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• In Lab-Exercise-2 and Assignment-2, we will conduct code verification to prove code assertions on top of
reachability analysis (Assignment-1).

• Translating C statements (Lab-Exercise-2) and SVFStmt/ICFGNode (Assignment-2) to logical
formulas/expressions and solve them to verify code assertions using automated theorem prover (i.e., Z3)
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Formal Verification For Code

Specification ?≡ Code implementation

⇓ translate ⇓ translate

logical formulas of specification ?≡ Logical formulas of code implementation.

• Proving the correctness of your code given a specification (or spec) using
formal methods of mathematics

• Make the connection between specifications and implementations rigid,
reliable and secure by translating specification and code into logical formulas.

• The application of theorem proving tools to perform satisfiability checking of
logical formulas.
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Specification
• Specifications independent of the source code

• Formal specification in a separate file from the source code, written in a
specification language and accepted by theorem provers

• Specifications embedded in the source code (This course)
• assume(expr): an assumed precondition of a program that expression expr

always be true and uses this assumed knowledge to execute the program.
assmue is often optional as many verification scenarios may not have
preconditions, including Lab-Exercise-2 and Assignment-2.

• assert(expr): an expected postcondition embedded in the program to check
that expr always holds for any execution, otherwise the program terminates. We
use svf assert in our lab/assignment as an alternative for verification purposes.

• Hoare logic triple P{prog}Q, represents a program expressed by a predicate
(first-order) logic. It describes that when the precondition P is met, executing
the program prog establishes the postcondition Q.

Hoare logic: https://en.wikipedia.org/wiki/Hoare_logic

Formal specifications: https://www.hillelwayne.com/post/why-dont-people-use-formal-methods
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Pre-/Post-Conditions and Satisfiability

Prove whether the post-condition (assert) holds after executing the program given
the pre-condition (assume).

assume(100 > x > 0); // P

if(x > 10) {

y = x + 1;

}

else {

y = 10;

}

assert(y >= x + 1); // Q

Will the assertion hold?

translate

=⇒ ψ(P{prog}Q)
logical formula

feed into

=⇒ SAT/SMT
Solver
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Assertions as Specifications
• In our lab and assignments, we need to verify whether the assertions

(svf assert) as specifications are satisfiable (expected results) or not.
• An assertion is a predicate or an expression that always should evaluate to

true at that point during code execution.
• help a programmer read the code
• help the program detect its own defects
• help catch errors earlier and pinpoint sources of errors

assert(expr);

or

svf_assert(expr);

unfold−−−→

if(expr is true){

// continue normal execution

}

else{

__assert_fail();

// program failure and terminate the program

}
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Satisfiability Solving as Logic Inference

Satisfiability solving of hoare logic triple P{prog}Q as a logic inference problem:
• Given P{prog}Q represented by a set of constraints (logical formulas)

extracted from code, we express P{prog} as KB knowledge base or
premises, and Q is the conclusion. Revisit our previous example as below:

• KB : (100 > x > 0) ∧ ((x>10 ∧ y ≡ x+ 1) ∨ (x≤10 ∧ y ≡ 10))
• Q : y ≥ x+ 1

• KB ⊢ Q ?
• Does KB semantically entail Q?
• If all constraints in KB are true, is the assertion true?
• Is the specification Q satisfiable given constraints from code?

• Each element (proposition or predicate) in KB can be seen as a premise
and Q is the conclusion.
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Propositional Logic (Statement Logic)
A proposition is a statement that is either true or false. Propositional logic studies
the ways statements can interact with each other.

• Propositional variables (e.g., S) represent propositions or statements in the
formal system.

• A propositional formula is logical formula with propositional variables and
logical connectives like and (∧) , or (∨), negation (¬), implication (→)

• (S1 ∧ S2) → Q. This formula means that if S1 and S2 are both true, then Q is
true.

