COMP9020

Foundations of Computer Science

Lecture 2: Number Theory

Lecturers: Katie Clinch (LIC)
Paul Hunter
Simon Mackenzie
Course admin: Nicholas Tandiono
Course email: cs9020@cse.unsw.edu.au

Announcements

Quiz 1

- Available now (inspera link)
- Due 18:00 Wednesday 21 February (AEDT) (next week)
- Tests what you will learn this lecture

Assignment 1

- Available now (inspera link)
- Due 18:00 Thursday 29 February (AEDT) (in 2 weeks)
- The first question tests material from today's lecture.
- The other questions test material from next week's lectures.

Available support available to help with the above

- In-person help sessions (immediately after this lecture!) And every Thursday and Friday
- Online consultations (Tuesday and Wednesday evenings)
- edforum

Topic 0: Number Theory

Further reading

If you'd like to read more about the topics covered in this lecture, check out the following chapters of the recommended textbooks:

Week 1 Number Theory

- [RW] is KA Ross and CR Wright: Discrete Mathematics
- [LLM] is Lehman, Leighton, Meyer: Mathematics for Computer Science

Number Theory in Computer Science

In this course, we are interested in discrete mathematics. This is the theory of e.g. the integers.

Continuous mathematics instead considers number systems with no "gaps", e.g. the real numbers.

Applications of discrete number theory include:

- Cryptography/Security (primes, divisibility)
- Large integer calculations (modular arithmetic)
- Date and time calculations (modular arithmetic)
- Solving optimization problems (integer linear programming)
- Interesting examples for future topics in this course

Question

What is something that is easy to do with real numbers but hard to do with integers?

Outline

Numbers and Numerical Operations
Divisibility
Greatest Common Divisor and Least Common Multiple
Euclidean Algorithm
Modular Arithmetic
Euclidean Algorithm (again)
Feedback

Outline

Numbers and Numerical Operations

Divisibility

Greatest Common Divisor and Least Common Multiple Euclidean Algorithm

Modular Arithmetic
Euclidean Algorithm (again)
Feedback

Notation for numbers

Definition

- Natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$
- Integers $\mathbb{Z}=\{\ldots,-1,0,1,2, \ldots\}$
- Positive integers $\mathbb{N}_{>0}=\mathbb{Z}_{>0}=\{1,2, \ldots\}$
- Rational numbers (fractions) $\mathbb{Q}=\left\{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\right\}$
- Real numbers (decimal or binary expansions) \mathbb{R}

$$
r=a_{1} a_{2} \ldots a_{k} \cdot b_{1} b_{2} \ldots
$$

In \mathbb{N} and \mathbb{Z} different symbols denote different numbers.

$$
1 \neq 2 \neq 3
$$

In \mathbb{Q} and \mathbb{R} the standard representation is not necessarily unique.

$$
\frac{1}{2}=\frac{2}{4}=\frac{3}{6}
$$

It's quite easy to intuitively understand what the real numbers \mathbb{R} or the natural numbers \mathbb{N} are.

It's quite easy to intuitively understand what the real numbers \mathbb{R} or the natural numbers \mathbb{N} are.

But it's surprisingly difficult to write a precise mathematical explanation of this!

It's quite easy to intuitively understand what the real numbers \mathbb{R} or the natural numbers \mathbb{N} are.

But it's surprisingly difficult to write a precise mathematical explanation of this!

NB

Proper ways to introduce reals include Dedekind cuts and Cauchy sequences.

Natural numbers etc. are either axiomatised or constructed from sets $(0 \stackrel{\text { def }}{=}\}, n+1 \stackrel{\text { def }}{=} n \cup\{n\})$

Dedekind cuts and Cauchy sequences are far beyond the scope of this course.

We will see set theory next week (and then the above definition for the natural numbers will make a bit more sense).

