Foundations of Abstract Interpretation

(Week 8)

Yulei Sui School of Computer Science and Engineering

University of New South Wales, Australia

1

Classes in the Next Three Weeks

Software Security Analysis 2024 <https://github.com/SVF-tools/Software-Security-Analysis>

2

Outline of Today's lecture

- An Introduction to Abstract Interpretation: What and Why
- Abstract Interpretation vs Symbolic Execution
- Definitions: Abstract domains, Abstract State and Abstract Trace.
- Step-by-Step Motivating Examples.
- Widening and Narrowing to Improve Analysis Speed and Precision

Abstract interpretation or Abstract Execution [\[Cousot & Cousot, POPL'77\]](https://dl.acm.org/doi/pdf/10.1145/512950.512973)¹, a general framework for static analysis, aims to **soundly approximate** the potential concrete values program variables may take during runtime, **based on monotonic functions over ordered sets, particularly lattices**.

The key lies in abstracting a potentially infinite number of concrete values into a finite number of abstract values.

$$
\boxed{\mathbf{x} = 0 \text{ or } 2}
$$

What is the abstract value?

Abstract Interpretation: Applications

- **Program Optimization**: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
	- **Range Analysis**: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.

Abstract Interpretation: Applications

- **Program Optimization**: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
	- **Range Analysis**: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.
- **Hardware Design and Analysis:** used to verify that hardware designs meet certain specifications and to optimize the designs for better performance or lower power consumption.
	- **Analyzing Hardware Circuits:** By creating an abstract model of the circuit, it can predict how the circuit will behave under various input conditions.

Abstract Interpretation: Applications

- **Program Optimization**: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
	- **Range Analysis**: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.
- **Hardware Design and Analysis:** used to verify that hardware designs meet certain specifications and to optimize the designs for better performance or lower power consumption.
	- **Analyzing Hardware Circuits:** By creating an abstract model of the circuit, it can predict how the circuit will behave under various input conditions.
- **Code Analysis (This Course)**: provides a systematic approach to approximate program behavior through value abstractions.
	- **Security Analysis:** crucial for early detection of bugs (e.g., assertion errors and buffer overflows), reducing debugging time and enhancing code reliability.

Abstract Interpretation: Tools

Widely used in safety-critical systems (e.g., aerospace industries) and commercial software products to enhance reliability, security, and performance.

Abstract Interpretation: Tools

Widely used in safety-critical systems (e.g., aerospace industries) and commercial software products to enhance reliability, security, and performance.

- **Astrée** is used to analyze and ensure the safety of software in modern aircraft, such as the Airbus A380.
- **Polyspace** is highly valued in the automotive and aerospace industries for ensuring software compliance with safety standards such as ISO 26262 for automotive software.
- **Ikos** is specialized in detecting run-time errors and numerical computation issues, making it ideal for space and aeronautics software.
- **SPARK** is used in the aerospace industry for writing and verifying safety-critical avionics software.
- **Infer** is a static analysis tool developed by Facebook to identify bugs in mobile and web applications.
- Other tools: **Frama-C, Julia Static Analyzer, BAP, Soot** and many more . . .

• **Abstract interpretation** aims for **sound results**. It can conservatively approximate all possible execution paths and runtime behaviors.

- **Abstract interpretation** aims for sound results. It can conservatively approximate all possible execution paths and runtime behaviors.
- **Symbolic execution** can be unsound. It precisely explores individual yet feasible paths, facing a "path explosion" problem in large programs, and may result in under-approximation of program behaviors.

Assignment-2 vs. Assignment-3

Assignment-2

- **Delegate** the constraint solving to the **z3 SMT solver**.
- Each time, it returns **one solution with concrete values for all variables** in the search space when the solver is satisfiable.
- Per-path verification **without handling the inner parts of a loop**.

Assignment-3

- Use **Abstract State** (AEState) and **Abstract Trace** (a set of AEStates for all ICFGNodes) to **compute and maintain abstract values** of variables.
- **Abstract all possible values** of a variable into a value **interval** (for scalars) or an **address set** (for memory addresses).
- **Approximate loop behaviors** based on widening and narrowing.