• S1 and S2 are propositional variables. ∧ and → are logical connectives.
• Logic inference allows certain logic formulas to be derived. These derived

formulas are called theorems (or true propositions). The derivation can be
interpreted as proof of the proposition represented by the theorem.

https://en.wikipedia.org/wiki/Propositional_calculus

http://discrete.openmathbooks.org/dmoi2/sec_propositional.html
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Predicate Logic (First-Order Logic)
Predicate logic is propositional logic with predicates and quantification.

• Propositional logic: boolean logic which represents statements without
reflecting their structures and relations

• Predicate logic: is more expressive and further analyzes proposition(s) by
representing their entities’ properties and relations and to group entities, i.e.,
additionally covers predicates and quantification.

• A predicate P takes one or more variables/entities as input and outputs a
proposition and has a truth value (either true or false).

• A statement whose truth value is dependent on variables.
• For example, in P(x) : x > 5, “x” is the variable and “x > 5” is the predicate.

After assigning x with the value 6, P(x) becomes a proposition 6 > 5.
• A quantifier is applied to a set of entities

• Universal quantifier ∀, meaning all, every
• Existential quantifier ∃, meaning some, there exists

https://en.wikipedia.org/wiki/First-order_logic https://www.youtube.com/watch?v=ARywou8HLQk
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Predicate Logic (Natural Language Example)

Consider the two statements
• “Jack got a high distinction”
• “Peter got a high distinction”

In propositional logic, these statements are viewed as being unrelated and the
sub-statements/words/entities are not further analyzed.

• Predicate logic allows us to define a predicate P representing “got a high
distinction” which occurs in both sentences.

• P(x) is the predicate logic statement (formula) which accepts a name x
and output as “x got a high distinction”.
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Predicate Logic (Code Example)

Consider these four statements

S1: x > 20;
S2: x > 10;
S2 → Q: if(x > 10) y = 15;
Q: y = 15;

• In propositional logic, each statement (including its variables and constants)
is viewed as one proposition. Their relations are not further analyzed.

• Given propositions S1 and S2 → Q as the knowledge base KB. Does the
following semantically entail {S1, S2→Q }⊢Q or (S1 ∧ (S2→Q)) → Q hold?

• Answer: No! (The relation between S1 and S2 is not captured).
• Predicate logic allows us to define three predicates: P1(x) represents x>

20; P2(x) represents x>10; Q(y) represents y=15 for the properties of x, y.
Does the following hold using predicate logical for the inference?

• {P1(x), P2(x) → Q(y) }⊢Q(y) or (P1(x) ∧ P2(x)→Q(y)) → Q(y)
• {x > 20, x > 10 → y = 15 } ⊢ y = 15
• Answer: Yes!
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Satisfiability Checking (Revisit Our Example)

Given the predicate formula ψ(P{prog}Q), we can verify the correctness of a
program against the assertion specification Q by checking ψ’s satisfiability (SAT).

assume(100 > x > 0); // P

if(x > 10) {

y = x + 1;

}

else {

y = 10;

}

assert(y >= x + 1); // Q

translate

=⇒ ψ(P{prog}Q)
logical formula

feed into

=⇒ SAT/SMT
Solver
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Satisfiability Checking for Code Verification
• ψ(P{prog}Q) is satisfiable if a program prog is correct for there valid inputs.

∀x ∀y P(x) ∧ Sprog(x, y) → Q(x, y)

• P(x) is the pre-condition predicate (100 > x > 0) over variables x.
• Sprog(x, y) is the predicate representing prog which accepts x as its input, and

terminates with output y.
• Q(x, y) is the post-condition predicate (y >= x+ 1) over variables x, y.

• How to prove correctness for all inputs x? Search for counterexample x where
ψ does not hold, that is

∃x ∃y ¬(P(x) ∧ Sprog(x, y)) → Q(x, y))
⇒ ∃x ∃y P(x) ∧ Sprog(x, y) ∧ ¬Q(x, y) (simplification)
Note that P(x) is always true if a program does not have a pre-condition.