Floor and ceiling

Definition

$\lfloor\rfloor:. \mathbb{R} \longrightarrow \mathbb{Z}$ — floor of x, the greatest integer $\leq x$
$\lceil\rceil:. \mathbb{R} \longrightarrow \mathbb{Z}$ - ceiling of x, the least integer $\geq x$

Example

$\lfloor\pi\rfloor=3=\lceil e\rceil \quad \pi, e \in \mathbb{R} ;\lfloor\pi\rfloor,\lceil e\rceil \in \mathbb{Z}$

Floor and ceiling

Definition

$\lfloor\rfloor:. \mathbb{R} \longrightarrow \mathbb{Z}$ — floor of x, the greatest integer $\leq x$
$\lceil\rceil:. \mathbb{R} \longrightarrow \mathbb{Z}$ - ceiling of x, the least integer $\geq x$

Example

$$
\lfloor\pi\rfloor=3=\lceil e\rceil \quad \pi, e \in \mathbb{R} ;\lfloor\pi\rfloor,\lceil e\rceil \in \mathbb{Z}
$$

Simple properties

- $\lfloor-x\rfloor=-\lceil x\rceil$, hence $\lceil x\rceil=-\lfloor-x\rfloor$
- For all $t \in \mathbb{Z}$:

$$
\begin{aligned}
& -\lfloor x+t\rfloor=\lfloor x\rfloor+t \text { and } \\
& \cdot\lceil x+t\rceil=\lceil x\rceil+t
\end{aligned}
$$

Fact

Let $k, m, n \in \mathbb{Z}$ such that $k>0$ and $m \geq n$. The number of multiples of k between n and m (inclusive) is

$$
\left\lfloor\frac{m}{k}\right\rfloor-\left\lfloor\frac{n-1}{k}\right\rfloor
$$

Absolute value

Definition

$$
|x|= \begin{cases}x & , \text { if } x \geq 0 \\ -x & , \text { if } x<0\end{cases}
$$

Example

$$
|3|=|-3|=3 \quad 3,-3 \in \mathbb{Z} ;|3|,|-3| \in \mathbb{N}
$$

Exercises

Exercises

$$
\begin{aligned}
\hline \text { RW: 1.1.4 } & \\
\text { (b) } & 2\lfloor 0.6\rfloor-\lfloor 1.2\rfloor= \\
& 2\lceil 0.6\rceil-\lceil 1.2\rceil= \\
\text { (d) } & \lceil\sqrt{3}\rceil-\lfloor\sqrt{3}\rfloor=
\end{aligned}
$$

RW: 1.1.19

(a) Give x, y such that $\lfloor x\rfloor+\lfloor y\rfloor<\lfloor x+y\rfloor$:

20T2: Q1 (a)

(i) True or false for all $x \in \mathbb{R}$:

$$
\lceil|x|\rceil=|\lceil x\rceil|
$$

Exercises

Exercises

$$
\begin{aligned}
& \text { RW: 1.1.4 } \\
& \text { (b) } 2\lfloor 0.6\rfloor-\lfloor 1.2\rfloor=-1 \\
& 2\lceil 0.6\rceil-\lceil 1.2\rceil=0 \\
& \text { (d) }\lceil\sqrt{3}\rceil-\lfloor\sqrt{3}\rfloor=1
\end{aligned}
$$

RW: 1.1.19

(a) Give x, y such that $\lfloor x\rfloor+\lfloor y\rfloor<\lfloor x+y\rfloor$: $x=y=0.9$

20T2: Q1 (a)

(i) True or false for all $x \in \mathbb{R}$:
$\lceil|x|\rceil=|\lceil x\rceil|$ - false (e.g. $x=-1.5$)

Outline

Numbers and Numerical Operations

Divisibility
Greatest Common Divisor and Least Common Multiple
Euclidean Algorithm
Modular Arithmetic
Euclidean Algorithm (again)
Feedback

Divisibility

Definition

For $m, n \in \mathbb{Z}$, we say m divides n if $n=k \cdot m$ for some $k \in \mathbb{Z}$.
We denote this by $m \mid n$
Also stated as: ' n is divisible by m ', ' m is a divisor of n ', ' n is a multiple of m '

Divisibility

Definition

For $m, n \in \mathbb{Z}$, we say m divides n if $n=k \cdot m$ for some $k \in \mathbb{Z}$.
We denote this by $m \mid n$
Also stated as: ' n is divisible by m ', ' m is a divisor of n ', ' n is a multiple of m '
$m \nmid n$ is the negation of $m \mid n$.

