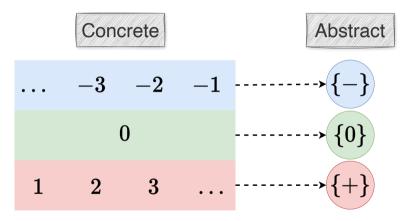

#### **Foundations of Abstract Interpretation**

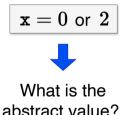
(Week 8)

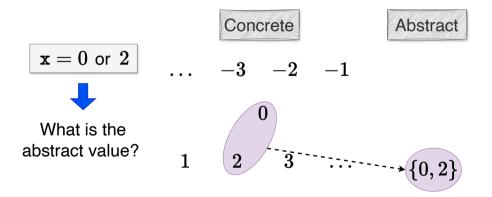
Yulei Sui

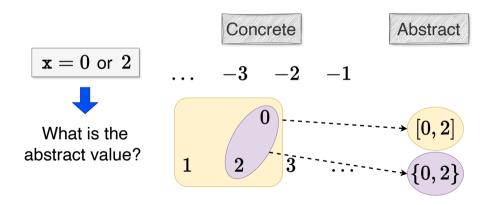
School of Computer Science and Engineering University of New South Wales, Australia

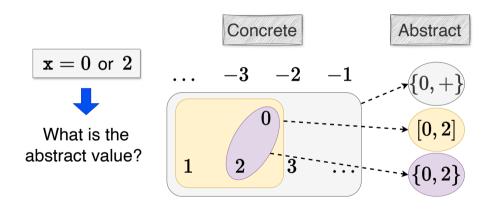
#### **Classes in the Next Three Weeks**

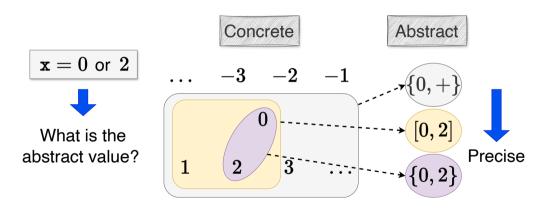




#### **Outline of Today's lecture**


- An Introduction to Abstract Interpretation: What and Why
- Abstract Interpretation vs Symbolic Execution
- Definitions: Abstract domains, Abstract State and Abstract Trace.
- Step-by-Step Motivating Examples.
- Widening and Narrowing to Improve Analysis Speed and Precision


#### **Abstract Interpretation**


Abstract interpretation or Abstract Execution [Cousot & Cousot, POPL'77]<sup>1</sup>, a general framework for static analysis, aims to **soundly approximate** the potential concrete values program variables may take during runtime, **based on monotonic functions over ordered sets, particularly lattices**.














### **Abstract Interpretation: Applications**

- Program Optimization: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
  - Range Analysis: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.

#### **Abstract Interpretation: Applications**

- Program Optimization: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
  - Range Analysis: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.
- Hardware Design and Analysis: used to verify that hardware designs meet certain specifications and to optimize the designs for better performance or lower power consumption.
  - Analyzing Hardware Circuits: By creating an abstract model of the circuit, it can predict how the circuit will behave under various input conditions.

### **Abstract Interpretation: Applications**

- Program Optimization: allows compilers to make safe assumptions about a program's behavior, leading to more efficient code generation.
  - Range Analysis: abstractly determines the loop's value range, aiding in memory optimization and eliminating redundant checks within this range.
- Hardware Design and Analysis: used to verify that hardware designs meet certain specifications and to optimize the designs for better performance or lower power consumption.
  - Analyzing Hardware Circuits: By creating an abstract model of the circuit, it can predict how the circuit will behave under various input conditions.
- Code Analysis (This Course): provides a systematic approach to approximate program behavior through value abstractions.
  - Security Analysis: crucial for early detection of bugs (e.g., assertion errors and buffer overflows), reducing debugging time and enhancing code reliability.

### **Abstract Interpretation: Tools**

Widely used in safety-critical systems (e.g., aerospace industries) and commercial software products to enhance reliability, security, and performance.

