DESN2000
(Computer
Engineering)
2025712

o
o
A —
a o
A= J,)s
A
a ¥, o
P | y (FU]
" (a)
= o
_4 ()
- —
- wn
&
a
a

ARM Assembly

o
-
3]
O
p

NSW coaST
jucation board

Hasindu Gamaarachchi

® SHIFT REG
LEDs

b n

H.Pearce Mar. 2024 '*

ARM Assembly

e This is a crash course, well a “crash lecture”!

* Assumes prior learning of an assembly language
* MIPS in COMP1521

 ARM is a Reduced Instruction Set Computer (RISC) architecture
* Conceptually a lot of similarities to MIPS
* And yeh, there are some differences

Learning Resources

The upcoming slides are adapted from “Embedded Systems
with ARM Cortex-M Microcontrollers in Assembly Language
and C (Fourth Edition)” — Yifeng Zhu

* ARM Instruction set architecture - chapter 3

* For an in-depth understanding of ARM assembly
programming — chapters 4-8

* Mixing C and assembly — chapter 10

Embedded Systems
with ARM Cortex-M
Microcontrollers in
Assembly Language and C

Fourth Edition

Dr. Yifeng Zhu

ARM Processor Register Bank

32 bits

RO
R1
R2

ﬁi * Each registeris 32 bits

RG General * R0O-R12: General purpose registers
R6 ~ Purpose e R13: Stack pOinter (SP)
R7 registers * R14: Link Register (LR)

gg e R15: Program Counter (PC)

R10
R11
R12

R13 (SP)

R14 (LR)

R15 (PC)

ARM Instruction Examples

ADD r@, r2, r3 // r@ = r2 + r3

/AN N

mnemonic destination 1t source 2"d source comment
operand operand operand

ARM Instruction Examples

ADD ri1, r2, r3 // rl =r2 + r3
ADD rl1, r2, #4 // rl =r2 + 4
MOV ro, rl // re =rl

MOV rl1, #5 // rl =5

ARM Assembly Instructions

e Arithmetic and logic
e Add, Subtract, Multiply, Divide, Shift, Rotate

* Data movement
* Load, Store, Move

e Compare and branch
 Compare, If-then, branch,

* Miscellaneous
* Breakpoints, wait for events, no operation

Arithmetic Instructions: Examples

e ADD
 ADC
* SUB
 SBC
* MUL

ro,
ro,
ro,
ro,
ro,

rl,
rl,
rl,
rl,

rl,

r2
r2
r2
r2
r2

//
//
//
//
//

ro =r1+ r2

Add with carry, r@ = rl + r2 + carry

ro =rl - r2

Subtract with borrow, r@ = rl - r2 - (1 - carry)
re = rl * r2, product limited to 32 bits

Logic Instructions: Examples

* AND
* ORR
* EOR
* ORN

 BIC

 LSL
°* LSR
* ROR

ro,
ro,
ro,
ro,

ro,

ro,
ro,
ro,

rl,
rl,
rl,

rl,

rl,

rl
rl

rl,

o

o

r2 // Bitwise AND, r@ = rl AND r2

r2 // Bitwise OR, r@o = rl1l OR r2

r2 // Bitwise Exclusive OR, r@ = rl EOR r2
r2 // Bitwise OR NOT, r@ = rl ORN r2

r2 // Bit clear, r@ = rl & ~r2

r2 // Logical shift left, r@ = rl << r2
r2 // Logical shift right, r@ = rl1 >> r2
r2 // Rotate right, r@ = rl rotate by r2 bits

Data Movement Instructions: Examples

e MOV rl1, ro // rl = ro
« MOV rl1, #16 // rl = 16
« LDR rl1, =10000 // rl = 10000

// assume r@ has the memory address
* LDR r1, [rO] // rl = Memory.word[ro]
LDR rl1, [rO,#8] // rl = Memory.word|[ro+8]

; assume r@ has the memory address
STR rl1, [ro] // Memory.word[r@e] = rl
STR rl1, [rO,#8] // Memory.word[ro+8] = ril