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Sound (include all non-negative numbers) imprecise (may include infeasible numbers: 2, 4, 5, ...)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

 Ω 1 3

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Importance of Soundness

• **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.

Importance of Soundness

- **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.
- **Quality Assurance:** Crucial for critical systems where failure can have serious consequences, ensuring software behaves as intended.

Importance of Soundness

- **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.
- **Quality Assurance:** Crucial for critical systems where failure can have serious consequences, ensuring software behaves as intended.
- **Confidence in Maintenance:** Provides a safety net for code changes, reducing the risk of introducing new bugs.

Abstract Interpretation vs. Symbolic Execution Termination

• **Abstract interpretation** is typically guaranteed to terminate within a finite step. Uses an abstracted, and hence more manageable, version of the state space to represent the infinite number of runtime states and paths.

Abstract Interpretation vs. Symbolic Execution Termination

- **Abstract interpretation** is typically guaranteed to terminate within a finite step. Uses an abstracted, and hence more manageable, version of the state space to represent the infinite number of runtime states and paths.
- **Symbolic execution** may struggle with termination in complex or large-scale programs. The need to explore numerous paths in detail, especially in programs with loops and recursive calls, can lead to non-termination or impractical analysis times.

Importance of Termination

• **Deterministic:** Ensures consistent outcomes and predictable resource use for the same input.

Importance of Termination

- **Deterministic:** Ensures consistent outcomes and predictable resource use for the same input.
- **Efficiency:** Reduces computational load by using abstracted state spaces, speeding up the analysis process.

Importance of Termination

- **Deterministic:** Ensures consistent outcomes and predictable resource use for the same input.
- **Efficiency:** Reduces computational load by using abstracted state spaces, speeding up the analysis process.
- **Coverage:** ensure that all parts of the code are analyzed, avoiding missed sections and ensuring thorough coverage for detecting issues.

Abstract Interpretation: A Code Example

Abstract Interpretation: A Code Example

Abstract Interpretation: A Code Example

else

Concrete Domain and Abstract Domain: Formal Definition

Concrete Domain

- S denotes the set of concrete values that a program variable can have.
	- E.g., $\mathbb{S} = \mathbb{Z}$ represents the concrete values that an integer variable can have.
- A **concrete domain** $\mathbb C$ is the *powerset* of $\mathbb S$, denoted as $\mathbb C = \mathcal P(\mathbb S)$.
	- E.g. The *powerset integer domain* is a concrete domain for integer variables.

Abstract Domain

- An **abstract domain** A contains *abstract values* approximating a set of concrete values.
- An abstract domain is typically implemented using a **lattice** L = ⟨A, ⊑, ⊓, ⊔, ⊥, ⊤⟩ structure, a set of abstract values following a **partial order**, also equipped with two binary operations.
	- \subseteq is a partial order relation on A (e.g., \sqsubseteq is the subset (\subseteq) on a power set).
	- $\bullet \ \overline{\sqcap}$ and \sqcup are the meet and join binary operations, and \bot and \top are unique least and greatest elements of A.

An Example: Abstract Sign Domain

An abstract domain that approximates a set of concrete values with their signs.

- Lattice is defined as $\mathbb{L} = \langle \mathcal{P}(\{-, 0, +\}), \sqsubseteq, \sqcap, \sqcup, \bot, \top \rangle$.
- **Partial order**: *a* ⊑ *b* ⇔ *a* ⊆ *b*. E.g., {+} ⊑ {0, +} ⇔ {+} ⊆ {0, +}.
- **Meet operator** *a* ⊓ *b*: returns the **greatest lower bound (GLB)** that is less than or equal to both *a* and *b* (**move downwards along the lattice**) • {+} ⊓ {0} = ⊥
- **Join operator** *a* ⊔ *b*: returns the **least upper bound (LUB)** that is greater than or equal to both *a* and *b* (**move upwards along the lattice**)
	- $\{+\}\sqcup\{0\}=\{+,0\}$
- **Approximation**: concrete value set {1, 3} is **over-approximated** as {+}. After **concretization**, it is restored as $\{x \in \mathbb{Z} | x > 0\}$, a **super set** of $\{1, 3\}$.

An Example, the Best Abstraction using Sign Domain

Approximation 1 (more precise than Approximation 2) is the best abstraction!

