Foundations of Abstract Interpretation

(Week 8)

Yulei Sui

School of Computer Science and Engineering University of New South Wales, Australia

1

Classes in the Next Three Weeks

Outline of Today's lecture

- An Introduction to Abstract Interpretation: What and Why
- Abstract Interpretation vs Symbolic Execution
- Definitions: Abstract domains, Abstract State and Abstract Trace.
- Step-by-Step Motivating Examples.
- Widening and Narrowing to Improve Analysis Speed and Precision

Abstract interpretation or Abstract Execution [Cousot & Cousot, POPL'77]¹, a general framework for static analysis, aims to **soundly approximate** the potential concrete values program variables may take during runtime, **based on monotonic functions over ordered sets, particularly lattices**.

The key lies in abstracting a potentially infinite number of concrete values into a finite number of abstract values.

$$x = 0 \text{ or } 2$$

What is the abstract value?

Abstract Interpretation: Applications

- **Program Optimization**: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
 - Range Analysis: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.

Abstract Interpretation: Applications

- **Program Optimization**: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
 - Range Analysis: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.
- Hardware Design and Analysis: used to verify that hardware designs meet certain specifications and to optimize the designs for better performance or lower power consumption.
 - **Analyzing Hardware Circuits:** By creating an abstract model of the circuit, it can predict how the circuit will behave under various input conditions.

Abstract Interpretation: Applications

- **Program Optimization**: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
 - Range Analysis: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.
- Hardware Design and Analysis: used to verify that hardware designs meet certain specifications and to optimize the designs for better performance or lower power consumption.
 - **Analyzing Hardware Circuits:** By creating an abstract model of the circuit, it can predict how the circuit will behave under various input conditions.
- **Code Analysis (This Course)**: provides a systematic approach to approximate program behavior through value abstractions.
 - Security Analysis: crucial for early detection of bugs (e.g., assertion errors and buffer overflows), reducing debugging time and enhancing code reliability.

Abstract Interpretation: Tools

Widely used in safety-critical systems (e.g., aerospace industries) and commercial software products to enhance reliability, security, and performance.

Abstract Interpretation: Tools

Widely used in safety-critical systems (e.g., aerospace industries) and commercial software products to enhance reliability, security, and performance.

- **Astrée** is used to analyze and ensure the safety of software in modern aircraft, such as the Airbus A380.
- **Polyspace** is highly valued in the automotive and aerospace industries for ensuring software compliance with safety standards such as ISO 26262 for automotive software.
- **Ikos** is specialized in detecting run-time errors and numerical computation issues, making it ideal for space and aeronautics software.
- **SPARK** is used in the aerospace industry for writing and verifying safety-critical avionics software.
- **Infer** is a static analysis tool developed by Facebook to identify bugs in mobile and web applications.
- Other tools: Frama-C, Julia Static Analyzer, BAP, Soot and many more ...

• Abstract interpretation aims for sound results. It can conservatively approximate all possible execution paths and runtime behaviors.

- Abstract interpretation aims for sound results. It can conservatively approximate all possible execution paths and runtime behaviors.
- **Symbolic execution** can be unsound. It precisely explores individual yet feasible paths, facing a "path explosion" problem in large programs, and may result in under-approximation of program behaviors.

Assignment-2 vs. Assignment-3

Assignment-2

- Delegate the constraint solving to the z3 SMT solver.
- Each time, it returns **one solution with concrete values for all variables** in the search space when the solver is satisfiable.
- Per-path verification without handling the inner parts of a loop.

Assignment-3

- Use Abstract State (AEState) and Abstract Trace (a set of AEStates for all ICFGNodes) to compute and maintain abstract values of variables.
- Abstract all possible values of a variable into a value interval (for scalars) or an address set (for memory addresses).
- Approximate loop behaviors based on widening and narrowing.

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Sound (include all non-negative numbers) imprecise (may include infeasible numbers: 2, 4, 5, ...)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Answer

0

1

3

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Importance of Soundness

• **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.

Importance of Soundness

- **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.
- **Quality Assurance:** Crucial for critical systems where failure can have serious consequences, ensuring software behaves as intended.

Importance of Soundness

- **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.
- **Quality Assurance:** Crucial for critical systems where failure can have serious consequences, ensuring software behaves as intended.
- **Confidence in Maintenance:** Provides a safety net for code changes, reducing the risk of introducing new bugs.

• **Abstract interpretation** is typically guaranteed to terminate within a finite step. Uses an abstracted, and hence more manageable, version of the state space to represent the infinite number of runtime states and paths.

- **Abstract interpretation** is typically guaranteed to terminate within a finite step. Uses an abstracted, and hence more manageable, version of the state space to represent the infinite number of runtime states and paths.
- **Symbolic execution** may struggle with termination in complex or large-scale programs. The need to explore numerous paths in detail, especially in programs with loops and recursive calls, can lead to non-termination or impractical analysis times.

Importance of Termination

• **Deterministic:** Ensures consistent outcomes and predictable resource use for the same input.

Importance of Termination

- **Deterministic:** Ensures consistent outcomes and predictable resource use for the same input.
- Efficiency: Reduces computational load by using abstracted state spaces, speeding up the analysis process.