Logic formula simplification: https://en.wikipedia.org/wiki/Logical_equivalence
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Satisfiability Checking for Code Verification

Checking whether the logical formula ψ is satisfiable by an SMT solver.

assume(100 > x > 0);

if(x > 10) {

y = x + 1;

}

else {

y = 10;

}

assert(y >= x + 1);

translate

=⇒ ∃x ∃y P(x) ∧ Sprog(x, y)) ∧ ¬Q(x, y)

logical formula ψ

feed into

=⇒ SMT
Solver

assert fails!

solver returns sat and couterexample x = 10 found!

SMT: https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
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Translating Code into Logical Formulas
• How to extract P(x)∧Sprog(x, y))∧¬Q(x, y) from code?

• First-order logical formulas
• The formulas of predicate logic are constructed from propositional, predicate

and object variables by using logical connectives and quantifiers (This class)
• Translation

• Translating SVFStmts of each program path (from Assignment-2) into a logical
formula ψ, and then proving the non-existence of counterexamples (or check
unsat) for each path.

• ∀path ∈ prog checking(ψpath)
ψpath1 : ∃x P(x) ∧

(
(x > 10) ∧ (y ≡ x+ 1)

)
∧ ¬Q(x, y) (if branch)

ψpath2 : ∃x P(x) ∧
(
(x ≤ 10) ∧ (y ≡ 10)

)
∧ ¬Q(x, y) (else branch)

15
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(
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• ψpath2 : has a counterexample x = 10!!

• Manual translation of C statements to logic expressions via Z3 theorem prover
APIs (Z3Mgr.h/cpp) (Lab-Exercise-2)

• Automatic translation of SVFIR to logic expressions during control-flow
reachability analysis (Assignment-2)
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Proving Non-Existence of Counterexamples and Closed-World
Programs

• Proving unsat of P(x) ∧ Sprog(x, y) ∧ ¬Q(x, y), otherwise, there exists at least
one counterexample by the solver.

• If the program operates in a closed-world (value initialisations are fixed and
there are no inputs from externals such as main’s arguments, like some tests
in Exercise-2). For closed world programs, the assertion verification can be
done by directly checking satisfiability (P(x)∧Sprog(x, y)∧Q(x, y)), essentially
the same as checking the non-existence of counterexamples.
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Theorem Prover Tools

• Interactive theorem provers (proof assistants)
• Formal proofs by human-machine collaboration via expressive specification

languages; may not work directly on source code.
• For example, ACL2, Coq, Isabelle, and HOL provers.

• Automated theorem provers
• Proof automation (but less expressive than interactive provers); can work on

real-world source code.
• For example, Z3 and CVC.

Theorem prover tools: https://en.wikipedia.org/wiki/Theorem_prover
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Automated Theorem Provers
A prover/solver checks if a formula ψ(P{prog}Q) is satisfiable (SAT).

• If yes, the solver returns a model m, a valuation of x, y, z of prog that satisfies
ψ (i.e., m makes ψ true).

• Otherwise, the solver returns unsatisfiable (UNSAT)
SAT vs. SMT solvers

• SAT solvers accept propositional logic (Boolean) formulas, typically in the
conjunctive normal form (CNF).

• SMT (satisfiability modulo theories) solvers generalize the Boolean
satisfiability problem (SAT), and accept both propositional logic and more
expressive predicate logic formulas.

• Z3 Automated Theorem Prover, a cross-platform satisfiability modulo theories
(SMT) solver developed by Microsoft (This course).

Z3: https://github.com/Z3Prover/z3/wiki#background
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Code to Logic Expressions with Z3 Theorem Prover
(Week 4)

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia
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Z3 Theorem Prover
• Z3 is a Satisfiability Modulo Theories (SMT) solver from Microsoft Research.
• Targeted at solving problems in software verification and software analysis.
• Main applications are static checking, test case generation, and more ..

Hardware verification Software analysis/testing Architecture Modeling

Geometrical solving Biological analysis Hybrid system analysis

!!"

https://www.microsoft.com/en-us/research/project/z3-3/
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Z3 Framework
• Z3 is an effective tool to solve logical formulas

(Z3 expressions/constraints).
• Z3 GitHub https://github.com/Z3Prover/z3.
• Z3 tutorials

https://github.com/philzook58/z3_tutorial

• Z3 slides https:

//github.com/Z3Prover/z3/wiki/Slides

• Its SMT solver supports theories such as
fixed-size bit-vectors, arithmetic, extensional
arrays, datatypes, uninterpreted functions, and
quantifiers.