Divisibility

Definition

For $m, n \in \mathbb{Z}$, we say m divides n if $n=k \cdot m$ for some $k \in \mathbb{Z}$.
We denote this by $m \mid n$
Also stated as: ' n is divisible by m ', ' m is a divisor of n ', ' n is a multiple of m '
$m \nmid n$ is the negation of $m \mid n$.
In other words, $m \nmid n$ means ' m does not divide n '

Divisibility

Definition

For $m, n \in \mathbb{Z}$, we say m divides n if $n=k \cdot m$ for some $k \in \mathbb{Z}$.
We denote this by $m \mid n$
Also stated as: ' n is divisible by m ', ' m is a divisor of n ', ' n is a multiple of m '
$m \nmid n$ is the negation of $m \mid n$.
In other words, $m \nmid n$ means ' m does not divide n '

NB

Notion of divisibility applies to all integers - positive, negative and zero.

Exercises

Exercises

True or False for all $n \in \mathbb{Z}$:

$$
\begin{array}{ll}
\text { - } & 1 \mid n \\
\bullet & -1 \mid n \\
- & 0 \mid n \\
\bullet & n \mid 0
\end{array}
$$

```
RW: 1.2.2
(a) \(n \mid 1\)
(b) \(n \mid n\)
(c) \(n \mid n^{2}\)
```


Exercises

Exercises

True or False for all $n \in \mathbb{Z}$:

$$
\begin{array}{lll}
- & 1 \mid n & \text { - true } \\
\bullet & -1 \mid n & \text { - true } \\
\bullet & 0 \mid n & \text { - false (only when } n=0 \text {) } \\
\bullet & n \mid 0 & \text { - true }
\end{array}
$$

RW: 1.2.2
(a) $n \mid 1 \quad$ - false (only when $n= \pm 1$)
(b) $n \mid n$ - true
(c) $n \mid n^{2}$ - true

Outline

Numbers and Numerical Operations

Divisibility

Greatest Common Divisor and Least Common Multiple

Euclidean Algorithm

Modular Arithmetic
Euclidean Algorithm (again)
Feedback

gcd and Icm

Definition

Let $m, n \in \mathbb{Z}$.

- The greatest common divisor of m and $n, \operatorname{gcd}(m, n)$, is the largest positive $d \in \mathbb{Z}$ such that $d \mid m$ and $d \mid n$.
- The least common multiple of m and $n, \operatorname{lcm}(m, n)$, is the smallest positive $k \in \mathbb{Z}$ such that $m \mid k$ and $n \mid k$.
- Exception: $\operatorname{gcd}(0,0)=\operatorname{lcm}(0, n)=\operatorname{Icm}(m, 0)=0$.

Example

$$
\begin{aligned}
& \operatorname{gcd}(-4,6)=\operatorname{gcd}(4,-6)=\operatorname{gcd}(-4,-6)=\operatorname{gcd}(4,6) \\
&=2 \\
& \operatorname{Icm}(-5,-5)=\ldots
\end{aligned}
$$

gcd and Icm

NB

$\operatorname{gcd}(m, n)$ and $\operatorname{lcm}(m, n)$ are always taken as non-negative even if m or n is negative.

Fact

$\operatorname{gcd}(m, n) \cdot \operatorname{|cm}(m, n)=|m| \cdot|n|$

Primes and relatively prime

Definition

- A number $n>1$ is prime if it is only divisble by ± 1 and $\pm n$.
- m and n are relatively prime if $\operatorname{gcd}(m, n)=1$

Examples

- $2,3,5,7,11,13,17,19$ are all the primes less than 20.
- 4 and 9 are relatively prime; 9 and 14 are relatively prime.

Exercises

Exercises

RW: 1.2.7(b) $\operatorname{gcd}(0, n) \stackrel{?}{=}$
RW: 1.2.12 Can two even integers be relatively prime?
RW: 1.2.9 Let m, n be positive integers.
(a) What can you say about m and n if $\operatorname{Icm}(m, n)=m \cdot n$?
(b) What if $\operatorname{Icm}(m, n)=n$?