10

Compare and branch Instructions: Examples

if (a == 1)
b = 3;
else
b = 4;
If-then-else
CMP ri1, #1
BNE else
then: MOV r2, #3
B endif
else: MOV r2, #4
endif:

11

Compare and branch Instructions: Examples

C Program

int i;

int sum = 0;

for(i = 0; i < 10; i++){
sum += 1i;

}

For Loop

MOV ro, #0
MOV r1, #0

loop: CMP ro, #10
BGE stop
ADD rl1, rl, ro
ADD ro, ro, #1
B loop

stop:

12

Compare and branch Instructions: Examples

void foo(void) ;

void foo (void) {
L\\e€
“0\"0 M e 0o 0

int main(void{ “a‘\sﬁe‘co‘\ o
oo oo (uspended caller — return;
foo(); Resume

— ¥

Compiler

Function Call

Transfer ¢ontrol to callee .
BL foo > foo:

co o Resllme su e oo
S
pended Caller oo o0

Note: function call is referred to by terms such as procedure
call and subroutine call

13

Miscellaneous Instructions: Examples

*NOP // No Operation

14

Function Calls — Calling Standard

e What is it?
 Contract between a caller and callee
* Why need it?

* Allows functions to be separately written, compiled, and assembled but work
together

* Allows C program call an assembly function, or vice versa

* Involves:
* Argument passing
e Return values
* Backing up registers

* Calling standard is also known by terms like calling convention 15

Passing Arguments and Returning Value

RO R1_J Rz QN R3

32-bit 32-bit 32-bit 32-bit
Argument 1 Argument 2 Argument 3 Argument 4 Extra arguments are
pushed to the stack by
R1(msB32) RO(LsSB32) R3(mMsB32) R2(LsB32) the caller. The caller is
64-bit Argument 1 64-bit Argument 2 responsible to pop them
out of the stack after the
R3(MSB32) R2 R1 RO(LSB32) subroutine returns.

128-bit Argument

“ R1(MsB32) RO(LSB32) R3(MsB32) R2 R1 RO(LSB32)

32-bit Return Value 64-bit Return Value 128-bit Return Value

16

Passing Arguments and Returning Value

int32_t sum(int32_t a, int32_t b, int32_t c,

s = sum(1l, 2, 3, 4);

Caller

MOV
MOV
MOV
MOV
BL

ro, #1
rl, #2
r2, #3
r3, #4
sum

// a
// b
// c
// d

Callee

int32_t d);

sum:
ADD
ADD
ADD
BX

re, ro, r1 // a + b
re, re, r2 // add c
re, re, r3 // add d
LR

17

Preserving registers

(Caller RO \ °* Callee can freely modify RO, R1, R2, and R3
Saved R1 * If caller expects their values are retained, caller
Registers R2 should push them onto the stack before calling

R3 the callee

%

R5
Callee R6 e Caller expects these values are retained .
Saved R7 * If Callee modifies them, callee must restore their
Registers RS values upon leaving the function.
R9
R10
_ R11)
R12
R13 (SP)
R14 (LR)
R15 (PC)

18

Preserving registers

Caller Program Subroutine/Callee

foo:
MOV r4, #100 PUSH {r4} // preserve r4
BL foo MOV r4, #10 // foo changes r4
ADD r4, r4, #1 // rd = 101, not POP {r4} // Recover r4
11 BX LR

Caller expects callee does not modify r4! Callee should preserve r4!

19

Mixing C and Assembly

* Inline assembly
/] ...
// C code

__asm__(

"MOV ro, #0x048000000 \n"
"LDR rl, [ro, #0x14] \n"
"BIC rl, rl, #1<<5 \n"
"STR rl, [ro, #0x14] \n"
K

/...