• Z3 has official APIs for C, C++, Python, .NET,
etc.

• Z3 solver can find one of the feasible solutions in
a set of constraints.
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Z3 Solver and Z3 Formulas

Z3 solver accepts a first-order (predicate) logical formula ψ, and outputs one of the
following results.

• sat if ψ is satisfiable
• unsat if there is a counterexample which make ψ unsatisfiable
• unknown if ψ is too complex and can not be solved within a time frame.

You play around and check the satisfiability of your Z3 constraints/formulas here:
https://jfmc.github.io/z3-play or
https://compsys-tools.ens-lyon.fr/z3/index.php
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Z3 Playground (https://jfmc.github.io/z3-play)
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Z3’s Logical Formula (Constants, Check-Sat and Evaluation)
The Z3 input format (formula format) is an extension of the SMT-LIB 2.0 standard.
A Z3 formula expression (z3::expr) has the following keywords:

• echo displays a message
• declare-const declares a constant of a given type (a.k.a sort)
• declare-fun declares a function
• assert adds a formula into the Z3 internal stack
• check-sat determines whether the current formulas on the Z3 stack are

satisfiable or not
• get-model is used to retrieve an interpretation (one solution) that makes all

formulas on the Z3 internal stack true
• eval evaluates a variable/expression produced by a model when the formulas

is satisfiable.
SMT-LIB 2.0: https://homepage.cs.uiowa.edu/~tinelli/papers/BarST-SMT-10.pdf
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Constants, Check-Sat and Evaluation (Example)

ψ : (x > 10) ∧ (y ≡ x+ 1)
How to represent this formula in Z3 and feed it into Z3’s solver?

1 (echo "starting Z3...")

2 (declare-const x Int) ;/// Declare an Int type variable "x"

3 (declare-const y Int) ;/// Declare an Int type variable "y"

4 (assert (> x 10)) ;/// Add the first part (x>10) of the conjunction into the solver

5 (assert (= y (+ x 1))) ;/// Add the second part (y==x+1) of the conjunction

6 (check-sat) ;/// Check whether added formulas are satisfiable.

7 (eval x) ;/// Evaluate the value of x when the formula is satisfiable

8 (eval y) ;/// Evaluate the value of y when the formula is satisfiable

Outputs of Z3’s solver:
1 starting Z3...

2 sat /// (check-sat) result

3 11 /// the value of x as one satisfiable solution

4 12 /// the value of y as one satisfiable solution
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Z3’s Logical Formula (Uninterpreted Function)

The basic building blocks of SMT formulas are constants and uninterpreted
functions.

• An uninterpreted function has no other property (no priori interpretation)
than its signature (i.e., function name and arguments).

• An uninterpreted functions in first-order logic have no side-effects (e.g., can
not change argument values and never return different values for the same
input)

• Constants in Z3 can also be seen as functions that take no arguments.
• The details and characteristics of uninterpreted functions are ignored. This

can generalize and simplify theorems and proofs.
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Uninterpreted Function (Example)
1 (declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int

2 (assert (= (f 10) 1)) ;/// f(10) = 1

3 (check-sat)

Outputs of Z3’s solver:
1 sat

The solver returns sat, because f is an uninterpreted function (i.e., all that is known about f is its
signature), so it is possible that f(10) = 1.