# **Abstract Interpretation: Tools**

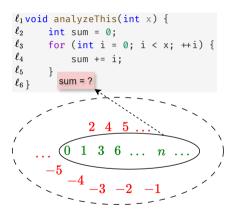
Widely used in safety-critical systems (e.g., aerospace industries) and commercial software products to enhance reliability, security, and performance.

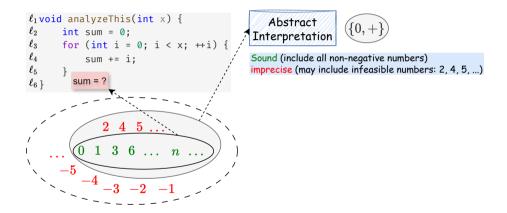
- Astrée is used to analyze and ensure the safety of software in modern aircraft, such as the Airbus A380.
- Polyspace is highly valued in the automotive and aerospace industries for ensuring software compliance with safety standards such as ISO 26262 for automotive software.
- **Ikos** is specialized in detecting run-time errors and numerical computation issues, making it ideal for space and aeronautics software.
- SPARK is used in the aerospace industry for writing and verifying safety-critical avionics software.
- **Infer** is a static analysis tool developed by Facebook to identify bugs in mobile and web applications.
- Other tools: Frama-C, Julia Static Analyzer, BAP, Soot and many more . . .

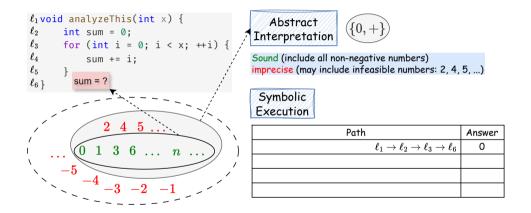
 Abstract interpretation aims for sound results. It can conservatively approximate all possible execution paths and runtime behaviors.

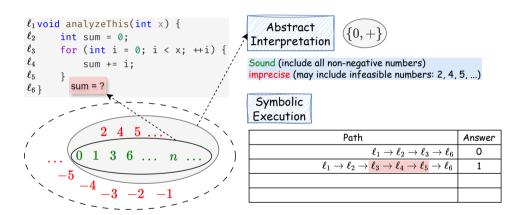
**Soundness** 

- Abstract interpretation aims for sound results. It can conservatively approximate all possible execution paths and runtime behaviors.
- **Symbolic execution** can be unsound. It precisely explores individual yet feasible paths, facing a "path explosion" problem in large programs, and may result in under-approximation of program behaviors.

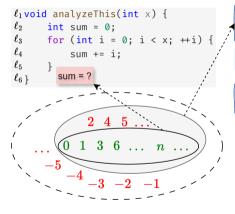

### **Assignment-2 vs. Assignment-3**


#### **Assignment-2**


- Delegate the constraint solving to the z3 SMT solver.
- Each time, it returns **one solution with concrete values for all variables** in the search space when the solver is satisfiable.
- Per-path verification without handling the inner parts of a loop.


#### **Assignment-3**

- Use Abstract State (AEState) and Abstract Trace (a set of AEStates for all ICFGNodes) to compute and maintain abstract values of variables.
- Abstract all possible values of a variable into a value interval (for scalars) or an address set (for memory addresses).
- Approximate loop behaviors based on widening and narrowing.





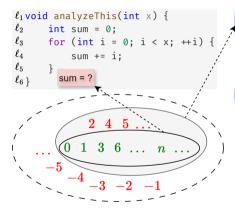





Over-Approximation (soundness) vs. Under-Approximation (unsoundness)



#### Abstract Interpretation



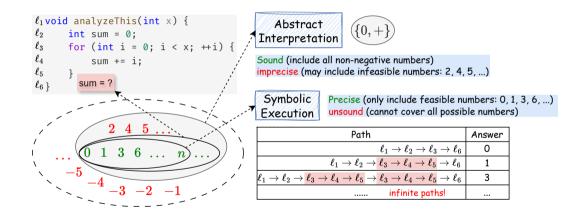

Sound (include all non-negative numbers) imprecise (may include infeasible numbers: 2, 4, 5, ...)

