COMP1911: Introduction To Computers and C

 — Term 2, 2023 e

Computers

e “Computers” have existed for 1000’s of years
® For example, Abacus invented Sumeria c. 2500 BC,

e But, until 20th century, were specialised/simple devices

[COMP1911 |

Computers (cont)

Modern computers are

e electronic, digital, stored-program

e able to realise any computable function
o demonstrated by Alan Turing in the 1940’s

e Alan Turing is widely considered to be the father of
theoretical computer science and artificial intelligence.

e During the Second World War, Turing worked at Britain's
codebreaking centre that produced Ultra intelligence.

[COMP1911 | 3

The Operating System

%* What is an operating system (0OS)?

** A complex piece of software that manages and abstracts a computer's resources
and provides an interface to users and programmers.

** You are likely familiar with the Windows family of operating systems.

** Most programmers work on Unix based operating system.

+ Linux (e.g., in the CSE labs)
s MacO0SX

/7

< Note: Windows 10 now has a unix sub-system build in

[COMP1911 |

The Operating System

Application1 Application2 Application3 Application4
Standard Interface

Operating System

Low-Level platform dependent
interface

Hardware

Source: https://embeddedcentric.com/embedded-operating-systems/

[COMP1911 |

The Operating System

In CSE we allow you to log in to our linux system either remotely or on our lab
machines.
Your username and password for this system is your zid and zpass.

Do not share your zld and zPass. You will be liable.

Keep in mind:

You can interact with the CSE unix system either via terminal window or graphical
user interface

Commands typed into a terminal window are instructions used to manipulate data

In this course we will build applications by interacting with the GUI/terminal (which
are also applications)

[COMP1911 |

Navigating Unix

** Linux commands are typed into a terminal.
+* To open a terminal on the default cse setup you can right click on the terminal icon

>

at the bottom of the screen

** Some useful 1inux commands to get started are:
o 1s
o pwd
o mkdir

o cd

| COMP1911 |

Navigating Unix - Is

» |ists files in current directory (folder)

» Several useful switches can be applied to Is

» Is -l (provide a long listing)
» Is -a (list all files, i.e., show hidden files)
» Is -t (list files by modification time)

» Can combine options. For example, Is -la

[COMP1911 |

Navigating Unix - pwd

* pwd directoryName
e print working directory
* adirectory is like a folder in windows

* the working directory is the directory that you are currently in

| COMP1911 |

Navigating Unix - mkdir

* mkdir directoryName

* make (create) a new directory called directoryName in the
current working directory

* To verify creation, type Is

| COMP1911 | 10

Navigating Unix - cd

e cddirectoryName

* Change directory
» Change current directory to directoryName
» directoryName must be in the current working directory
» We will see how to use more complex names(paths) later

* Special directory names
» cd ..
v' move up one directory (to parent directory)
» cd

v" move to your home directory

[COMP1911 |

11

Navigating Unix | Tips and Tricks

* Tab Completion: start typing a command, then press tab and
linux will try to complete the rest of it or suggest possibilities

* Up Arrow Key: Typing this will bring up the last command you
typed in, typing it twice brings up the second last command
you typed in etc.

| COMP1911 | 12

How can computers understand us?

Why can't a computer execute a program written in languages
humans use, like English?

* jtistooinformal (vague semantic)
* itistoo big (massive scope)
Fundamentally, a computer's circuitary is determined by a series of
zero or non-zero voltages across transistors, which we represent as
O'sorl's
* We refer to this binary that a computer can execute as Machine
Code
* Machine code is able to be directly interpreted by a computer's
CPU to execute many layers of very basic instructions (e.g.
addition)

| COMP1911 | 13

Machine Code

Cut out the middle man. Just program in Machine Code??

Well this is what programmers used to do! However, it was:

* Error prone for humans but still used occasionally

* Not portable from one machine to another

* Unbearable. Imagine writing a program that looks

like this
0100101001000010001111100011000011101

Real programmers code in binary.

[COMP1911 | 14

Introducing Programming Languages

So we invent a programming language that:
e issmall

* is formal (syntax and grammar)

* is still reasonably intuitive for humans

int length = 7;

int breadth = 4;

int area = length * breadth;
printf("Area: %d\n", area);

[COMP1911 | 15

Programming Languages to Machine Code

How does a computer then run the program code?

* We use a program called a compiler to
translate it into machine code (often called an
executable) that the machine i.e. the hardware
can execute directly.

* In this way a compiler allows us to write
abstracted code without being concerned with
many elements of the underlying computer.

*COMPILE~

| COMP1911 |

16

Algorithms and Programs

An algorithm is a set of (specific) instructions to
accomplish a goal.

For example,

e make a cake
e build a wall
e sort a list of names

Similarly, a computer program is a set of

instructions in a programming language (like C or
Java or Python) that accomplish a goal.

"“a‘ Popular Baby Names

Top 10 Names for 2010
Rank Male name Famale nama

WWWWW

| COMP1911 | 17

Programs

A program needs to be

e sufficiently detailed
e unambiguous

e eventually leading to goal

So we don’t use English for programming

| COMP1911 | 18

Programs

A program is a text document, containing

e a description of an algorithm
e expressed in a programming language (like C, Java, Python, etc.)