1 (declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int

2 (assert (= (f 10) 1)) ;/// f(10) = 1

3 (assert (= (f 10) 2)) ;/// f(10) = 2

4 (check-sat)

Outputs of Z3’s solver:
1 unsat

The solver returns unsat, because f, as an uninterpreted function, can never return different values
for the same input.
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Uninterpreted Function (Example)

ψ : f(x) ≡ f(y) ∧ x! = y

1 (declare-const x Int)

2 (declare-const y Int)

3 (declare-fun f (Int) Int) ;/// Function f accepts an Int argument and returns a Int

4 (assert (= (f x) (f y)))

5 (assert (not (= x y)))

6 (check-sat)

Outputs of Z3’s solver:
1 sat

An uninterpreted function can have different inputs and return the same output. For example, f can
always return 1 regardless the value of the input argument.
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Constants as Uninterpreted Function (Example)

ψ : (x > 10) ∧ (y ≡ x+ 1)

1 (declare-fun x () Int) ;/// "x" and "y" as an uninterpreted functions

2 (declare-fun y () Int) ;/// Accepts no argument and return an Int

3 (assert (> x 10))

4 (assert (= y (+ x 1)))

5 (check-sat)

6 (get-model)

Outputs of Z3’s solver:
1 sat

2 (

3 (define-fun x () Int

4 11) ;/// x is evaluated to be 11 for this model

5 (define-fun y () Int

6 12) ;/// y is evaluated to be 12 for this model

7 )

(declare-const x Int) can be seen as the syntax sugar for (declare-fun x () Int).
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Z3’s Logical Formula (Arithmetic)

• Z3 supports majority of commonly used arithmetic operators, such as +, -, ∗,
/, <<, >>, <, >, &, | (The ones listed in SVFIR)

• Types of any two operands should be the same otherwise a type conversion is
needed.

• Never mix types in arithmetic, and always be explicit.

1 (declare-const a Int)

2 (declare-const b Float32)

3 (assert (= a (+ b 1)))

4 (check-sat)

Outputs of Z3’s solver:
1 Error: (error "line 3 column 19: Sort mismatch at argument #1 for function

2 (declare-fun + (Int Int) Int) supplied sort is (_ FloatingPoint 8 24)")
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Z3’s Logical Formula (if-then-else Expression)

• ite(b, x, y) represents a conditional expression, where b is the condition,
ite returns x if b is evaluated true, otherwise y is returned

• Used for comparison or branches

1 (ite (and (= x!1 11) (= x!2 false)) 21 0)

The above Z3 formula evaluates (returns) 21 when x!1 is equal to 11, and x!2 is equal to false.
Otherwise, it returns 0.
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Z3’s Logical Formula (Arrays)
Formulating a program of a mathematical theory of computation McCarthy
proposed a basic theory of arrays as characterized by the select-store axioms.

• (select a i): returns the value stored at position i of the array a;
• (store a i v): returns a new array identical to a, but on position i it contains

the value v.
• Z3 assumes that arrays are extensional over select. Z3 also enforces that if

two arrays agree on all reads, then the arrays are equal.

The following formulas store y to the x-th position of array a and
then load the value at a’s x-th position to z

1 (declare-const x Int)

2 (declare-const y Bool)

3 (declare-const z Bool)

4 (declare-const a (Array Int Bool)) ;/// an array of Bools with Int as the indices

5 (assert (= (store a x y) a)) ;/// a[x] == y

6 (assert (= (select a x) z)) ;/// z == a[x]
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Z3’s Logical Formula (Scopes)
Z3 maintains a global stack of declarations and assertions via push and pop

• push: creates a new scope by saving the current stack size.
• pop: removes any assertion or declaration performed between it and the

matching push.
The check-sat command always operates on the current global stack.

1 (declare-const x Int)

2 (declare-const a (Array Int Int)) /// an array of Ints

3 (push)

4 (assert (= (store a 1 10) a)) ;/// a[1] == 10

5 (assert (= (select a 1) x)) ;/// x == a[1]

6 (assert (= x 20)) ;/// x == 20

7 (check-sat)

8 (pop) ;/// remove the three assertions

9 (assert (= x 10)) ;/// x == 10

10 (check-sat)

What is the output of the solver?
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Today’s class
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Clang

*.ll

Translation 
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Logical Formulas
(Z3 Expressions)  Z3 Solver
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Today's class

• We introduce Z3 solver, Z3 constraint format Z3Mgr APIs used for lab/assignment in this course.
• We learn how to manually translate C source code into logical formulas (Z3 constraints/expressions).
• Then, we will demonstrate examples for manual translation from code to Z3 constraints.
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Translating Code to Z3 Formulas
We provide Z3Mgr and its subclass Z3Examples (wrapper classes to manipulate Z3
APIs) to generate Z3 formulas or so-called z3::expr.