Importance of Termination

- Deterministic: Ensures consistent outcomes and predictable resource use for the same input.
- Efficiency: Reduces computational load by using abstracted state spaces, speeding up the analysis process.
- **Coverage:** ensure that all parts of the code are analyzed, avoiding missed sections and ensuring thorough coverage for detecting issues.

Abstract Interpretation: A Code Example

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

Abstract Interpretation: A Code Example

Abstract Interpretation: A Code Example

14

Concrete Domain and Abstract Domain: Formal Definition

Concrete Domain

- S denotes the set of concrete values that a program variable can have.
 - E.g., $\mathbb{S} = \mathbb{Z}$ represents the concrete values that an integer variable can have.
- A concrete domain C is the *powerset* of S, denoted as C = P(S).
 - E.g. The *powerset integer domain* is a concrete domain for integer variables.

Abstract Domain

- An **abstract domain** A contains *abstract values* approximating a set of concrete values.
- An abstract domain is typically implemented using a lattice

 L = ⟨A, ⊆, □, ⊥, ⊥, ⊥⟩ structure, a set of abstract values following a partial
 order, also equipped with two binary operations.
 - \sqsubseteq is a partial order relation on \mathbb{A} (e.g., \sqsubseteq is the subset (\subseteq) on a power set).
 - □ and □ are the meet and join binary operations, and ⊥ and ⊤ are unique least and greatest elements of A.

An Example: Abstract Sign Domain

An abstract domain that approximates a set of concrete values with their signs.

- Lattice is defined as $\mathbb{L} = \langle \mathcal{P}(\{-, 0, +\}), \sqsubseteq, \sqcap, \bot, \top \rangle$.
- Partial order: $a \sqsubseteq b \Leftrightarrow a \subseteq b$. E.g., $\{+\} \sqsubseteq \{0,+\} \Leftrightarrow \{+\} \subseteq \{0,+\}$.
- Meet operator a □ b: returns the greatest lower bound (GLB) that is less than or equal to both a and b (move downwards along the lattice)
 {+} □ {0} = ⊥
- Join operator $a \sqcup b$: returns the least upper bound (LUB) that is greater than or equal to both *a* and *b* (move upwards along the lattice)
 - $\{+\} \sqcup \{0\} = \{+, 0\}$
- Approximation: concrete value set $\{1,3\}$ is over-approximated as $\{+\}$. After concretization, it is restored as $\{x \in \mathbb{Z} | x > 0\}$, a super set of $\{1,3\}$.

An Example, the Best Abstraction using Sign Domain

Approximation 1 (more precise than Approximation 2) is the best abstraction!

Galois Connection

When each concrete value has a unique best abstraction, the correspondence is a **Galois connection**, which is a two-way connections between abstract domain and concrete domain using abstraction function and concretization function.

- Abstraction function α : C → A maps a set of concrete values to its abstract ones;
- Concretization function $\gamma : \mathbb{A} \to \mathbb{C}$ maps a set of abstract values to concrete ones.

Galois Connection

. . .

When each concrete value has a unique best abstraction, the correspondence is a **Galois connection**, which is a two-way connections between abstract domain and concrete domain using abstraction function and concretization function.

- Abstraction function α : C → A maps a set of concrete values to its abstract ones;
- Concretization function γ : A → C maps a set of abstract values to concrete ones.

Example: Abstraction/concretization functions on sign domain

$$egin{aligned} & \gamma_{Sign}(\top) = \mathbb{Z} \ & \gamma_{Sign}(\{-\}) = \{x \, | \, x < 0\} \ & \gamma_{Sign}(\{+\}) = \{x \, | \, x > 0\} \end{aligned}$$

$$egin{aligned} lpha_{ extsf{Sign}}(m{c}) &= \{+\} extsf{if} \ m{c} \in \mathbb{Z}_{>0} \ lpha_{ extsf{Sign}}(m{c}) &= \{-\} extsf{if} \ m{c} \in \mathbb{Z}_{<0} \ lpha_{ extsf{Sign}}(m{c}) &= \{+,0\} extsf{if} \ m{c} \in \mathbb{Z}_{\geq 0} \end{aligned}$$

. . .

Galois Connection of Sign Domain

Interval Domain

The interval domain is an abstract domain that represents a set of integers that fall between two given endpoints.

· Lattice is defined as

 $\mathbb{L}_{\textit{interval}} = \langle \mathbb{I}, \sqsubseteq, \sqcap, \bot, \bot, \top \rangle, \text{ where } \mathbb{I} = \{ [a, b] \mid a, b \in \mathbb{Z} \cup \{-\infty, +\infty\} \} \cup \{\bot\}.$

• Partial order: $[a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 \le a_1 \land b_1 \le b_2$.

• E.g., $[0,0], [0,1] \in \mathbb{A}_{interval}$, satisfying $[0,0] \sqsubseteq [0,1]$.

Interval Domain

The interval domain is an abstract domain that represents a set of integers that fall between two given endpoints.