It cannot be directly executed on a computer
e need to translate to executable machine code

Compilation

Y

Execution

: Keyboard /_‘ stdin =@ sidout Screen

[COMP1911 | 19

Programs

Typical program structure

e (getinput values
e process input to compute result

e display result

| COMP1911 | 20

The C Programming Language

C is an important programming language

relatively simple, widely used and forms the basis for many other languages
venerable (developed in early 70’s by Thompson & Ritchie)

named so because it succeeded the B programming language

widely used for system and application programming, powerful enough to
implement the Unix kernel

classic example of an imperative language

widely used for writing operating systems and compilers as well as industrial
and scientific applications

provides low level access to machine, language you must know if you want to
work with hardware

[COMP1911 |

21

The C Programming Language

Like most programming languages, C supports features such as:

program comments

declaring variables (data storage)

assigning values to variables

performing arithmetic operations

performing comparison operations

control structures, such as branching or looping
performing input and output

| COMP1911 | 22

Hello World

// Author: Kernighan and Ritchie
// Date created: 1978

// A very simple C program.
#include <stdio.h>

int main(void) {
printf(” Hello world!\n");

return O;

[COMP1911 | 23

Hello World

The program is complete, it compiles and performs a task. Even in a few lines of

code there are a lot of elements:

a comment

a #include directive

the main function

a call to a library function, printf
a return statement

semicolons, braces and string literals

[COMP1911 |

24

A Closer Look

What does it all mean?

e //,asingle line comment, use /* */ for block comments

e #include, import the standard /O library

e intmain(...), the main function must appear in every C program and it is the start of
execution point

e (void), indicating no arguments for main

e printf(...),the usual C output function, in stdio.h

e ("Hello world!'\n"), argument supplied to printf, a string literal, i.e., a string
constant

e \n, an escape sequence, special character combination that inserts a new line

e return 0, acode returned to the operating system, 0 means the program executed
without error

[COMP1911 |

25

Escaping a Problem

| want a program that prints out the following

This is a "Hello World" demo.

What is wrong with the following line of code?
printf("This is a "Hello World" demo \n");

* The character " has special meanings to the compiler.

* We use the escape character \and type \" to escape the way
the normal way it is interpreted by the compiler.

[COMP1911 |

26

Escaping a Problem

* How do you think we would print out \

 We would need to use \\
* if we also wanted a newline character we could do the
following

printf("\\\n");

| COMP1911 | 27

Compiling and Running Hello World

To run our hello world program we need to compile it first.

At home you may need to use gcc (GNU Compiler Collection, formerly
GNU C Compiler) for this task.

In our cse accounts we can use dcc (Direct C Compiler) instead, as dcc
is more helpful with error messages.

[COMP1911 |

28

Compiling and Running Hello World

The simplest use of the compiler would be:
gcc helloWorld.c

which produces the file a.out.

We could then run the program by typing
Ja.out

Or if we were logged into a cse account we could use
dcc helloWorld.c

and run it in the same way with

Ja.out

[COMP1911 | 29

Compiling and Running Hello World

a.out is not a great name. It is a better idea to give your
executables their own meaningful names.

To do so you need to use the -o flag, followed by the name you
have chosen.

gcc helloWorld.c -o helloWorld

We could then run the program by typing
./helloWorld

You could do the same thing with dcc instead by typing.

dcc helloWorld.c -o helloWorld

[COMP1911 | 30

Compiling and Running Hello World

To get more help from gcc we want to turn on extra tough
error checking so we would compile using something like:

The command: gcc -Wall -Werror -0 -o helloWorld
helloWorld.c

* tells gcc to warn about all suspect code, -Wall
* tells gcc to treat warnings as errors, -Werror

* -Ois typically used to optimise the executable code that is
produced but when it is used in conjunction with -Wall and
-Werror it can produce additional warnings that will help
you

There is no need to use these extra flags with dcc

[COMP1911 |

31

Compiling A Program

e Create a file named hello.c containing the program
gedit hello.c

e Once the code is written and saved, compile it:
dcc hello.c

e Run the program:
./a.out

$ gedit hello.c &
$ dcc hello.c
$./a.out

[COMP1911 | 32

Coding Style

Code is like handwriting, in that everyone develops a
unique style, but also in that there are certain conventions
that must be followed, otherwise they both become
illegible.

Style guides ensure that code:
* isuniform
* is easy to read (by you or others)

is well documented

is easy to debug (by you or others)

conforms to good programming practice

[COMP1911 | 33

Coding Style

* The code examples we give you in this course are examples of
good style.

* The course C style guide is available from the course website.

* You should always adhere to it otherwise you will lose style
marks for your assignments.

* We will refer to it throughout the course when we learn new
C constructs

[COMP1911 |

34

The Task of Programming

Programming is a construction exercise.
* Think about the problem

* Write down a proposed solutions

* Write a scaffold of the program in plain English so you solve
the problem logically before programmatically

* Convert the basic steps into instructions in the programming
language

* Use an editor to create a file that contains the program
* Use the compiler to check the syntax of the program
* Test the program on a range of data

[COMP1911 |

35