Z3Examples API Meanings
z3::expr getZ3Expr(std::string); Create a z3 expr given a string name
z3::expr getZ3Expr(u32_t); Create a z3 expr given an integer
z3::expr getCtx().int_val(u32_t); Create a z3 expr given an integer
z3::expr getMemObjAddress(std::string); Create a memory object in program
z3::expr getGepObjAddress(z3::expr, u32_t); Create a field object with an offset of an aggregate
void addToSolver(z3::expr); Add a Z3 expression/formula to the solver
void resetSolver(); Clean all formulas in the the solver
check_result solver.check(); Check if a formula is satisfiable; return sat/unsat/unknown.
bool checkNegateAssert(Z3Mgr, z3::expr); Check negated assert return true if no counterexample
z3::expr getEvalExpr(z3::expr); Evaluate an expression to a value based on a model.
void printExprValues(); Print the values of all expressions in the solver
void printZ3Exprs(); Print all z3 formulas in the solver

More details, refer to
https://github.com/SVF-tools/Teaching-Software-Verification/wiki/SVF-APIs
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Z3Mgr::getEvalExpr

z3::expr Z3Mgr::getEvalExpr(z3::expr e) {

z3::check_result res = solver.check();

assert(res != z3::unsat && "unsatisfied constraints!");

z3::model m = solver.get_model();

return m.eval(e);

}

The Z3Mgr::getEvalExpr method checks if the constraints added to the Z3 solver
are satisfiable. If they are, it retrieves the model that satisfies these constraints
and evaluates the given complex expression e within this model, returning the
evaluated result as one of the following:

• Boolean Expression: is true() or is false()

• Integer Expression: is numeral(), get numeral int64()

• Real Expression: get numeral double()

• String Expression: get numeral string()
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APIs for Lab-Exercise-2 vs APIs for Assignment-2
Lab-Exercise-2 (Z3Examples & Z3Mgr) Assignment-2 (Z3SSEMgr & Z3Mgr)
Z3Examples::getZ3Expr(u32 t val) Z3Mgr::getZ3Expr(u32 t id)

Get the z3 expression from a constant integer Get the z3 expression from an SVFVar ID
Z3Examples::getMemObjAddress(string name) Z3SSEMgr::getMemObjAddress(u32 t id)

Get the memory object address from a string name Get the memory object address from SVFVar ID
Z3Examples::getGepObjAddress Z3SSEMgr::getGepObjAddress

Get object address from a pointer and an offset Get object address from a pointer and an offset
Z3Examples::addToSolver(z3::expr e) Z3SSEMgr::addToSolver(z3::expr e)

Add expr e to solver Add expr e to solver
Shared APIs

Z3Mgr::printZ3Exprs(): Print all z3 expressions
Z3Mgr::printExprValues(): Print all expressions’ values after evaluation
Z3Mgr::getVirtualMemAddress(u32 t id) and Z3Mgr::isVirtualMemAddress(u32 t id)

The id of an object (ObjVar) in SVFIR will be marked using an AddressMask (0x7f000000)
to mimic the virtual memory address (note that this is not a physical runtime address but an abstract address)
getInternalID(u32 t) will unmarsk a virtual address to get its original ObjVar’s id.
Z3Mgr::storeValue(expr loc, expr value): stores a value to address loc.
Z3Mgr::loadValue(expr loc): loads a value from address loc.
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Translation Rules

expr p = getZ3Expr("p") expr q = getZ3Expr("q") expr r = getZ3Expr("r") expr x = getZ3Expr("x")

SVFStmt C-Like form Operations
AddrStmt (constant) p = c addToSolver(p == c);