· Lattice is defined as

 $\mathbb{L}_{\textit{interval}} = \langle \mathbb{I}, \sqsubseteq, \sqcap, \sqcup, \bot, \top \rangle, \text{ where } \mathbb{I} = \{ [a, b] \mid a, b \in \mathbb{Z} \cup \{-\infty, +\infty\} \} \cup \{\bot\}.$

- Partial order: $[a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 \le a_1 \land b_1 \le b_2$.
 - E.g., $[0,0], [0,1] \in \mathbb{A}_{interval}$, satisfying $[0,0] \sqsubseteq [0,1]$.

Given $a_1 = [3, 8]$ and $a_2 = [7, 12]$.

Meet operation $a_1 \sqcap a_2$ returns the **greatest Lower Bound** (GLB):

• GLB = [7, 8], the largest range that is shared by both a_1 and a_2 .

Join operation $a_1 \sqcup a_2$ returns the **Least Upper Bound** (LUB):

• LUB = [3,12], the smallest range that includes both a_1 and a_2 .

LUB and GLB of lattice $\mathbb{L}_{\textit{interval}}$ are $[-\infty,+\infty]$ and \bot respectively.

Galois Connection between \mathbb{C} and $\mathbb{A}_{interval}$

Figure: Powerset integer domain \mathbb{C} and its abstraction as the interval domain $\mathbb{A}_{interval}$.

Abstract State and Abstract Trace

 An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map AS : V → A associating program variables V with an abstract value in A, approximating the runtime states of program variables.

Abstract State and Abstract Trace

- An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map AS : V → A associating program variables V with an abstract value in A, approximating the runtime states of program variables.
- An **abstract trace** $\sigma \in \mathbb{L} \times \mathcal{V} \to \mathbb{A}$ represents a list of abstract states before $(\overline{\ell})$ and after $(\underline{\ell})$ each program statement ℓ (preAbsTrace and postAbsTrace in Assignment-3).

	Notation	Domain
Abstract trace	σ	$\mathbb{L} imes \mathcal{V} o \mathbb{A}_{\mathit{Interval}}$
Abstract state at program point $L \in \mathbb{L}$	σ_L	$\mathcal{V} o \mathbb{A}_{\mathit{Interval}}$
Abstract value of x at program point $L \in \mathbb{L}$	$\sigma_L(\mathbf{x})$	AInterval

Abstract							
trace							
$\sigma_{\ell_1}(a)$							
$\sigma_{\ell_2}(a)$							
$\sigma_{\ell_3}(a)$							
$\sigma_{\ell_4}(a)$							

Control Flow Graph

Abstract						
trace						
$\sigma_{\ell_1}(a)$						
$\sigma_{\ell_2}(a)$						
$\sigma_{\ell_3}(a)$						
$\sigma_{\ell_4}(a)$						

What is the abstract state after analyzing each statement?

Control Flow Graph

Abstract						-	
trace							
$\sigma_{\ell_1}(a)$							
$\sigma_{\ell_2}(a)$							
$\sigma_{\ell_3}(a)$							
$\sigma_{\ell_4}(a)$							

What is the abstract state after analyzing each statement?

$$\sigma_{\underline{\ell_1}}(a):=\!F_1()=\![m{0},m{0}]$$

Control Flow Graph

 F_1,\ldots,F_4 are transfer functions which indicate how abstract states are updated

Abstract						
trace						
$\sigma_{\ell_1}(a)$						
$\sigma_{\ell_2}(a)$						
$\sigma_{\ell_3}(a)$						
$\sigma_{\ell_4}(a)$						

What is the abstract state after analyzing each statement?

$$\sigma_{\underline{\ell_1}}(a):=F_1()=[0,0]$$

$$\sigma_{\underline{\ell_2}}(a):=F_2(\sigma_{\underline{\ell_1}},\sigma_{\underline{\ell_3}})=\,\sigma_{\underline{\ell_1}}(a)\sqcup\sigma_{\underline{\ell_3}}(a)$$

Control Flow Graph

Abstract						
trace						
$\sigma_{\ell_1}(a)$						
$\sigma_{\ell_2}(a)$						
$\sigma_{\ell_3}(a)$						
$\sigma_{\ell_4}(a)$						

Control Flow Graph

What is the abstract state after analyzing each statement?
$$\begin{split} \sigma_{\underline{\ell_1}}(a) &:= F_1() = [0,0] \\ \sigma_{\underline{\ell_2}}(a) &:= F_2(\sigma_{\underline{\ell_1}}, \sigma_{\underline{\ell_3}}) = \sigma_{\underline{\ell_1}}(a) \sqcup \sigma_{\underline{\ell_3}}(a) \\ \sigma_{\underline{\ell_3}}(a) &:= F_3(\sigma_{\underline{\ell_2}}) = ([-\infty,9] \sqcap \sigma_{\underline{\ell_2}}(a)) + [1,1] \end{split}$$

 F_1,\ldots,F_4 are transfer functions which indicate how abstract states are updated

Abstract						
trace						
$\sigma_{\ell_1}(a)$						
$\sigma_{\ell_2}(a)$						
$\sigma_{\ell_3}(a)$						
$\sigma_{\ell_4}(a)$						