Exercises

Exercises

RW: 1.2.7(b) $\operatorname{gcd}(0, n) \stackrel{?}{=}$
RW: 1.2.12 Can two even integers be relatively prime?
RW: 1.2.9 Let m, n be positive integers.
(a) What can you say about m and n if $\operatorname{Icm}(m, n)=m \cdot n$?
(b) What if $\operatorname{Icm}(m, n)=n$?

Exercises

Exercises

RW: 1.2.7(b) $\operatorname{gcd}(0, n) \stackrel{?}{=}|n|$
RW: 1.2.12 Can two even integers be relatively prime?
RW: 1.2.9 Let m, n be positive integers.
(a) What can you say about m and n if $\operatorname{Icm}(m, n)=m \cdot n$?
(b) What if $\operatorname{Icm}(m, n)=n$?

Exercises

Exercises

RW: 1.2.7(b) $\operatorname{gcd}(0, n) \stackrel{?}{=}|n|$
RW: 1.2.12 Can two even integers be relatively prime? No. (why?)
RW: 1.2.9 Let m, n be positive integers.
(a) What can you say about m and n if $\operatorname{Icm}(m, n)=m \cdot n$?
(b) What if $\operatorname{Icm}(m, n)=n$?

Exercises

Exercises

RW: 1.2.7(b) $\operatorname{gcd}(0, n) \stackrel{?}{=}|n|$
RW: 1.2.12 Can two even integers be relatively prime? No. (why?)
RW: 1.2.9 Let m, n be positive integers.
(a) What can you say about m and n if $\operatorname{Icm}(m, n)=m \cdot n$?

They must be relatively prime since always $\operatorname{Icm}(m, n)=\frac{m n}{\operatorname{gcd}(m, n)}$
(b) What if $\operatorname{Icm}(m, n)=n$?
m must be a divisor of n

Outline

Numbers and Numerical Operations

Divisibility

Greatest Common Divisor and Least Common Multiple
Euclidean Algorithm
Modular Arithmetic
Euclidean Algorithm (again)
Feedback

Euclid's gcd Algorithm

Question. How do we compute the greatest common divisor $\operatorname{gcd}(m, n)$? Especially when the numbers m, n are large?

Answer. Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$
\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } m=n \\ \operatorname{gcd}(m-n, n) & \text { if } m>n \\ \operatorname{gcd}(m, n-m) & \text { if } m<n\end{cases}
$$

Euclid's gcd Algorithm

Question. How do we compute the greatest common divisor $\operatorname{gcd}(m, n)$? Especially when the numbers m, n are large?

Answer. Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$
\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } m=n \\ \operatorname{gcd}(m-n, n) & \text { if } m>n \\ \operatorname{gcd}(m, n-m) & \text { if } m<n\end{cases}
$$

Example

$$
\operatorname{gcd}(45,27)=
$$

Euclid's gcd Algorithm

Question. How do we compute the greatest common divisor $\operatorname{gcd}(m, n)$? Especially when the numbers m, n are large?

Answer. Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$
\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } m=n \\ \operatorname{gcd}(m-n, n) & \text { if } m>n \\ \operatorname{gcd}(m, n-m) & \text { if } m<n\end{cases}
$$

Example

$$
\begin{aligned}
\operatorname{gcd}(45,27) & =\operatorname{gcd}(18,27) \\
& =\operatorname{gcd}(18,9) \\
& =\operatorname{gcd}(9,9) \\
& =9
\end{aligned}
$$

Euclid's gcd Algorithm

Question. How do we compute the greatest common divisor $\operatorname{gcd}(m, n)$? Especially when the numbers m, n are large?

Answer. Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$
\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } m=n \\ \operatorname{gcd}(m-n, n) & \text { if } m>n \\ \operatorname{gcd}(m, n-m) & \text { if } m<n\end{cases}
$$

Example

$$
\operatorname{gcd}(108,8)=
$$

Euclid's gcd Algorithm

Question. How do we compute the greatest common divisor $\operatorname{gcd}(m, n)$? Especially when the numbers m, n are large?