Galois Connection

When each concrete value has a unique best abstraction, the correspondence is a **Galois connection**, which is a two-way connections between abstract domain and concrete domain using abstraction function and concretization function.

- Abstraction function $\alpha:\mathbb{C}\to\mathbb{A}$ maps a set of concrete values to its abstract ones;
- Concretization function $\gamma : \mathbb{A} \to \mathbb{C}$ maps a set of abstract values to concrete ones.

Galois Connection

. . .

When each concrete value has a unique best abstraction, the correspondence is a **Galois connection**, which is a two-way connections between abstract domain and concrete domain using abstraction function and concretization function.

- Abstraction function $\alpha:\mathbb{C}\to\mathbb{A}$ maps a set of concrete values to its abstract ones;
- Concretization function $\gamma : \mathbb{A} \to \mathbb{C}$ maps a set of abstract values to concrete ones.

Example: Abstraction/concretization functions on sign domain

$$
\gamma_{Sign}(\top) = \mathbb{Z}
$$

\n
$$
\gamma_{Sign}(\{-\}) = \{x \mid x < 0\}
$$

\n
$$
\gamma_{Sign}(\{+\}) = \{x \mid x > 0\}
$$

$$
\alpha_{Sign}(c) = \{+\} \text{ if } c \in \mathbb{Z}_{>0}
$$

\n
$$
\alpha_{Sign}(c) = \{-\} \text{ if } c \in \mathbb{Z}_{<0}
$$

\n
$$
\alpha_{Sign}(c) = \{+,0\} \text{ if } c \in \mathbb{Z}_{\geq 0}
$$

. . .

Galois Connection of Sign Domain

Interval Domain

The interval domain is an abstract domain that represents a set of integers that fall between two given endpoints.

• Lattice is defined as

 $\mathbb{L}_{\text{interval}} = \langle \mathbb{I}, \mathbb{C}, \mathbb{C}, \mathbb{L}, \mathbb{L}, \mathbb{L}, \mathbb{T} \rangle$, where $\mathbb{I} = \{ [a, b] \mid a, b \in \mathbb{Z} \cup \{-\infty, +\infty \} \} \cup \{ \perp \}.$

• Partial order: $[a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 \leq a_1 \wedge b_1 \leq b_2$.

• E.g., [0, 0], [0, 1] ∈ A*interval*, satisfying [0, 0] ⊑ [0, 1].

Interval Domain

The interval domain is an abstract domain that represents a set of integers that fall between two given endpoints.

• Lattice is defined as

 $\mathbb{L}_{\text{interval}} = \langle \mathbb{I}, \mathbb{I}, \mathbb{I}, \mathbb{I}, \mathbb{I}, \mathbb{I}, \mathbb{I} \rangle$, where $\mathbb{I} = \{ [a, b] \mid a, b \in \mathbb{Z} \cup \{-\infty, +\infty \} \} \cup \{ \perp \}.$

- Partial order: $[a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 \leq a_1 \wedge b_1 \leq b_2$.
	- E.g., [0, 0], [0, 1] ∈ A*interval*, satisfying [0, 0] ⊑ [0, 1].

Given $a_1 = [3, 8]$ and $a_2 = [7, 12]$.

Meet operation $a_1 ∩ a_2$ returns the **greatest Lower Bound** (GLB):

• GLB = [7, 8], the largest range that is shared by both a_1 and a_2 .

Join operation $a_1 \sqcup a_2$ returns the **Least Upper Bound** (LUB):

• LUB = [3,12], the smallest range that includes both a_1 and a_2 .

LUB and GLB of lattice L*interval* are [−∞, +∞] and ⊥ respectively.

Galois Connection between C **and** A*interval*

Figure: Powerset integer domain C and its abstraction as the interval domain A*interval*.

Abstract State and Abstract Trace

• An **abstract state** (AEState in Lab-3 and Assignment-3) is defined as a map $AS: V \to A$ associating program variables V with an abstract value in A, approximating the runtime states of program variables.