Control Flow Graph

What is the abstract state after analyzing each statement?
$$\begin{split} \sigma_{\underline{\ell_1}}(a) &:= F_1() = [0,0] \\ \sigma_{\underline{\ell_2}}(a) &:= F_2(\sigma_{\underline{\ell_1}}, \sigma_{\underline{\ell_3}}) = \sigma_{\underline{\ell_1}}(a) \sqcup \sigma_{\underline{\ell_3}}(a) \\ \sigma_{\underline{\ell_3}}(a) &:= F_3(\sigma_{\underline{\ell_2}}) = ([-\infty,9] \sqcap \sigma_{\underline{\ell_2}}(a)) + [1,1] \\ \sigma_{\underline{\ell_4}}(a) &:= F_4(\sigma_{\underline{\ell_2}}) = ([10,\infty] \sqcap \sigma_{\underline{\ell_2}}(a)) \end{split}$$

 F_1,\ldots,F_4 are transfer functions which indicate how abstract states are updated

Abstract	Init						
trace							
$\sigma_{\ell_1}(a)$	\perp						
$\sigma_{\ell_2}(a)$	\perp						
$\sigma_{\ell_3}(a)$	\perp						
$\sigma_{\ell_4}(a)$	\perp						

Control Flow Graph

Abstract	Init	After					
trace		analyzing					
		- C1	 	 	 	 	
$\sigma_{\ell_1}(a)$	\perp	[0, 0]					
$\sigma_{\ell_2}(a)$	\perp	\perp					
$\sigma_{\ell_3}(a)$	\perp	\perp					
$\sigma_{\ell_4}(a)$	\perp	\perp					

Control Flow Graph

Abstract	Init	After	1 th loo	1 th loop iter						
trace		analyzing	After							
11400		ℓ_1	<i>ℓ</i> 2							
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]							
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]							
$\sigma_{\ell_3}(a)$	\perp	\perp	1							
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp							

Control Flow Graph

Abstract	Init	After	1 th loop iter					
trace		analyzing	After	After				
11400		ℓ_1	<i>l</i> 2	ℓ_3				
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0,0]				
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]				
$\sigma_{\ell_3}(a)$	\perp	\perp	1	[1, 1]				
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp				

Control Flow Graph

Abstract	Init	After analyzing	1 th loo	op iter	2 nd lo	op iter			
trace		analyzing	After	After	After				
		<i>l</i> 1	£2	£3	£2				
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0, 0]	[0, 0]	[0, 0]				
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0, 0]	[0, 1]				
$\sigma_{\ell_3}(a)$	\perp	\perp	T	[1, 1]	[1, 1]				
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp				

Control Flow Graph

Abstract	Init	After	1 th loop iter		2 nd loop iter				
trace		analyzing	After	After	After	After			
		ℓ_1	<i>l</i> 2	l ₃	<i>ℓ</i> 2	ℓ_3			
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0, 0]	[0, 0]	[0,0]	[0, 0]			
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0, 0]	[0, 1]	[0, 1]			
$\sigma_{\ell_3}(a)$	T	\perp	T	[1, 1]	[1, 1]	[1,2]			
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp			

Control Flow Graph

Abstract	Init	Init After		1 th loop iter		2 nd loop iter		11 th loop iter				
trace		analyzing	After	After	After	After		After	After			
		ℓ_1	ℓ ₂	ℓ ₃	<i>l</i> 2	ℓ_3		<i>ℓ</i> 2	ℓ_3			
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0, 0]	[0,0]	[0,0]	[0, 0]		[0,0]	[0, 0]			
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0,0]	[0, 1]	[0, 1]		[0, 10]	[0, 10]			
$\sigma_{\ell_3}(a)$	T	\perp	T	[1, 1]	[1, 1]	[1,2]		[1, 10]	[1, 10]			
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp		\perp	\perp			

Control Flow Graph

Abstract	Init	After	1 th loo	op iter	2 nd lo	nd loop iter		11 th lo	11 th loop iter		oop iter	
trace		analyzing	After	After	After	After		After	After	After		
		ℓ_1	<i>l</i> 2	ℓ_3	<i>ℓ</i> 2	ℓ_3		<i>ℓ</i> 2	ℓ_3	ℓ ₂		
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0, 0]	[0,0]	[0,0]	[0, 0]		[0,0]	[0, 0]	[0, 0]		
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0,0]	[0, 1]	[0, 1]		[0, 10]	[0, 10]	[0, 10]		
$\sigma_{\ell_3}(a)$	1	\perp	T	[1, 1]	[1, 1]	[1,2]		[1, 10]	[1, 10]	[1, 10]		
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp		\perp	\perp	\perp		

Control Flow Graph

Abstract	Init	After	1 th loop iter		2 nd loop iter		11 th loop iter		12 nd loop iter		
trace		analyzing	After	After	After	After	 After	After	After	After	
		ℓ_1	<i>ℓ</i> 2	ℓ_3	<i>ℓ</i> 2	ℓ_3	<i>ℓ</i> 2	ℓ_3	<i>l</i> ₂	ℓ_3	
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0,0]	[0,0]	[0, 0]	 [0,0]	[0, 0]	[0, 0]	[0,0]	
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	[0, 1]	[0, 1]	 [0, 10]	[0, 10]	[0, 10]	[0, 10]	
$\sigma_{\ell_3}(a)$	1	1	1	[1, 1]	[1, 1]	[1,2]	 [1, 10]	[1, 10]	[1, 10]	[1, 10]	
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	 \perp	\perp	\perp	\perp	

