
DESN2000
(Computer
Engineering)
2025 T2

ARM Assembly

Hasindu Gamaarachchi

1

ARM Assembly

• This is a crash course, well a “crash lecture”!

• Assumes prior learning of an assembly language
• MIPS in COMP1521

• ARM is a Reduced Instruction Set Computer (RISC) architecture
• Conceptually a lot of similarities to MIPS

• And yeh, there are some differences

2

Learning Resources

The upcoming slides are adapted from “Embedded Systems
with ARM Cortex-M Microcontrollers in Assembly Language
and C (Fourth Edition)” – Yifeng Zhu

• ARM Instruction set architecture - chapter 3

• For an in-depth understanding of ARM assembly
programming – chapters 4-8

• Mixing C and assembly – chapter 10

3

ARM Processor Register Bank

4

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

General
Purpose
registers

• Each register is 32 bits
• R0-R12: General purpose registers
• R13: Stack pointer (SP)
• R14: Link Register (LR)
• R15: Program Counter (PC)

ARM Instruction Examples

5

ADD r0, r2, r3 // r0 = r2 + r3

mnemonic commentdestination
operand

2nd source
operand

1st source
operand

ARM Instruction Examples

6

ADD r1, r2, r3 // r1 = r2 + r3

ADD r1, r2, #4 // r1 = r2 + 4

MOV r0, r1 // r0 = r1

MOV r1, #5 // r1 = 5

ARM Assembly Instructions

• Arithmetic and logic
• Add, Subtract, Multiply, Divide, Shift, Rotate

• Data movement
• Load, Store, Move

• Compare and branch
• Compare, If-then, branch,

• Miscellaneous
• Breakpoints, wait for events, no operation

7

Arithmetic Instructions: Examples

8

• ADD r0, r1, r2 // r0 = r1 + r2

• ADC r0, r1, r2 // Add with carry, r0 = r1 + r2 + carry

• SUB r0, r1, r2 // r0 = r1 - r2

• SBC r0, r1, r2 // Subtract with borrow, r0 = r1 - r2 – (1 – carry)

• MUL r0, r1, r2 // r0 = r1 * r2, product limited to 32 bits

Logic Instructions: Examples

9

• AND r0, r1, r2 // Bitwise AND, r0 = r1 AND r2

• ORR r0, r1, r2 // Bitwise OR, r0 = r1 OR r2

• EOR r0, r1, r2 // Bitwise Exclusive OR, r0 = r1 EOR r2

• ORN r0, r1, r2 // Bitwise OR NOT, r0 = r1 ORN r2

• BIC r0, r1, r2 // Bit clear, r0 = r1 & ~r2

• LSL r0, r1, r2 // Logical shift left, r0 = r1 << r2

• LSR r0, r1, r2 // Logical shift right, r0 = r1 >> r2

• ROR r0, r1, r2 // Rotate right, r0 = r1 rotate by r2 bits

Data Movement Instructions: Examples

10

• MOV r1, r0 // r1 = r0

• MOV r1, #16 // r1 = 16

• LDR r1, =10000 // r1 = 10000

// assume r0 has the memory address

• LDR r1, [r0] // r1 = Memory.word[r0]

• LDR r1, [r0,#8] // r1 = Memory.word[r0+8]

; assume r0 has the memory address

• STR r1, [r0] // Memory.word[r0] = r1

• STR r1, [r0,#8] // Memory.word[r0+8] = r1

Compare and branch Instructions: Examples

11

C Program
if (a == 1)
 b = 3;
else
 b = 4;

// r1 = a, r2 = b
 CMP r1, #1 // compare a and 1
 BNE else // go to else if a ≠ 1
then: MOV r2, #3 // b = 3
 B endif // go to endif
else: MOV r2, #4 // b = 4
endif:

If-then-else

Compare and branch Instructions: Examples

12

For Loop

C Program
int i;
int sum = 0;
for(i = 0; i < 10; i++){
 sum += i;
}

MOV r0, #0 // i
MOV r1, #0 // sum

loop: CMP r0, #10 // compare i and 10
BGE stop // end loop if i>=10
ADD r1, r1, r0 // sum += i
ADD r0, r0, #1 // i++
B loop // loop

stop:

Compare and branch Instructions: Examples

13

Function Call

void foo(void) ;

int main(void{

 ● ● ●

 foo();

 ● ● ●

}

Compiler

● ● ●

 BL foo
 ● ● ●

foo:

 ● ● ●
 ● ● ●

 BX LR

void foo (void) {

 ● ● ●
 ● ● ●

 return;
}

Transfer control to callee

Note: function call is referred to by terms such as procedure
call and subroutine call

Miscellaneous Instructions: Examples

• NOP // No Operation

14

Function Calls – Calling Standard

• Calling standard is also known by terms like calling convention 15

• What is it?
• Contract between a caller and callee

• Why need it?
• Allows functions to be separately written, compiled, and assembled but work

together

• Allows C program call an assembly function, or vice versa

• Involves:
• Argument passing

• Return values

• Backing up registers

Passing Arguments and Returning Value

16

R0 R1 R2 R3

32-bit

Argument 1

32-bit

Argument 2

32-bit

Argument 3

32-bit

Argument 4

R1(MSB32) R0(LSB32) R3(MSB32) R2(LSB32)

64-bit Argument 1 64-bit Argument 2

R3(MSB32) R2 R1 R0(LSB32)

128-bit Argument

Subroutine

Extra arguments are

pushed to the stack by

the caller. The caller is

responsible to pop them

out of the stack after the

subroutine returns.

R0

32-bit Return Value

R1(MSB32) R0(LSB32)

64-bit Return Value

R3(MSB32) R2 R1 R0(LSB32)

128-bit Return Value

Passing Arguments and Returning Value

17

int32_t sum(int32_t a, int32_t b, int32_t c, int32_t d);

Caller

s = sum(1, 2, 3, 4);

MOV r0, #1 // a
 MOV r1, #2 // b
 MOV r2, #3 // c
 MOV r3, #4 // d
 BL sum

Callee

sum:
 ADD r0, r0, r1 // a + b
 ADD r0, r0, r2 // add c
 ADD r0, r0, r3 // add d
 BX LR

Preserving registers

18

• Callee can freely modify R0, R1, R2, and R3
• If caller expects their values are retained, caller

should push them onto the stack before calling
the callee

• Caller expects these values are retained .
• If Callee modifies them, callee must restore their

values upon leaving the function.

Caller
Saved
Registers

Callee
Saved
Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

Preserving registers

19

Caller Program Subroutine/Callee

 MOV r4, #100
 ...
 BL foo
 ...
 ADD r4, r4, #1 // r4 = 101, not
11

foo:
 PUSH {r4} // preserve r4
 ...
 MOV r4, #10 // foo changes r4
 ...
 POP {r4} // Recover r4
 BX LR

Callee should preserve r4!Caller expects callee does not modify r4!

Mixing C and Assembly

• Inline assembly

20

// ...
// C code
__asm__(
"MOV r0, #0x048000000 \n"
"LDR r1, [r0, #0x14] \n"
"BIC r1, r1, #1<<5 \n"
"STR r1, [r0, #0x14] \n"
);
//...
// C code

Mixing C and Assembly

• Calling as assembly function from C

21

C Program (main.c) Assembly Program (strlen.s)

char str[25] = "Hello!";

int strlen(char* s);

int main(void){
 int i;
 i = strlen(str);
 while(1);
}

.global strlen
strlen:
 PUSH {r4} // preserve r4
 MOV r4, #0 // initialize length
loop:
 LDRB r1, [r0, r4] // r0 = string address
 CBZ r1, exit // branch if zero
 ADD r4, r4, #1 // length++
 B loop // do it again
exit:
 MOV r0, r4 // place result in r0
 POP {r4} // return
 BX LR