Answer. Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$
\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } m=n \\ \operatorname{gcd}(m-n, n) & \text { if } m>n \\ \operatorname{gcd}(m, n-m) & \text { if } m<n\end{cases}
$$

Example

$$
\begin{aligned}
\operatorname{gcd}(108,8) & =\operatorname{gcd}(100,8) \\
& =\operatorname{gcd}(92,8) \\
& =\cdots=\operatorname{gcd}(8,4) \\
& =\operatorname{gcd}(4,4) \\
& =4
\end{aligned}
$$

Euclid's gcd Algorithm

Question. How do we compute the greatest common divisor $\operatorname{gcd}(m, n)$? Especially when the numbers m, n are large?

Answer. Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$
\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } m=n \\ \operatorname{gcd}(m-n, n) & \text { if } m>n \\ \operatorname{gcd}(m, n-m) & \text { if } m<n\end{cases}
$$

Fact

For $m>0, n>0$ the algorithm always terminates.

Euclid's gcd Algorithm

Question. How do we compute the greatest common divisor $\operatorname{gcd}(m, n)$? Especially when the numbers m, n are large?

Answer. Euclid's algorithm gives a way of doing this by repeatedly replacing m and n with smaller numbers. This method is over 2000 years old!

$$
\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } m=n \\ \operatorname{gcd}(m-n, n) & \text { if } m>n \\ \operatorname{gcd}(m, n-m) & \text { if } m<n\end{cases}
$$

Fact

For $m>0, n>0$ the algorithm always terminates.

Fact

For $m, n \in \mathbb{Z}$, if $m>n$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n)$

Euclid's gcd Algorithm

Fact

For $m, n \in \mathbb{Z}$, if $m>n$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n)$

Proof.

Euclid's gcd Algorithm

Fact

For $m, n \in \mathbb{Z}$, if $m>n$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n)$

Proof.

We first show that for all $d \in \mathbb{Z},(d \mid m$ and $d \mid n)$ if, and only if, $(d \mid m-n$ and $d \mid n$):

Euclid's gcd Algorithm

Fact

For $m, n \in \mathbb{Z}$, if $m>n$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n)$

Proof.

We first show that for all $d \in \mathbb{Z},(d \mid m$ and $d \mid n)$ if, and only if, $(d \mid m-n$ and $d \mid n$):
" \Rightarrow ": if $d \mid m$ and $d \mid n$ then $m=a \cdot d$ and $n=b \cdot d$, for some $a, b \in \mathbb{Z}$, so $m-n=(a-b) \cdot d$, hence $d \mid m-n$

Euclid's gcd Algorithm

Fact

For $m, n \in \mathbb{Z}$, if $m>n$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n)$

Proof.

We first show that for all $d \in \mathbb{Z},(d \mid m$ and $d \mid n)$ if, and only if, $(d \mid m-n$ and $d \mid n$):
" \Rightarrow ": if $d \mid m$ and $d \mid n$ then $m=a \cdot d$ and $n=b \cdot d$, for some $a, b \in \mathbb{Z}$, so $m-n=(a-b) \cdot d$,
hence $d \mid m-n$
" \Leftarrow ": if $d \mid m-n$ and $d \mid n$ then $m-n=a \cdot d$ and $n=b \cdot d$, for some $a, b \in \mathbb{Z}$,

$$
\text { so } m=(m-n)+n=(a+b) \cdot d \text {, }
$$

$$
\text { hence } d \mid m
$$

Euclid's gcd Algorithm

Fact

For $m, n \in \mathbb{Z}$, if $m>n$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n)$

Proof.

We first show that for all $d \in \mathbb{Z},(d \mid m$ and $d \mid n)$ if, and only if, $(d \mid m-n$ and $d \mid n$):
" \Rightarrow ": if $d \mid m$ and $d \mid n$ then $m=a \cdot d$ and $n=b \cdot d$, for some $a, b \in \mathbb{Z}$, so $m-n=(a-b) \cdot d$, hence $d \mid m-n$
" \Leftarrow ": if $d \mid m-n$ and $d \mid n$ then $m-n=a \cdot d$ and $n=b \cdot d$, for some $a, b \in \mathbb{Z}$,

$$
\text { so } m=(m-n)+n=(a+b) \cdot d \text {, }
$$

$$
\text { hence } d \mid m
$$

Therefore, any common divisor of m and n is a common divisor of $m-n$ and n, and vice versa.