Control Flow Graph

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	11 th lo	op iter	12 nd I	oop iter	
trace		analyzing ℓ_1	After ℓ2	After ℓ ₃	After ℓ ₂	After ℓ_3	 After ℓ2	After ℓ_3	After ℓ ₂	After ℓ_3	
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0,0]	[0,0]	[0,0]	 [0,0]	[0, 0]	[0, 0]	[0,0]	
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	[0, 1]	[0, 1]	 [0, 10]	[0, 10]	[0, 10]	[0, 10]	
$\sigma_{\ell_3}(a)$	1	1	1	[1, 1]	[1, 1]	[1,2]	 [1, 10]	[1, 10]	[1, 10]	[1, 10]	
$\sigma_{\ell_4}(a)$	上	1	\perp	\perp	1	\perp	 \perp	\perp	\perp	\perp	

Control Flow Graph

Abstract	Init		1 th loop iter		2 nd loop iter		11 th lo	op iter	12 nd lo	oop iter	After
trace		analyzing	After	After	After	After	 After	After	After	After	analyzing
11400		ℓ_1	<i>ℓ</i> 2	ℓ_3	<i>ℓ</i> 2	ℓ_3	<i>ℓ</i> 2	ℓ_3	ℓ ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0,0]	[0,0]	[0,0]	 [0,0]	[0, 0]	[0,0]	[0,0]	[0, 0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	[0, 1]	[0, 1]	 [0, 10]	[0, 10]	[0, 10]	[0, 10]	[0, 10]
$\sigma_{\ell_3}(a)$	\perp	1	1	[1, 1]	[1, 1]	[1,2]	 [1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	 \perp	\perp	\perp	\perp	[10, 10]

Abstract	Init	Init After		1 th loop iter		2 nd loop iter		11 th lo	op iter	12 nd lo	oop iter	After
trace		analyzing	After	After	After	After		After	After	After	After	analyzing
liace		ℓ_1	<i>l</i> 2	l ₃	<i>l</i> 2	ℓ_3		<i>l</i> 2	ℓ_3	ℓ ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0,0]	[0,0]	[0,0]		[0,0]	[0, 0]	[0,0]	[0,0]	[0, 0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	[0, 1]	[0, 1]		[0, 10]	[0, 10]	[0, 10]	[0, 10]	[0, 10]
$\sigma_{\ell_3}(a)$	\perp	1	1	[1, 1]	[1, 1]	[1,2]		[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp		\perp	\perp	\perp	\perp	[10, 10]

Abstract	Init	After	1 th lo	op iter	2 nd lo	2 nd loop iter		11 th lo	op iter	12 nd loop iter		After
trace		analyzing	After	After	After	After		After	After	After	After	analyzing
		ℓ_1	<i>ℓ</i> ₂	ℓ_3	<i>ℓ</i> 2	<i>ℓ</i> ₃		<i>ℓ</i> 2	<i>ℓ</i> ₃	ℓ ₂	<i>ℓ</i> ₃	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0,0]	[0,0]	[0,0]		[0,0]	[0,0]	[0,0]	[0,0]	[0, 0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	[0, 1]	[0, 1]		[0, 10]	[0, 10]	[0, 10]	[0, 10]	[0, 10]
$\sigma_{\ell_3}(a)$	\perp	\perp	1	[1, 1]	[1, 1]	[1,2]		[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp			\perp	\perp	\perp	[10, 10]

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract	Init	After	1 th loop iter 2 nd loop iter			11 th lo	op iter	12 nd lo	oop iter	After	
trace		analyzing [*] ℓ1	After ℓ2	After ℓ ₃	After ℓ ₂	After ℓ ₃	After ℓ2	After ℓ ₃	After ℓ ₂	After ℓ ₃	analyzing ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0,0]	[0,0]	[0,0]	 [0,0]	[0,0]	[0, 0]	[0,0]	[0,0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0, 0]	[0, 1]	[0, 1]	 [0, 10]	[0, 10]	[0, 10]	[0, 10]	[0, 10]
$\sigma_{\ell_3}(a)$	\perp	\perp	1	[1, 1]	[1, 1]	[1,2]	 [1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	1	\perp	\perp	\perp	 1	\perp	\perp	1	[10, 10]

Widening technique can accelerate the fixpoint computation of $\sigma_{\ell_2}(a)$.

Naive fixpoint computation: value changes of $\sigma_{\underline{\ell_2}}(a)$ $[0,0] \Longrightarrow [0,1] \Longrightarrow \ldots \Longrightarrow [0,10] \Longrightarrow [0,10]$

Widening technique can accelerate the fixpoint computation of $\sigma_{\ell_2}(a)$.

Naive fixpoint computation: value changes of $\sigma_{\underline{\ell_2}}(a)$ $[0,0] \Longrightarrow [0,1] \Longrightarrow \dots \Longrightarrow [0,10] \Longrightarrow [0,10]$ $\underbrace{\mathsf{Widening}}_{\mathsf{aggressively update } \sigma_{\ell_2}(a)} [0,+\infty]$

Widening at the k^{th} iteration in the loop for analyzing ℓ_2 to update σ_{ℓ_2} .