#### Symbolic Execution

| Path                                                                                                                                                     | Answer |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $\ell_1  ightarrow \ell_2  ightarrow \ell_3  ightarrow \ell_6$                                                                                           | 0      |
| $\ell_1  ightarrow \ell_2  ightarrow \ell_3  ightarrow \ell_4  ightarrow \ell_5  ightarrow \ell_6$                                                       | 1      |
| $\ell_1  ightarrow \ell_2  ightarrow \ell_3  ightarrow \ell_4  ightarrow \ell_5  ightarrow \ell_3  ightarrow \ell_4  ightarrow \ell_5  ightarrow \ell_6$ | 3      |
|                                                                                                                                                          |        |

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)




#### Abstract Interpretation



Sound (include all non-negative numbers) imprecise (may include infeasible numbers: 2, 4, 5, ...)

#### Symbolic Execution

| Path                                                                                                                                                     | Answer |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $\ell_1  ightarrow \ell_2  ightarrow \ell_3  ightarrow \ell_6$                                                                                           | 0      |
| $\ell_1  ightarrow \ell_2  ightarrow \ell_3  ightarrow \ell_4  ightarrow \ell_5  ightarrow \ell_6$                                                       | 1      |
| $\ell_1  ightarrow \ell_2  ightarrow \ell_3  ightarrow \ell_4  ightarrow \ell_5  ightarrow \ell_3  ightarrow \ell_4  ightarrow \ell_5  ightarrow \ell_6$ | 3      |
| infinite paths!                                                                                                                                          |        |



#### **Importance of Soundness**

• **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.

#### **Importance of Soundness**

- **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.
- Quality Assurance: Crucial for critical systems where failure can have serious consequences, ensuring software behaves as intended.

#### **Importance of Soundness**

- **Reliability:** Ensures comprehensive coverage of all possible program states, reducing unforeseen behavior in production.
- Quality Assurance: Crucial for critical systems where failure can have serious consequences, ensuring software behaves as intended.
- Confidence in Maintenance: Provides a safety net for code changes, reducing the risk of introducing new bugs.

**Termination** 

 Abstract interpretation is typically guaranteed to terminate within a finite step. Uses an abstracted, and hence more manageable, version of the state space to represent the infinite number of runtime states and paths.

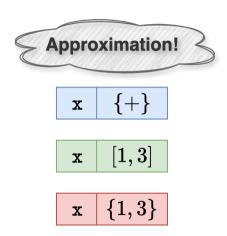
**Termination** 

- Abstract interpretation is typically guaranteed to terminate within a finite step. Uses an abstracted, and hence more manageable, version of the state space to represent the infinite number of runtime states and paths.
- Symbolic execution may struggle with termination in complex or large-scale programs. The need to explore numerous paths in detail, especially in programs with loops and recursive calls, can lead to non-termination or impractical analysis times.

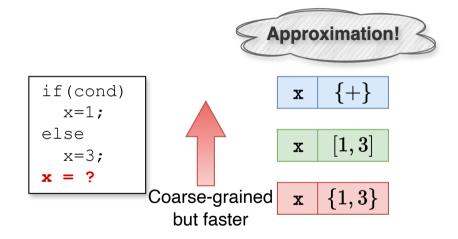
#### **Importance of Termination**

• **Deterministic:** Ensures consistent outcomes and predictable resource use for the same input.

#### **Importance of Termination**

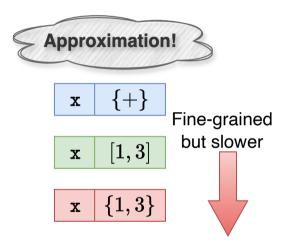

- **Deterministic:** Ensures consistent outcomes and predictable resource use for the same input.
- Efficiency: Reduces computational load by using abstracted state spaces, speeding up the analysis process.

#### **Importance of Termination**


- **Deterministic:** Ensures consistent outcomes and predictable resource use for the same input.
- Efficiency: Reduces computational load by using abstracted state spaces, speeding up the analysis process.
- Coverage: ensure that all parts of the code are analyzed, avoiding missed sections and ensuring thorough coverage for detecting issues.