Euclid's gcd Algorithm

Fact

For $m, n \in \mathbb{Z}$, if $m>n$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n)$

Proof.

We first show that for all $d \in \mathbb{Z},(d \mid m$ and $d \mid n)$ if, and only if, $(d \mid m-n$ and $d \mid n$):
" \Rightarrow ": if $d \mid m$ and $d \mid n$ then $m=a \cdot d$ and $n=b \cdot d$, for some $a, b \in \mathbb{Z}$, so $m-n=(a-b) \cdot d$, hence $d \mid m-n$
" \Leftarrow ": if $d \mid m-n$ and $d \mid n$ then $m-n=a \cdot d$ and $n=b \cdot d$, for some $a, b \in \mathbb{Z}$,

$$
\text { so } m=(m-n)+n=(a+b) \cdot d \text {, }
$$

$$
\text { hence } d \mid m
$$

Therefore, any common divisor of m and n is a common divisor of $m-n$ and n, and vice versa.
Therefore, the greatest common divisor of m and n is the greatest common divisor of $m-n$ and n.

Outline

Numbers and Numerical Operations

Divisibility

Greatest Common Divisor and Least Common Multiple
Euclidean Algorithm
Modular Arithmetic
Euclidean Algorithm (again)
Feedback

Euclid's division lemma

Fact

For $m \in \mathbb{Z}, n \in \mathbb{Z}_{>0}$ there exists $q, r \in \mathbb{Z}$ with $0 \leq r<n$ such that

$$
m=q \cdot n+r
$$

Euclid's division lemma

Fact

For $m \in \mathbb{Z}, n \in \mathbb{Z}_{>0}$ there exists $q, r \in \mathbb{Z}$ with $0 \leq r<n$ such that

$$
m=q \cdot n+r
$$

Observe:

- $q=\left\lfloor\frac{m}{n}\right\rfloor$

Euclid's division lemma

Fact

For $m \in \mathbb{Z}, n \in \mathbb{Z}_{>0}$ there exists $q, r \in \mathbb{Z}$ with $0 \leq r<n$ such that

$$
m=q \cdot n+r
$$

Observe:

- $q=\left\lfloor\frac{m}{n}\right\rfloor$
- $r=m-q \cdot n$

mod and div

Definition

Let $m, p \in \mathbb{Z}, n \in \mathbb{Z}_{>0}$.

- m div $n=\left\lfloor\frac{m}{n}\right\rfloor$
- $m \% n=m-(m \operatorname{div} n) \cdot n$
- $m={ }_{(n)} p$ if $n \mid(m-p)$

Definition

Let $m, p \in \mathbb{Z}, n \in \mathbb{Z}_{>0}$.

- m div $n=\left\lfloor\frac{m}{n}\right\rfloor$
- $m \% n=m-(m \operatorname{div} n) \cdot n$
- $m={ }_{(n)} p$ if $n \mid(m-p)$

Important!

$m={ }_{(n)} p$ is not standard. More commonly written as

$$
m=p \quad(\bmod n)
$$

mod and div

Fact

- $0 \leq(m \% n)<n$.

Fact

- $0 \leq(m \% n)<n$.
- $m={ }_{(n)} p$ if, and only if, $(m \% n)=(p \% n)$.

Fact

- $0 \leq(m \% n)<n$.
- $m={ }_{(n)} p$ if, and only if, $(m \% n)=(p \% n)$.
- $m={ }_{(n)}(m \% n)$

Fact

- $0 \leq(m \% n)<n$.
- $m={ }_{(n)} p$ if, and only if, $(m \% n)=(p \% n)$.
- $m={ }_{(n)}(m \% n)$
- If $m={ }_{(n)} m^{\prime}$ and $p={ }_{(n)} p^{\prime}$ then:
- $m+p={ }_{(n)} m^{\prime}+p^{\prime}$ and
- $m \cdot p={ }_{(n)} m^{\prime} \cdot p^{\prime}$.