AddrStmt (mem allocation) p = alloc addToSolver(p == getMemObjAddress("alloc");)

CopyStmt p = q addToSolver(p == q);

LoadStmt p = ∗q addToSolver(p == loadValue(q));

StoreStmt ∗p = q storeValue(p, q);

GepStmt p = &(q → i) or p = &q[i] addToSolver(p == getGepObjAddress(q,i));

PhiStmt r = phi(ℓ1 : p, ℓ2 : q) if(executed from l1) addToSolver(p==r);

if(executed from l2) addToSolver(q==r);

BranchStmt if(x) r = p else r = q addToSolver(r == ite(x, p, q));

UnaryOPStmt ¬p addToSolver(!p);

BinaryOPStmt r = p ⊗ q BinaryOPStmt::OpCode addToSolver(r == p ⊗ q);

CmpStmt r = p ⊙ q CmpStmt::Predicate addToSolver(r == ite(p ⊙ q, true, false));

CallPE/RetPE r = f(. . . , q, . . . ) f(. . . , p, . . . ){. . . return z}
CallPE p = q solver.push(); addToSolver(p == q);

RetPE p = r expr ret = getEvalExpr(r); solver.pop();

addToSolver(p == ret);
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Translating Code to Z3 Formulas (Scalar Example)
The target program code needs to be in SSA form (e.g., SVFIR).

• Top-level variables can only be defined once
• a = 1; a = 2; =⇒ a1 = 1; a2 = 2;

• Memory objects can only be modified/read through top-level pointers at
StoreStmt and LoadStmt.

• p = &a; *p = r; The value of a can only be modified/read via dereferencing p.

int main() {

int a;

int b;

a = 0;

b = a + 1;

assert(b>0);

}

→

expr a = getZ3Expr("a"); // int a;

expr b = getZ3Expr("b"); // int b;

// a = 0;

addToSolver(a==getZ3Expr(0));

// b = a+1;

addToSolver(b==(a+getZ3Expr(1)));

/// check negated assert cond (b <= 0)

/// for checking only, not added to solver

/// return true if no counterexample

res = checkNegateAssert(b>getZ3Expr(0));

→

(declare-fun a () Int)

(declare-fun b () Int)

(assert (= a 0))

(assert (= b (+ a 1)))

check unsat b <= 0

against solver formulas

→ Z3
solver

C code Translator Z3 Formulas
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Translating Code to Z3 Formulas (Memory Operation Example)
• Each memory object has a unique ID and allocated with a virtual memory address
• In our modeling, the virtual address starts from 0x7f...... + ID (i.e., 2130706432 + ID in decimal)
• Memory operations will be through store and load values from loc2ValMap, an Z3 array.

int main() {

int* p;

int x;

p = malloc(..);

*p = 5;

x = *p;

assert(x==5);

}

→

expr p = getZ3Expr("p"); // int* p;

expr x = getZ3Expr("x"); // int x;

// p = malloc(..);

expr m = getMemObjAddress("malloc1");

addToSolver(p == m);

// *p = 5;

storeValue(p, getZ3Expr(5));

// x = *p;

addToSolver(x == loadValue(p));

/// check negated assert cond (x != 5)

/// return true if no counterexample

res = checkNegateAssert(x==getZ3Expr(5));

→

(declare-fun p () Int)

(declare-fun loc2ValMap ()

(Array Int Int))

(declare-fun x () Int)

(assert (= p 2130706435))

(assert (= x (select

(store loc2ValMap 2130706435 5)

2130706435)))

check unsat x != 5

against solver formulas

C code Translator Z3 Formulas
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What’s next?

• (1) Understand Z3 formula format in the slides
• (2) Understand Z3Mgr class in the GitHub Repository of

Software-Security-Analysis
• (3) Start working on the Quiz-2 on WebCMS
• (4) Start working on Lab-Exercise-2

• Remember to git pull or docker pull to get the latest code template.
• You will implement a manual translation from code to Z3 formulas using Z3Mgr

and Z3Examples in for code assertion verification.
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