Widening at the k^{th} iteration in the loop for analyzing ℓ_2 to update σ_{ℓ_2} .

What is a Widening Operator?

Widening Operator

The Widening Operator $(\nabla : \mathbb{A} \times \mathbb{A} \to \mathbb{A})$ is formally defined on a poset $(\mathbb{A}, \sqsubseteq)$. ∇ on interval domain could be defined as:

 $[\ell_1, h_1]\nabla[\ell_2, h_2] = [\ell_3, h_3]$

Widening Operator

The Widening Operator $(\nabla : \mathbb{A} \times \mathbb{A} \to \mathbb{A})$ is formally defined on a poset $(\mathbb{A}, \sqsubseteq)$. ∇ on interval domain could be defined as:

$$[\ell_1, h_1]\nabla[\ell_2, h_2] = [\ell_3, h_3]$$

where

$$l_3 = \begin{cases} -\infty & l_2 < l_1 \\ l_1 & l_2 \ge l_1 \end{cases}, h_3 = \begin{cases} +\infty & h_2 > h_1 \\ h_1 & h_2 \le h_1 \end{cases}$$

As a concrete example, $[0,0]\nabla[0,1] = [0,+\infty]$.

Abstract	Init				
trace					
$\sigma_{\ell_1}(a)$	\perp				
$\sigma_{\ell_2}(a)$	\perp				
$\sigma_{\ell_3}(a)$	\perp				
$\sigma_{\ell_4}(a)$	\perp				

Control Flow Graph

Abstract	Init	After				
trace		analyzing				
		ℓ_1				
$\sigma_{\ell_1}(a)$	\perp	[0,0]				
$\sigma_{\ell_2}(a)$	\perp	\perp				
$\sigma_{\ell_3}(a)$	\perp	\perp				
$\sigma_{\ell_4}(a)$	\perp	\perp				

Control Flow Graph

Abstract	Init	After	1 th loo	op iter			
trace		analyzing	After				
		ℓ_1	<i>l</i> ₂				
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0, 0]				
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]				
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp				
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp				

Control Flow Graph

Abstract	Init	After	1 th loc	op iter			
trace		analyzing	After	After			
11400		ℓ_1	<i>l</i> 2	l ₃			
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0,0]			
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0, 0]			
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]			
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp			

Control Flow Graph

Control Flow Graph

Abstract	Init	After	1 th loc	op iter	2 nd lo	op iter		
trace		analyzing	After	After	After	After		
- (0)	-		[0_0]	[0 0]	[0 0]	[0 0]		
$\sigma_{\ell_1}(a)$	1	[0,0]	[0, 0]	[0,0]	[0, 0]	[0, 0]		
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0, 0]	$[0,\infty]$	$[0,\infty]$		
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]		
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp		

Control Flow Graph

Abstract	Init	After	1 th loc	op iter	2 nd lo	op iter	3 rd lo	op iter	
trace		analyzing ℓ_1	After ℓ2	After ℓ ₃	After ℓ2	After ℓ ₃	After _{ℓ2}		
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0, 0]	[0,0]	[0,0]	[0,0]	[0,0]		
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$		
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]		
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp		

Control Flow Graph

Abstract	Init	After	1 th loc	op iter	2 nd lo	op iter	3 rd loo	op iter	
trace		analyzing ℓ_1	After ℓ2	After ℓ ₃	After _{ℓ2}	After ℓ ₃	After ℓ2	After ℓ ₃	
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0,0]	[0,0]	[0, 0]	[0,0]	[0,0]	
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	

Control Flow Graph

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd lo	op iter	
trace		analyzing ℓ_1	After ℓ_2	After ℓ ₃	After ℓ ₂	After ℓ_3	After ℓ_2	After ℓ ₃	
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0, 0]	[0,0]	[0,0]	[0, 0]	[0, 0]	[0, 0]	
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0,0]	$[0,\infty]$	$[0,\infty]$	[0, ∞]	$[0,\infty]$	
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10	[1, 10]	
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	

Control Flow Graph

Abstract	Init After		1 th loc	op iter	2 nd loop iter		3 rd loo	After	
trace		analyzing	After	After	After	After	After	After	analyzing
11400		ℓ_1	ℓ ₂	ℓ ₃	<i>ℓ</i> 2	<i>l</i> ₃	<i>l</i> ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0, 0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	$[10,\infty]$

Abstract	Init	After	1 th loc	op iter	2 nd loop iter		3 rd loo	op iter	After
trace		analyzing	After	After	After	After	After	After	analyzing
ilace		ℓ_1	ℓ ₂	ℓ ₃	<i>l</i> 2	<i>l</i> ₃	<i>l</i> ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0,0]	[0, 0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\underline{\ell_4}}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	$[10,\infty]$

Abstract	Init	Init After		op iter	2 nd lo	op iter	3 rd loo	After	
trace		analyzing	After	After	After	After	After	After	analyzing
11400		ℓ_1	ℓ ₂	ℓ_3	ℓ ₂	ℓ ₃	ℓ ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0, 0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0,0]	[0, 0]
$\sigma_{\underline{\ell_2}}(a)$	\perp	\perp	[0, 0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$
$\sigma_{\underline{\ell_3}}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	$[10,\infty]$

[0,0] \Rightarrow $[0,\infty]$ \Rightarrow $[0,\infty]$

3 iterations while analyzing the loop

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

28

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd lo	op iter	After
trace		analyzing	After	After	After	After	After	After	analyzing
11400		ℓ_1	ℓ ₂	ℓ_3	ℓ ₂	ℓ ₃	ℓ ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0, 0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0,0]	[0,0]
$\sigma_{\underline{\ell_2}}(a)$	\perp	\perp	[0, 0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$
$\sigma_{\underline{\ell_3}}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	$[10,\infty]$

[0,0] \Rightarrow $[0,\infty]$ \Rightarrow $[0,\infty]$

3 iterations while analyzing the loop

Faster than naive fixpoint computation (12 iterations)!