Abstract State and Abstract Trace

- An **abstract state** (AEState in Lab-3 and Assignment-3) is defined as a map *AS* : $V \rightarrow A$ associating program variables V with an abstract value in A, approximating the runtime states of program variables.
- An **abstract trace** σ ∈ L × V → A represents a list of abstract states before $\mathcal{O}(\overline{\ell})$ and after $\mathcal{O}(\ell)$ each program statement ℓ (preAbsTrace and postAbsTrace in Assignment-3).

Control Flow Graph

What is the abstract state after analyzing each statement?

Control Flow Graph

What is the abstract state after analyzing each statement?

$$
\sigma_{\underline{\ell_1}}(a):=F_1()=[0,0]
$$

Control Flow Graph

 F_1, \ldots, F_4 are transfer functions which indicate how abstract states are updated

What is the abstract state after analyzing each statement?

$$
\begin{aligned} \sigma_{\ell_1}(a) := & F_1() = [0,0] \\ \sigma_{\ell_2}(a) := & F_2(\sigma_{\ell_1},\sigma_{\ell_3}) = \ \sigma_{\ell_1}(a) \sqcup \sigma_{\ell_3}(a) \end{aligned}
$$

Control Flow Graph

Control Flow Graph

What is the abstract state after analyzing each statement? $\sigma_{\ell_1}(a) := F_1() = [0,0]$ $\sigma_{\ell_2}(a) := F_2(\sigma_{\ell_1}, \sigma_{\ell_3}) = \sigma_{\ell_1}(a) \sqcup \sigma_{\ell_3}(a)$ $\sigma_{\ell_3}(a) := F_3(\sigma_{\ell_2}) = (-\infty, 9] \sqcap \sigma_{\ell_2}(a)) + [1, 1]$

 F_1, \ldots, F_4 are transfer functions which indicate how abstract states are updated

Control Flow Graph

What is the abstract state after analyzing each statement? $\sigma_{\ell_1}(a) := F_1() = [0,0]$ $\sigma_{\ell_2}(a) := F_2(\sigma_{\ell_1}, \sigma_{\ell_3}) = \sigma_{\ell_1}(a) \sqcup \sigma_{\ell_3}(a)$ $\sigma_{\ell_3}(a) := F_3(\sigma_{\ell_2}) = ([-\infty, 9] \sqcap \sigma_{\ell_2}(a)) + [1,1]$ $\sigma_{\ell_4}(a) := F_4(\sigma_{\ell_2}) = ([10, \infty] \sqcap \sigma_{\ell_2}(a))$

 F_1, \ldots, F_4 are transfer functions which indicate how abstract states are updated

Control Flow Graph

Abstract Trace: Naive Fixed-Point Computation for Loops

Widening technique can accelerate the fixpoint computation of $\sigma_{\ell_{2}}(a)$.

Naive fixpoint computation: value changes of $\sigma_{\ell_2}(a)$ **
** $[0,0] \rightleftharpoons [0,1] \rightleftharpoons \ldots \rightleftharpoons [0,10] \rightleftharpoons [0,10]$

Widening technique can accelerate the fixpoint computation of $\sigma_{\ell_{2}}(a)$.

Naive fixpoint computation: value changes of $\sigma_{\ell_2}(a)$ **
** $[0,0] \rightleftharpoons [0,1] \rightleftharpoons \ldots \rightleftharpoons [0,10] \rightleftharpoons [0,10]$ Widening aggressively update $\sigma_{\ell_2}(a)$

Widening at the k^{th} iteration in the loop for analyzing ℓ_2 to update $\sigma_{\ell_2}.$

Widening at the k^{th} iteration in the loop for analyzing ℓ_2 to update $\sigma_{\ell_2}.$

What is a **Widening Operator**?

Widening Operator

The Widening Operator (\triangledown : $\mathbb{A} \times \mathbb{A} \to \mathbb{A}$) is formally defined on a poset (\mathbb{A}, \sqsubset). ∇ on interval domain could be defined as:

 $[\ell_1, h_1] \nabla [\ell_2, h_2] = [\ell_3, h_3]$

Widening Operator

The Widening Operator (\triangledown : $\mathbb{A} \times \mathbb{A} \to \mathbb{A}$) is formally defined on a poset (\mathbb{A}, \square). ∇ on interval domain could be defined as:

$$
[\ell_1, h_1] \nabla [\ell_2, h_2] = [\ell_3, h_3]
$$

where

$$
I_3 = \begin{cases} -\infty & I_2 < I_1 \\ I_1 & I_2 \geq I_1 \end{cases}, h_3 = \begin{cases} +\infty & I_2 > I_1 \\ I_1 & I_2 \leq I_1 \end{cases}
$$

As a concrete example, $[0, 0] \nabla [0, 1] = [0, +\infty]$.