Exercises

Exercises

- $42 \operatorname{div} 9 \stackrel{?}{=}$
- $42 \% 9 \stackrel{?}{=}$
- $(-42) \operatorname{div} 9 \stackrel{?}{=}$
- $(-42) \% 9 \stackrel{?}{=}$
- True or False:
$(a+b) \% n=(a \% n)+(b \% n) ?$

Exercises

Exercises

- $42 \operatorname{div} 9 \stackrel{?}{=} 4$
- $42 \% 9 \stackrel{?}{=} 6$
- $(-42) \operatorname{div} 9 \stackrel{?}{=}-5$
- $(-42) \% 9 \stackrel{?}{=} 3$
- True or False:

$$
(a+b) \% n=(a \% n)+(b \% n) ?
$$

Exercises

Exercises

- $42 \operatorname{div} 9 \stackrel{?}{=} 4$
- $42 \% 9 \stackrel{?}{=} 6$
- $(-42) \operatorname{div} 9 \stackrel{?}{=}-5$
- $(-42) \% 9 \stackrel{?}{=} 3$
- True or False:
$(a+b) \% n=(a \% n)+(b \% n) ?$
False (take $a=b=1, n=2$)

Exercises

Exercises

- $10^{3} \% 7 \stackrel{?}{=}$
- $10^{6} \% 7 \stackrel{?}{=}$
- $10^{2021} \% 7 \stackrel{?}{=}$
- What is the last digit of 7^{2023} ?

Exercises

Exercises

- $10^{3} \% 7 \stackrel{?}{=}$
- $10^{6} \% 7 \stackrel{?}{=}$

1

- $10^{2021} \% 7 \stackrel{?}{=}$

5

- What is the last digit of 7^{2023} ?

Exercises

Exercises

- $10^{3} \% 7 \stackrel{?}{=}$
- $10^{6} \% 7 \stackrel{?}{=}$

1

- $10^{2021} \% 7 \stackrel{?}{=} \quad 5$
- What is the last digit of 7^{2023} ? 3

Exercises

Exercises

RW: 3.5.20
(a) Show that the 4 digit number $n=$ abcd is divisible by 2 if and only if the last digit d is divisible by 2 .
(b) Show that the 4 digit number $n=$ abcd is divisible by 5 if and only if the last digit d is divisible by 5 .

RW: 3.5.19
(a) Show that the 4 digit number $n=$ abcd is divisible by 9 if and only if the digit sum $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$ is divisible by 9 .

Outline

Numbers and Numerical Operations

Divisibility

Greatest Common Divisor and Least Common Multiple
Euclidean Algorithm
Modular Arithmetic
Euclidean Algorithm (again)
Feedback

Faster Euclidean gcd Algorithm

$$
\operatorname{gcd}(m, n)= \begin{cases}m & \text { if } m=n \text { or } n=0 \\ n & \text { if } m=0 \\ \operatorname{gcd}(m \% n, n) & \text { if } m>n>0 \\ \operatorname{gcd}(m, n \% m) & \text { if } 0<m<n\end{cases}
$$

Fact

For $m, n \in \mathbb{Z}$, if $m>n$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m \% n, n)$
Proof.
Let $k=m$ div n. Then $m \% n=m-k \cdot n$.

Faster Euclidean gcd Algorithm

Example

$$
\operatorname{gcd}(108,8)=
$$

Faster Euclidean gcd Algorithm

Example

$$
\operatorname{gcd}(108,8)=\operatorname{gcd}(4,8)
$$

Faster Euclidean gcd Algorithm

Example

$$
\begin{aligned}
\operatorname{gcd}(108,8) & =\operatorname{gcd}(4,8) \\
& =\operatorname{gcd}(4,0)
\end{aligned}
$$

Faster Euclidean gcd Algorithm

Example

$$
\begin{aligned}
\operatorname{gcd}(108,8) & =\operatorname{gcd}(4,8) \\
& =\operatorname{gcd}(4,0) \\
& =4
\end{aligned}
$$

Outline

Numbers and Numerical Operations

Divisibility
Greatest Common Divisor and Least Common Multiple
Euclidean Algorithm
Modular Arithmetic
Euclidean Algorithm (again)
Feedback

Weekly Feedback

We would appreciate any comments/suggestions/requests you have on this week's lectures.

https://forms.office.com/r/aHRCGANHiB