Arithmetic and Logic Instructions

22

• Shift : LSL (logic shift left), LSR (logic shift right), ASR (arithmetic shift right), ROR (rotate right), RRX (rotate right with extend)

• Logic: AND (bitwise and), ORR (bitwise or), EOR (bitwise exclusive or), ORN (bitwise or not), MVN (move not)

• Bit set/clear: BFC (bit field clear), BFI (bit field insert), BIC (bit clear), CLZ (count leading zeroes)

• Bit/byte reordering: RBIT (reverse bit order in a word), REV (reverse byte order in a word), REV16 (reverse byte order in each half-word
independently), REVSH (reverse byte order in each half-word independently)

• Addition: ADD, ADC (add with carry)

• Subtraction: SUB, RSB (reverse subtract), SBC (subtract with carry)

• Multiplication: MUL (multiply), MLA (multiply-accumulate), MLS (multiply-subtract), SMULL (signed long multiply-accumulate), SMLAL
(signed long multiply-accumulate), UMULL (unsigned long multiply-subtract), UMLAL (unsigned long multiply-subtract)

• Division: SDIV (signed), UDIV (unsigned)

• Saturation: SSAT (signed), USAT (unsigned)

• Sign extension: SXTB (signed), SXTH, UXTB, UXTH

• Bit field extract: SBFX (signed), UBFX (unsigned)

Load/Store a Byte, Halfword, Word

23

LDR Load Word uint32_t/int32_t unsigned or signed int

LDRB Load Byte uint8_t unsigned char

LDRH Load Halfword uint16_t unsigned short int

LDRSB Load Signed Byte int8_t signed char

LDRSH Load Signed Halfword int16_t signed short int

STR Store Word uint32_t/int32_t unsigned or signed int
STRB Store Lower Byte uint8_t/int8_t unsigned or signed char
STRH Store Lower Halfword uint16_t/int16_t unsigned or signed short

LDRxxx R0, [R1]
// Load data from memory into a 32-bit register

STRxxx R0, [R1]
// Store data extracted from a 32-bit register into memory

Pre-index and Post-index

24

Index Format Example Equivalent
Pre-index LDR r1, [r0, #4] r1  memory[r0 + 4],

r0 is unchanged
Pre-index
with update

LDR r1, [r0, #4]! r1  memory[r0 + 4]
r0  r0 + 4

Post-index LDR r1, [r0], #4 r1  memory[r0]
r0  r0 + 4

Offset range is -255 to +255

Unconditional Branch Instructions

25

• B label
• perform a branch to label.

• BL label
• copy the address of the next instruction into r14 (lr, the link register), and

• perform a branch to label.

• BX Rm
• branch to the address held in Rm

Instruction Operands Brief description

B label Branch

BL label Branch with Link

BX Rm Branch indirect

Condition Flags

26

• Negative bit

• N = 1 if most significant bit of result is 1

• Zero bit

• Z = 1 if all bits of the result are 0

• Carry bit

• For unsigned addition, C = 1 if carry takes place

• For unsigned subtraction, C = 0 (carry = not borrow) if borrow takes place

• For shift/rotation, C = last bit shifted out

• oVerflow bit

• V = 1 if adding 2 same-signed numbers produces a result with the opposite sign

• Positive + Positive = Negative, or

• Negative + negative = Positive

• Non-arithmetic operations does not touch V bit, such as MOV,AND,LSL,MUL

Program Status Register (PSR)

N Z C V

Branch Instructions

27

Instruction Description Flags tested

Conditional Branch

BEQ label Branch if EQual Z = 1

BNE label Branch if Not Equal Z = 0

BCS/BHS label Branch if unsigned Higher or Same C = 1

BCC/BLO label Branch if unsigned LOwer C = 0

BMI label Branch if MInus (Negative) N = 1

BPL label Branch if PLus (Positive or Zero) N = 0

BVS label Branch if oVerflow Set V = 1

BVC label Branch if oVerflow Clear V = 0

BHI label Branch if unsigned HIgher C = 1 & Z = 0

BLS label Branch if unsigned Lower or Same C = 0 or Z = 1

BGE label Branch if signed Greater or Equal N = V

BLT label Branch if signed Less Than N != V

BGT label Branch if signed Greater Than Z = 0 & N = V

BLE label Branch if signed Less than or Equal Z = 1 or N = !V

ARM Procedure Call Standard

28

Register Usage
Subroutine
Preserved

Notes

r0 Argument 1 and return value No
If return has 64 bits, then r0:r1 hold it. If argument 1 has
64 bits, r0:r1 hold it.