// C code

20

Mixing C and Assembly

* Calling as assembly function from C

C Program (main.c) Assembly Program (strlen.s)

.global strlen

char str[25] = "Hello!";
int strlen(char¥* s);
int main(void){

int 1i;

i = strlen(str);
while(1);

strlen:

loop:

exit:

PUSH {r4}
MOV r4, #0

LDRB rl, [rO, r4]
CBZ ri1, exit
ADD r4, r4, #1

B loop

MOV ro, r4
POP {r4}
BX LR

//
//

//
//
//
//

//
//

preserve r4
initialize length

re = string address
branch if zero
length++

do it again

place result in ro
return

21

Arithmetic and Logic Instructions

* Shift : LSL (logic shift left), LSR (logic shift right), ASR (arithmetic shift right), ROR (rotate right), RRX (rotate right with extend)
* Logic: AND (bitwise and), ORR (bitwise or), EOR (bitwise exclusive or), ORN (bitwise or not), MVN (move not)
* Bit set/clear: BFC (bit field clear), BFI (bit field insert), BIC (bit clear), CLZ (count leading zeroes)

* Bit/byte reordering: RBIT (reverse bit order in a word), REV (reverse byte order in a word), REV16 (reverse byte order in each half-word
independently), REVSH (reverse byte order in each half-word independently)

* Addition: ADD, ADC (add with carry)
* Subtraction: SUB, RSB (reverse subtract), SBC (subtract with carry)

* Multiplication: MUL (multiply), MLA (multiply-accumulate), MLS (multiply-subtract), SMULL (signed long multiply-accumulate), SMLAL
(signed long multiply-accumulate), UMULL (unsigned long multiply-subtract), UMLAL (unsigned long multiply-subtract)

* Division: SDIV (signed), UDIV (unsigned)
e Saturation: SSAT (signed), USAT (unsigned)
e Sign extension: SXTB (signed), SXTH, UXTB, UXTH

* Bit field extract: SBFX (signed), UBFX (unsigned)

22

Load/Store a Byte, Halfword, Word

LDRxxx RO, [R1]
// Load data from memory into a 32-bit register

Load Word uint32_t/int32_t wunsigned or signed int
LDRB Load Byte uint8 t unsigned char

LDRH Load Halfword uintle t unsigned short int
LDRSB Load Signed Byte int8 t signed char
LDRSH Load Signed Halfword intl6_t signed short int

STRxxx RO, [R1]
// Store data extracted from a 32-bit register into memory

S store Word uint32 t/int32_t unsigned or signed int
STRB Store Lower Byte uint8 t/int8 t unsigned or signed char
STRH Store Lower Halfword uintl16 _t/intl6_t unsigned or signed short

23

Pre-index and Post-index

Index Format

LDR r1, [r@, #4] rl1 <« memory[re + 4],
re is unchanged

LDR rl, [r@, #4]! rl < memory[re + 4]

with update ro ro + 4

e
Post-index LDR rl, [r@], #4 rl1 < memory[r0]
ro < ro + 4

Offset range is -255 to +255

24

Unconditional Branch Instructions

Instruction Operands Brief description
B label Branch
BL label Branch with Link
BX Rm Branch indirect
* Blabel
* perform a branch to label.
e BL label

* copy the address of the next instruction into r14 (Ir, the link register), and
* perform a branch to label.

* BXRm
* branch to the address held in Rm

25

Condition Flags

Program Status Register (PSR)

N Z|C|V

* Negative bit
* N = 1 if most significant bit of resultis 1
e Zero bit
« Z = 1 if all bits of the result are ©
* Carry bit
* For unsigned addition, C = 1 if carry takes place
* For unsigned subtraction, C = @ (carry = not borrow) if borrow takes place
* For shift/rotation, C = last bit shifted out
* oVerflow bit

« V = 1 ifadding 2 same-signed numbers produces a result with the opposite sign
* Positive + Positive = Negative, or
* Negative + negative = Positive

* Non-arithmetic operations does not touch V bit, such as MOV, AND, LSL ,MUL

26

Branch Instructions

N L T T

Conditional Branch

BEQ label
BNE label
BCS/BHS label
BCC/BLO label
BMI label
BPL label
BVS label
BVC label
BHI label
BLS label
BGE label
BLT label
BGT label
BLE label

Branch if EQual

Branch if Not Equal

Branch if unsigned Higher or Same
Branch if unsigned LOwer

Branch if Minus (Negative)