Control Flow Graph

Control Flow Graph

Control Flow Graph

Control Flow Graph

Control Flow Graph

Control Flow Graph

Control Flow Graph

Control Flow Graph

Control Flow Graph

 $[0,0]\mbox{\footnotesize \Rightarrow} [0,\infty] \mbox{\footnotesize \Rightarrow} [0,\infty]$

3 iterations while analyzing the loop

 $[0,0]\mbox{\footnotesize \Rightarrow} [0,\infty] \mbox{\footnotesize \Rightarrow} [0,\infty]$ 3 iterations while

analyzing the loop

Faster than naive fixpoint computation (12 iterations)!

Narrowing technique can eliminate the precision loss after a widening operation (e.g., by improving imprecise $\sigma_{\ell_{2}}$ and $\sigma_{\ell_{4}}$

Naive fixpoint computation: value changes of $\sigma_{\ell_2}(a)$

$$
[0,0] \, \substack{\longleftarrow} \, [0,1] \, \substack{\longleftarrow} \, \, \ldots \,\, \substack{\longleftarrow} \, [0,10] \, \substack{\longleftarrow} \, [0,10] \, \, \\ \hline \quad \quad \text{Widening} \, \substack{\longleftarrow} \quad [0,+\infty]
$$

Narrowing technique can eliminate the precision loss after a widening operation (e.g., by improving imprecise $\sigma_{\ell_{2}}$ and $\sigma_{\ell_{4}}$

Naive fixpoint computation: value changes of $\sigma_{\ell_2}(a)$

After the widening reaches a fixpoint at the *k th* iteration when analyzing the loop, we start performing narrowing at the $(\mathsf{k}+\mathsf{1})^\mathsf{th}$ to update $\sigma_{\ell_2}.$

Control Flow Graph

Widening reaches

$$
\begin{array}{ll}\n\text{ $ \begin{array}{c} \hline \text{ e} \\ \hline \text{ening reaches} \end{array}$} & \sigma_{\underline{\ell_2}}^k(a):=\; \sigma_{\underline{\ell_2}}^{k-1}(a) \nabla(\sigma_{\underline{\ell_1}}(a) \sqcup \sigma_{\underline{\ell_3}}^{k-1}(a))\\ \hline\n\text{ a fixpoint} & \end{array}$}
$$

After the widening reaches a fixpoint at the *k th* iteration when analyzing the loop, we start performing narrowing at the $(\mathsf{k}+\mathsf{1})^\mathsf{th}$ to update $\sigma_{\ell_2}.$

Control Flow Graph

What is a **Narrowing Operator**?

Narrowing Operator

The Narrowing Operator (Δ : $\mathbb{A} \times \mathbb{A} \to \mathbb{A}$) is formally defined on a poset (\mathbb{A}, \square). Δ on interval domain could be defined as:

 $[I_1, h_1] \Delta [I_2, h_2] = [I_3, h_3]$

Narrowing Operator

The Narrowing Operator ($\Delta : \mathbb{A} \times \mathbb{A} \to \mathbb{A}$) is formally defined on a poset (A, \Box). Δ on interval domain could be defined as:

$$
[l_1, h_1] \Delta [l_2, h_2] = [l_3, h_3]
$$

where

$$
I_3 = \begin{cases} I_2 & I_1 \equiv -\infty \\ I_1 & I_1 \neq -\infty \end{cases}, h_3 = \begin{cases} h_2 & h_1 \equiv \infty \\ h_1 & h_1 \neq \infty \end{cases}
$$

As a concrete example, $[0, \infty]$ $\Delta[0, 10] = [0, 10]$.

Control Flow Graph

Control Flow Graph

Control Flow Graph

Narrowing: The Loop Example

Software Security Analysis 2024 <https://github.com/SVF-tools/Software-Security-Analysis>