p; prev=p; prev=p; prev =p;
p=a; P =p->next; P =p->next; P = p->next; P =p->next;

[P P P P
a 0xf5500710

& N i i

0xf5500710 Oxf55006f (f55006d0 0xf55006b0 NULL
data data data[32| data[42 |
next [0xf55006f next |0x/55006d0 next |0x/55006b0° next [NULL

void prev_example(struct node *head) {
struct node *prev = NULL;

Later we will see examples of this previous
struct node *p = head;

pattern, for example in deleting a node.
while (p !'= NULL) {

printf(" p->data=%d \n", p->data);

prev = p;
p = p->next;

| COMP9024, Term: 20TO |

65

Creating a List Item/Node

// Create a new struct node containing the specified dat
// and next fields, return a pointer to the new struct n

struct node *create_node(int data, struct node *next) {
struct node *n;
n = malloc(sizeof (struct node));
if (n == NULL) {
fprintf (stderr, "out of memory\n");
exit(1);
}
n->data = data;
n->next = next;
return n;

| COMP9024, Term: 20T0 |

66

Building a list

rend Building a list containing the 4 ints: 13, 17, 42, 5
ea
(1) struct node *head = create_node(5, NULL);
1) = q
sora 5] (2) head = create_node(42, head);
next| _NULL | (3) head = create_node(17, head);
(4) head = create_node(13, head);
head
2) \\
data[42 | datal 5 |
next| —— next
head
3) \\
data data[42 | data| 5 |
next| ——] next[— next
head
4) \
data data data[42 | data 5 |
next next[— next| —] next

67

Summing a List

// return sum of list data fields
int sum(struct node *head) {
int sum = O;
struct node *n = head;
// execute until end of list
while (n != NULL) {
sum += n->data;
// make n point to mexzt item
n = n—>next;
}

return sum;

| COMP9024, Term: 2070 |

68

Summing a List: For Loop Finding an Item in a List

. . . return pointer to first node with specified data value
// return sum of list data fields: using for loop ;f,%turnﬁULLjf S5 EhAR meda " P

int suml(struct node *head) { struct node *find node(struct node *head, int data) {

int sum = 0; struct node *n = head;
// search until end of list reached
for (struct node *n = head; n != NULL; n = n->next) { while (n != NULL) {
- e T // if matching item found return it -
sum += n->data; if (n->data == data) { /
return n;
}
}
// make node point to next item
return sum;

n = n->next;

} }

// item not in list
return NULL;

| COMP9024, Term: 2070 | 69

| COMP9024, Term: 20T0 |

Finding an Item in a List: For Loop Finding an Item in a List: Shorter While Loop

e Same function but using a for loop instead of a while loop.

e Same function but using a more concise while loop.
e Compiler will produce same machine code as previous function.

e Shorter does not always mean more readable.
e Compiler will produce same machine code as previous functions.

// previous function written as for loop
y . struct node *find_node2(struct node *head, int data) {
struct node *find _nodel(struct node *head, int data) { struct node *n = head;
for (struct node *n = head; n != NULL; n = n->next) {
if (n->data == data) { while (n != NULL && n->data != data) {
return n; - -
} n = n->next;
} }
return NULL;
} return n;
}

| COMP9024, Term: 20TO | 71

| COMP9024, Term: 2070 |

Printing a List - Python Syntax

For example,
[45,67,2,43]

// print contents of list in Python syntax

void print_list(struct node *head) {
printf("[");
for (struct node *n = head; n != NULL; n = n->next) {
printf("%d", n->data);
if (n->next !'= NULL) {

}
printf("1");

otherwise skip printing *,

printf(", "); T Weprint*,"if there is a next node,

wn

Finding Last Item in List

| COMP9024, Term: 20TO |

73

// return pointer to last node in list
// NULL is returned if list is empty

struct node *last(struct node *head) {

if (head == NULL) {
return NULL; See the difference:
} We are checking,

struct_node *n = head; n->next != NULL
while (in place of n != NULL)

n = n->next;

}
return n;
} The loop stops here
n because,
head n->next == NULL

data data datal 42 | datal 5 |
next| —] next| — next| — next

| COMP9024, Term: 20T0 |

74

Appending to List

// create a new list node containing value
// and append it to end of list

struct node *append(struct node *head, int value) {
// new node will be last in list, so next field is NULL
\ struct node *n = create_node(value, NULL);
[~ if (head == NULL) {
// new node is now head of the list

return n;
} else {
// change next field of last list node
— // from NULL to new node

last(head)->next = n; /* append node to list */
return head;

last(head)

head

data data data[a2] datal 5]
net| — net| —] next| — next[o]

n
dota
next

Deleting all items from a List

| COMP9024, Term: 20TO |

75

// Delete all the items from a linked list.
void delete_all(struct node *head) {
SRESBED LD CEH in the body of while loop!