r1 Argument 2 No
r2 Argument 3 No If the return has 128 bits, r0-r3 hold it.
r3 Argument 4 No If more than 4 arguments, use the stack

r4 General-purpose V1 Yes Variable register 1 holds a local variable.

r5 General-purpose V2 Yes Variable register 2 holds a local variable.

r6 General-purpose V3 Yes Variable register 3 holds a local variable.

r7 General-purpose V4 Yes Variable register 4 holds a local variable.

r8 General-purpose V5 YES Variable register 5 holds a local variable.

r9 Platform specific/V6 Yes/No Usage is platform-dependent. Can be Variable register 6

r10 General-purpose V7 Yes Variable register 7 holds a local variable.

r11 General-purpose V8 Yes Variable register 8 holds a local variable.

r12 (IP) Intra-procedure-call register No
It holds intermediate values between a procedure and
the sub-procedure it calls.

r13 (SP) Stack pointer Yes SP has to be the same after a subroutine has completed.

r14 (LR) Link register No
LR does not have to contain the same value after a
subroutine has completed.

r15 (PC) Program counter N/A Do not directly change PC

ARM Cortex Instruction Set

• https://web.eece.maine.edu/~zhu/book/Appendix_B_Cortex_M3_M
4_Instructions.pdf

29

https://web.eece.maine.edu/~zhu/book/Appendix_B_Cortex_M3_M4_Instructions.pdf
https://web.eece.maine.edu/~zhu/book/Appendix_B_Cortex_M3_M4_Instructions.pdf

ARM Immediate Values

• Following posts would be helpful those who want to know how and
what immediate values are supported in ARM instructions
• https://xlogicx.net/ARM_12-bit_Immediates_are_Too_High_Level.html

• https://minhhua.com/arm_immed_encoding/index.html

30

https://xlogicx.net/ARM_12-bit_Immediates_are_Too_High_Level.html
https://minhhua.com/arm_immed_encoding/index.html

	Slide 1: DESN2000 (Computer Engineering) 2025 T2 ARM Assembly
	Slide 2: ARM Assembly
	Slide 3: Learning Resources
	Slide 4: ARM Processor Register Bank
	Slide 5: ARM Instruction Examples
	Slide 6: ARM Instruction Examples
	Slide 7: ARM Assembly Instructions
	Slide 8: Arithmetic Instructions: Examples
	Slide 9: Logic Instructions: Examples
	Slide 10: Data Movement Instructions: Examples
	Slide 11: Compare and branch Instructions: Examples
	Slide 12: Compare and branch Instructions: Examples
	Slide 13: Compare and branch Instructions: Examples
	Slide 14: Miscellaneous Instructions: Examples
	Slide 15: Function Calls – Calling Standard
	Slide 16: Passing Arguments and Returning Value
	Slide 17: Passing Arguments and Returning Value
	Slide 18: Preserving registers
	Slide 19: Preserving registers
	Slide 20: Mixing C and Assembly
	Slide 21: Mixing C and Assembly
	Slide 22: Arithmetic and Logic Instructions
	Slide 23: Load/Store a Byte, Halfword, Word
	Slide 24: Pre-index and Post-index
	Slide 25: Unconditional Branch Instructions
	Slide 26: Condition Flags
	Slide 27: Branch Instructions
	Slide 28: ARM Procedure Call Standard
	Slide 29: ARM Cortex Instruction Set
	Slide 30: ARM Immediate Values