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd lo	op iter	After
trace		analyzing	After	After	After	After	After	After	analyzing
11400		ℓ_1	<i>l</i> 2	ℓ ₃	<i>l</i> 2	l ₃	ℓ ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0,0]	[0,0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0,0]	[0,0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$
$\sigma_{\ell_3}(a)$	T	1	1	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	$[10,\infty]$

Narrowing technique can eliminate the precision loss after a widening operation (e.g., by improving imprecise σ_{ℓ_2} and σ_{ℓ_4}).

Naive fixpoint computation: value changes of $\sigma_{\ell_2}(a)$

$$[0,0]
ightarrow [0,1]
ightarrow \dots
ightarrow [0,10]
ightarrow [0,10]$$

Narrowing technique can eliminate the precision loss after a widening operation (e.g., by improving imprecise σ_{ℓ_2} and σ_{ℓ_4}).

Naive fixpoint computation: value changes of $\sigma_{\ell_2}(a)$

After the widening reaches a fixpoint at the k^{th} iteration when analyzing the loop, we start performing narrowing at the $(k + 1)^{th}$ to update σ_{ℓ_2} .

Widening reaches

a fixpoint

Control Flow Graph

ph

 $\sigma_{\ell_2}^k(a) := \ \sigma_{\ell_2}^{k-1}(a)
abla (\sigma_{\ell_1}(a) \sqcup \sigma_{\ell_3}^{k-1}(a))$

After the widening reaches a fixpoint at the k^{th} iteration when analyzing the loop, we start performing narrowing at the $(k + 1)^{th}$ to update σ_{ℓ_2} .

Control Flow Graph

What is a Narrowing Operator?

Narrowing Operator

The Narrowing Operator $(\Delta : \mathbb{A} \times \mathbb{A} \to \mathbb{A})$ is formally defined on a poset $(\mathbb{A}, \sqsubseteq)$. Δ on interval domain could be defined as:

 $[I_1, h_1]\Delta[I_2, h_2] = [I_3, h_3]$

Narrowing Operator

The Narrowing Operator $(\Delta : \mathbb{A} \times \mathbb{A} \to \mathbb{A})$ is formally defined on a poset $(\mathbb{A}, \sqsubseteq)$. Δ on interval domain could be defined as:

$$[l_1, h_1]\Delta[l_2, h_2] = [l_3, h_3]$$

where

$$l_3 = \begin{cases} l_2 & l_1 \equiv -\infty \\ l_1 & l_1 \neq -\infty \end{cases}, h_3 = \begin{cases} h_2 & h_1 \equiv \infty \\ h_1 & h_1 \neq \infty \end{cases}$$

As a concrete example, $[0,\infty]\Delta[0,10] = [0,10]$.

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd loo	op iter			
trace		analyzing	After	After	After	After	After	After			
liuoo		ℓ_1	ℓ_2	ℓ_3	ℓ_2	ℓ_3	ℓ_2	ℓ_3			
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0,0]	[0,0]	[0,0]	[0, 0]	[0,0]			
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$			
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]			
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp			

 $\begin{array}{c} \textbf{Widening reaches a fixpoint} \\ \textbf{a} \geq 10 \\ \textbf{a} \geq 10 \\ \textbf{a} < 10 \\ \textbf{l}_{2}: \textbf{a} < 10 \\ \textbf{a} < 10 \\ \textbf{l}_{2}: \textbf{a} + \textbf{i}; \\ \textbf{l}_{3}: \textbf{a} + \textbf{i}; \\ \textbf{l}_{4}: \dots \\ \textbf{l}_{4}: \dots \\ \textbf{l}_{4}: \dots \end{array} , \sigma_{\underline{\ell_{3}}}^{3} \quad \textbf{a} \quad ([-\infty, 9] \sqcap \sigma_{\underline{\ell_{3}}}^{3}(a)) + [1, 1] \\ \textbf{a} \in [1, \infty, 9] \sqcap \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{a} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \upharpoonright \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \end{cases} \sigma_{\underline{\ell_{3}}}^{3}(a) + [1, 1] \\ \textbf{b} \in [1, \infty, 9] \end{cases} \sigma_{\underline$

Control Flow Graph

Control Flow Graph

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd loo	op iter	4 th loo	op iter		
trace		analyzing	After	After	After	After	After	After	After	After		
		ℓ_1	ℓ ₂	ℓ ₃	ℓ_2	ℓ_3	ℓ_2	ℓ_3	ℓ ₂	ℓ ₃		
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]		
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	[0, 10]	[0, 10]		
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]		
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp		