# **Abstract Interpretation: A Code Example**

if(cond)
 x=1;
else
 x=3;
x = ?




## **Abstract Interpretation: A Code Example**



### **Abstract Interpretation: A Code Example**

if(cond)
 x=1;
else
 x=3;
x = ?

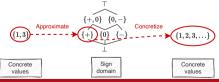


#### **Concrete Domain and Abstract Domain: Formal Definition**

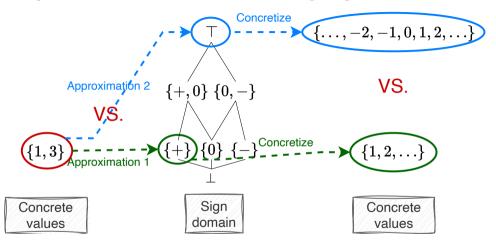
#### **Concrete Domain**

- S denotes the set of concrete values that a program variable can have.
  - E.g.,  $\mathbb{S} = \mathbb{Z}$  represents the concrete values that an integer variable can have.
- A **concrete domain**  $\mathbb C$  is the *powerset* of  $\mathbb S$ , denoted as  $\mathbb C = \mathcal P(\mathbb S)$ .
  - E.g. The *powerset integer domain* is a concrete domain for integer variables.

#### **Abstract Domain**


- An abstract domain A contains abstract values approximating a set of concrete values.
- An abstract domain is typically implemented using a lattice

   \[
   \subseteq \(\mathbb{L}, \supseteq, \supse
  - $\sqsubseteq$  is a partial order relation on  $\mathbb{A}$  (e.g.,  $\sqsubseteq$  is the subset ( $\subseteq$ ) on a power set).
  - $\sqcap$  and  $\sqcup$  are the meet and join binary operations, and  $\bot$  and  $\top$  are unique least and greatest elements of  $\mathbb{A}$ .


### An Example: Abstract Sign Domain

An abstract domain that approximates a set of concrete values with their signs.

- Lattice is defined as  $\mathbb{L} = \langle \mathcal{P}(\{-,0,+\}), \sqsubseteq, \sqcap, \sqcup, \perp, \top \rangle$ .
- Partial order:  $a \sqsubseteq b \Leftrightarrow a \subseteq b$ . E.g.,  $\{+\} \sqsubseteq \{0, +\} \Leftrightarrow \{+\} \subseteq \{0, +\}$ .
- Meet operator  $a \sqcap b$ : returns the greatest lower bound (GLB) that is less than or equal to both a and b (move downwards along the lattice)
  - $\{+\} \sqcap \{0\} = \bot$
- Join operator a 
   □ b: returns the least upper bound (LUB) that is greater than or equal to both a and b (move upwards along the lattice)
  - $\{+\} \sqcup \{0\} = \{+,0\}$
- Approximation: concrete value set  $\{1,3\}$  is over-approximated as  $\{+\}$ . After concretization, it is restored as  $\{x \in \mathbb{Z} | x > 0\}$ , a super set of  $\{1,3\}$ .



## An Example, the Best Abstraction using Sign Domain



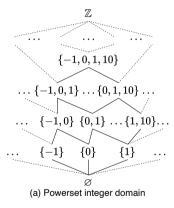
Approximation 1 (more precise than Approximation 2) is the best abstraction!

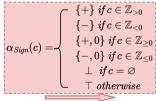
#### **Galois Connection**

When each concrete value has a unique best abstraction, the correspondence is a **Galois connection**, which is a two-way connections between abstract domain and concrete domain using abstraction function and concretization function.

- Abstraction function  $\alpha:\mathbb{C}\to\mathbb{A}$  maps a set of concrete values to its abstract ones;
- Concretization function  $\gamma: \mathbb{A} \to \mathbb{C}$  maps a set of abstract values to concrete ones.

#### **Galois Connection**


When each concrete value has a unique best abstraction, the correspondence is a **Galois connection**, which is a two-way connections between abstract domain and concrete domain using abstraction function and concretization function.