Branch if PLus (Positive or Zero)
Branch if oVerflow Set

Branch if oVerflow Clear

Branch if unsigned Higher

Branch if unsigned Lower or Same
Branch if sighed Greater or Equal
Branch if signed Less Than

Branch if signed Greater Than
Branch if signed Less than or Equal

N
T [T |
H

&72=0
orZ=1

2 2 0 O < < 22 0 0N
. I
< O P ORPr ORr O R O

i
<

Z=0&N=V
Z=1orN=1V

27

ARM Procedure Call Standard

Subroutine

Regi N
egister Usage Preserved otes
If return has 64 bits, then rO:r1 hold it. If argument 1 has
ro Argument 1 and return value No 64 bits, r0:r1 hold it.
rl Argument 2 No
r2 Argument 3 No If the return has 128 bits, rO-r3 hold it.
r3 Argument 4 No If more than 4 arguments, use the stack
r4 General-purpose V1 Yes Variable register 1 holds a local variable.
r5 General-purpose V2 Yes Variable register 2 holds a local variable.
ré General-purpose V3 Yes Variable register 3 holds a local variable.
r7 General-purpose V4 Yes Variable register 4 holds a local variable.
r8 General-purpose V5 YES Variable register 5 holds a local variable.
ro9 Platform specific/V6 Yes/No Usage is platform-dependent. Can be Variable register 6
rlo General-purpose V7 Yes Variable register 7 holds a local variable.
ril General-purpose V8 Yes Variable register 8 holds a local variable.
: It holds i i I
r12 (IP) |Intra-procedure-call register No t holds mtermedla’Fe values between a procedure and
the sub-procedure it calls.
rl3 (SP) | Stack pointer Yes SP has to be the same after a subroutine has completed.
r14 (LR) | Link register No LR does.not have to contain the same value after a
subroutine has completed.
rl5 (PC) | Program counter N/A Do not directly change PC

28

ARM Cortex Instruction Set

* https://web.eece.maine.edu/~zhu/book/Appendix B Cortex M3 M
4 Instructions.pdf

29

https://web.eece.maine.edu/~zhu/book/Appendix_B_Cortex_M3_M4_Instructions.pdf
https://web.eece.maine.edu/~zhu/book/Appendix_B_Cortex_M3_M4_Instructions.pdf

ARM Immediate Values

* Following posts would be helpful those who want to know how and
what immediate values are supported in ARM instructions

* https://xlogicx.net/ARM 12-bit Immediates are Too High Level.html
* https://minhhua.com/arm immed encoding/index.html

30

https://xlogicx.net/ARM_12-bit_Immediates_are_Too_High_Level.html
https://minhhua.com/arm_immed_encoding/index.html

	Slide 1: DESN2000 (Computer Engineering) 2025 T2 ARM Assembly
	Slide 2: ARM Assembly
	Slide 3: Learning Resources
	Slide 4: ARM Processor Register Bank
	Slide 5: ARM Instruction Examples
	Slide 6: ARM Instruction Examples
	Slide 7: ARM Assembly Instructions
	Slide 8: Arithmetic Instructions: Examples
	Slide 9: Logic Instructions: Examples
	Slide 10: Data Movement Instructions: Examples
	Slide 11: Compare and branch Instructions: Examples
	Slide 12: Compare and branch Instructions: Examples
	Slide 13: Compare and branch Instructions: Examples
	Slide 14: Miscellaneous Instructions: Examples
	Slide 15: Function Calls – Calling Standard
	Slide 16: Passing Arguments and Returning Value
	Slide 17: Passing Arguments and Returning Value
	Slide 18: Preserving registers
	Slide 19: Preserving registers
	Slide 20: Mixing C and Assembly
	Slide 21: Mixing C and Assembly
	Slide 22: Arithmetic and Logic Instructions
	Slide 23: Load/Store a Byte, Halfword, Word
	Slide 24: Pre-index and Post-index
	Slide 25: Unconditional Branch Instructions
	Slide 26: Condition Flags
	Slide 27: Branch Instructions
	Slide 28: ARM Procedure Call Standard
	Slide 29: ARM Cortex Instruction Set
	Slide 30: ARM Immediate Values