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd loo	op iter	4 th loo	op iter	5 th loo	op iter	
trace		analyzing	After	After	After	After	After	After	After	After	After		
		ℓ_1	<i>ℓ</i> ₂	ℓ_3	ℓ_2	ℓ_3	l ₂	ℓ_3	ℓ ₂	ℓ_3	ℓ ₂		
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0,0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0, 0]	[0,0]	[0, 0]		
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	[0, 10]	[0, 10]	[0, 10]		
$\sigma_{\ell_3}(a)$	\perp	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]		
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp		

Control Flow Graph

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd loo	op iter	4 th loc	op iter	5 th loo	op iter	After
trace		analyzing	After	After	After	After	After	After	After	After	After	After	analyzing
		ℓ_1	ℓ ₂	ℓ ₃	ℓ_2	ℓ_3	ℓ_2	ℓ_3	ℓ ₂	ℓ_3	ℓ ₂	ℓ ₃	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0,0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0, 0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	[0, 10]	[0, 10]	[0, 10]	[0, 10]	
$\sigma_{\ell_3}(a)$	\perp	1	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	1	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	

Control Flow Graph

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd loo	op iter	4 th loo	op iter	5 th Ic	op iter	After
trace		analyzing	After	After	After	After	After	After	After	After	After	After	analyzing
		ℓ_1	ℓ ₂	ℓ_3	ℓ_2	ℓ_3	\ell ₂	ℓ_3	ℓ ₂	ℓ ₃	ℓ ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$		[0, 0]	[0,0]	[0,0]	[0,0]	[0,0]	[0, 0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0,0]	
$\sigma_{\ell_2}(a)$		\perp	[0,0]	[0,0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	[0, 10]	[0, 10]	[0, 10	[0, 10]	
$\sigma_{\ell_3}(a)$	1	\perp	\perp	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10	[1, 10]	
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp		

Control Flow Graph

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd loo	op iter	4 th loo	op iter	5 th loc	op iter	After
trace		analyzing	After	After	After	After	After	After	After	After	After	After	analyzing
liuoo		ℓ_1	<i>ℓ</i> ₂	ℓ_3	ℓ_2	ℓ_3	ℓ_2	ℓ_3	ℓ_2	ℓ_3	\ell ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0,0]	[0,0]	[0,0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0,0]	[0, 0]	[0, 0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	[0, 10]	[0, 10]	[0, 10]	[0, 10]	[0, 10]
$\sigma_{\ell_3}(a)$	\perp	\perp	1	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	[10, 10]

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd lo	op iter	4 th loo	op iter	5 th loo	op iter	After
trace		analyzing	After	After	After	After	After	After	After	After	After	After	analyzing
liuoo		ℓ_1	<i>ℓ</i> ₂	ℓ_3	ℓ_2	ℓ_3	ℓ_2	ℓ_3	ℓ_2	ℓ_3	\ell ₂	ℓ_3	l4
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0,0]	[0,0]	[0,0]	[0, 0]	[0,0]	[0,0]	[0, 0]	[0,0]	[0,0]	[0,0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	[0, 10]	[0, 10]	[0, 10]	[0, 10]	[0, 10]
$\sigma_{\ell_3}(a)$	\perp	1	1	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	1	\perp	\perp	\perp	1	\perp	\perp	1	\perp	\perp	[10, 10]

Abstract	Init	After	1 th loo	op iter	2 nd lo	op iter	3 rd loo	op iter	4 th loc	op iter	5 th loo	op iter	After
trace		analyzing	After	After	After	After	After	After	After	After	After	After	analyzing
		ℓ_1	<i>ℓ</i> ₂	ℓ_3	\ell ₂	ℓ_3	ℓ_2	ℓ_3	ℓ ₂	ℓ ₃	ℓ ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0,0]	[0,0]	[0,0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	[0, 10]	[0, 10]	[0, 10]	[0, 10]	[0, 10]
$\sigma_{\ell_3}(a)$	\perp	1	1	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	1	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	[10, 10]

Narrowing: The Loop Example

Abstract	Init	After	1 th loop iter		2 nd loop iter		3 rd loop iter		4 th loop iter		5 th loop iter		After
trace		analyzing	After	After	After	After	After	After	After	After	After	After	analyzing
		ℓ_1	<i>ℓ</i> ₂	ℓ_3	\ell ₂	ℓ_3	ℓ_2	ℓ_3	ℓ ₂	ℓ_3	ℓ ₂	ℓ_3	ℓ_4
$\sigma_{\ell_1}(a)$	\perp	[0, 0]	[0,0]	[0,0]	[0,0]	[0,0]	[0, 0]	[0,0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]	[0, 0]
$\sigma_{\ell_2}(a)$	\perp	\perp	[0,0]	[0,0]	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	$[0,\infty]$	[0, 10]	[0, 10]	[0, 10]	[0, 10]	[0, 10]
$\sigma_{\ell_3}(a)$	\perp	1	1	[1, 1]	[1, 1]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]	[1, 10]
$\sigma_{\ell_4}(a)$	\perp	\perp	1	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp	[10, 10]

Software Security Analysis 2024 https://github.com/SVF-tools/Software-Security-Analysis

32