while (n != NULL) {

tmp = n; free(n);
n = n->next; n = n->next;
free(tmp);

head

data data data data| 5 |
next| —] next| —] next| —] next

struct node *n = head; We cannot do the following

| COMP9024, Term: 2070 |

76

Insert a Node into an Ordered List

Insert a Node into an Ordered List

e Case-1: Insert a node at the beginning %Insert a Node into an Ordered List
previous n struct node *insert_ordered(struct node *head, struct node *node) {
— struct node *previous;
NULL struct node *n = head;
Insert value 5 // find correct position
head while (n != NULL && node->data > n->data) { .
node m\ previous = n; l———" qu Forred
N n = n->next; position
data data data data “ data }
next next| — next| = next| —] next[nuLL |
// link new node into list
) X if (previous == NULL) {
e Case-2: Insert a node in the middle or at the end . head = node; — Case-1
previous->next = node; node-snext = n:
node->next = n; i
} else {
- previous->next = node;
. node < =n; ——
previous \lnse't value 30,) node->next = n; Case-2
head dota[30
\ \ ,.m return head;
data data data| 42 | data }
next| — next| — next| — next
| COMP9024, Term: 2070 | 77 | COMP9024, Term: 20T0 | 78
e Case-1: Remove first node if (node == head) { // Delete a Node from a List
head = head->next; 7/
Delete node node {ree(node); struct node *delete(struct node *head, struct node *node) {
with value } else { if (node == head) {
“13” head = head->next; // remove first item «— Case-1
head free(node);
} else {
\ struct node *previous = head;
data 13| Gata[17| data| 42| data[57| while (previous != NULL && previous->next != node) { Find correct
next| —] next| —] next| —] next| NULL | previous = previous->next; — position
" " if (previous != NULL) { // node found in list
e Case-2: Remove a node in the middle or at the end previous->next = node->next; <—
Delete node if (preyious != NULL) { // node found in list free(node); Case-2
. previous->next = node->next; } else {
)‘Nltt:value) free(node); fprintf(stderr, "warning: node not in list\n");
42 previous node } else {

head

data data data[42] data
next| —] next| — next| —] next

| COMP9024, Term: 20TO | 79

return head;

| COMP9024, Term: 20T0 | 80

Recursion

e Recursion is a programming pattern where a function calls itself

e For example, we define factorial as below,
n! =1*2*3* ... *(n-1)*n

e We can recursively define factorial function as below,
f(n)=1 , if (n=0)
f(n) = n * f(n-1) , for others

Pattern for a Recursive function

e Base case(s)
o Situations when we do not call the same function (no recursive call),
because the problem can be solved easily without a recursion.
o All recursive calls eventually lead to one of the base cases.
e Recursive Case
o We call the same function for a problem with smaller size.
o Decrease in a problem size eventually leads to one of the base cases.

// return sum of list data fields: using recursive call

int sum(struct node *heaf%_— Base case
if (head == NULL) {

return 0;

}
return head->data + |sum(head->next)

Recursive case,
Recursive call for a

} smaller problem
(size-1)
| COMP9024, Term: 2070 | 81 | COMP9024, Term: 20T0 | 82
// return count of nodes in list struct node *last(struct node *head) {
// list is empty
. if(head == NULL)
int length(struct node *head) { return NULL; :
if (head == NULL) {
return 0; // found the last node! return it.
else if (head->next == NULL) {
return 1 + length(head->next) | head 1st Recursive call (returns 3) return head; "f{’ 1st recursive call (returns head of 3rd
! } can
} o ::';ti—ja}/"f:: // return last noqe from the rest of the list data 1::;
// using a recursion
else {
head 2nd Recursive call (returns 2) return last(head->next); head 2nd recursive call (returns head of 3rd call)

N
i e . = el [e
Recursive call net [—1 net__ —] net | —] next[o]

head

3rd Recursive call (returns 1)

}

data iota o=] A
next P —— P —— nee L]

data ‘data data ota 5|
next| — net| —7 next| —] next[NULL
Base case
Head == NULL
returns 0
| COMP9024, Term: 20TO0 | 83

3rd Recursive call

head (returns head of this list)
| —
data ‘data data[a2] data[5]
next et — et — next
Base case

head->next == NULL
returns head of 3rd call

| COMP9024, Term: 20T0 | 84

Find Node using Recursion

// return pointer to first node with specified data value
// return NULL if no such node

struct node *find_node(struct node *head, int data) {
// empty list, so return NULL
if (head == NULL) {
return NULL;

// Data at "head" is same as the "data" we are searching,
// Found the node! so return head.
else if (head->data == data) {

return head;

// Find "data" in the rest of the list, using recursion,
// return whatever answer we get from the recursion
else {

return (find_node(head->next, data); I
}

Recursive call

Delete From List using Recursion

// Delete a Node from a List: Recursive
struct node *deleteR(struct node *head, struct node *node) {
if (head == NULL) {
fprintf(stderr, "warning: node not in list\n");

// Found the node!, remove this (first) node
else if (node == head) {

head = head->next;

free(node);

// Delete node from the rest of the list, using recursion.
// Assign "updated" rest of the list to head->next.

else { |</

head->next =[deleteR(head->next, node)

return head;

} node (to del

| COMP9024, Term: 20TO |

85

head

Recursive call

ete)

17 data 22 data 5
next next| NULL

1st recursive call (node to delete is same as “head” of

this call, returns updated list, pointing to node with 42)

86

Linked List with Recursion

// Insert a Node into an Ordered List: recursive
struct node *insertR(struct node *head, struct node *node) {
if (head == NULL || head->data >= node->data) {

node->next = head;
return node;

|head->next = insertR(head->next, node);l

return head;

head

data
next

Recursive call

data datal a2 | data
next| — next| —] next

Print Python List using Recursion

| COMP9024, Term: 20TO |

void print_list(struct node *head)
printf("[");
if (head != NULL) {
print_list_items(head);

}
printf("]");

Recursive function ————void print_list items(struct node *head) {

printf("%d", head->data);
if (head->next != NULL) {
printf(", ");

// print contents of list in Python syntax

{

Recursive call ——»}

print_list_items(head->next);

}

| COMP9024, Term: 2070 |

88