- Abstraction function  $\alpha:\mathbb{C}\to\mathbb{A}$  maps a set of concrete values to its abstract ones;
- Concretization function  $\gamma:\mathbb{A}\to\mathbb{C}$  maps a set of abstract values to concrete ones.

#### Example: Abstraction/concretization functions on sign domain

$$egin{align} \gamma_{Sign}( op) &= \mathbb{Z} & lpha_{Sign}(c) &= \{+\} \ \emph{if} \ c \in \mathbb{Z}_{>0} \ \gamma_{Sign}(\{-\}) &= \{x \,|\, x < 0\} & lpha_{Sign}(c) &= \{-\} \ \emph{if} \ c \in \mathbb{Z}_{<0} \ \gamma_{Sign}(\{+\}) &= \{x \,|\, x > 0\} & lpha_{Sign}(c) &= \{+, 0\} \ \emph{if} \ c \in \mathbb{Z}_{\geq 0} \ \ldots & \ldots \end{aligned}$$

#### **Galois Connection of Sign Domain**



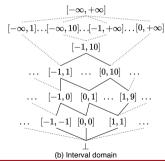




#### **Interval Domain**

The interval domain is an abstract domain that represents a set of integers that fall between two given endpoints.

- Lattice is defined as
  - $\mathbb{L}_{\textit{interval}} = \langle \mathbb{I}, \sqsubseteq, \sqcap, \sqcup, \bot, \top \rangle, \textit{ where } \mathbb{I} = \{ [a, b] \mid a, b \in \mathbb{Z} \cup \{-\infty, +\infty\} \} \cup \{\bot\}.$
- Partial order:  $[a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 \le a_1 \land b_1 \le b_2$ .
  - E.g.,  $[0,0], [0,1] \in \mathbb{A}_{interval}$ , satisfying  $[0,0] \sqsubseteq [0,1]$ .


#### **Interval Domain**

The interval domain is an abstract domain that represents a set of integers that fall between two given endpoints.

Lattice is defined as

$$\mathbb{L}_{\textit{interval}} = \langle \mathbb{I}, \sqsubseteq, \sqcap, \bot, \top \rangle, \textit{ where } \mathbb{I} = \{ [\textit{a}, \textit{b}] \mid \textit{a}, \textit{b} \in \mathbb{Z} \cup \{-\infty, +\infty\} \} \cup \{\bot\}.$$

- Partial order:  $[a_1, b_1] \sqsubseteq [a_2, b_2] \Leftrightarrow a_2 < a_1 \land b_1 < b_2$ .
  - E.g., [0,0],  $[0,1] \in \mathbb{A}_{interval}$ , satisfying  $[0,0] \sqsubseteq [0,1]$ .



Given  $a_1 = [3, 8]$  and  $a_2 = [7, 12]$ .

**Meet operation**  $a_1 \sqcap a_2$  returns the **greatest Lower Bound** (GLB):

- GLB = [7, 8], the largest range that is shared by both  $a_1$  and  $a_2$ . **Join operation**  $a_1 \sqcup a_2$  returns the **Least Upper Bound** (LUB):
  - LUB = [3,12], the smallest range that includes both  $a_1$  and  $a_2$ .
- LUB and GLB of lattice  $\mathbb{L}_{interval}$  are  $[-\infty, +\infty]$  and  $\perp$  respectively.

#### Galois Connection between $\mathbb C$ and $\mathbb A_{interval}$

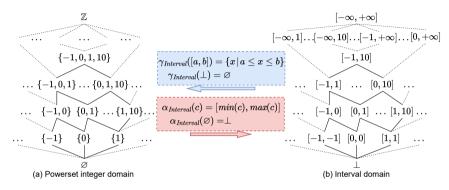
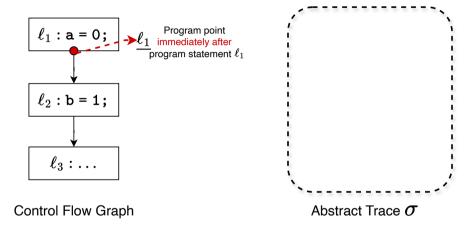
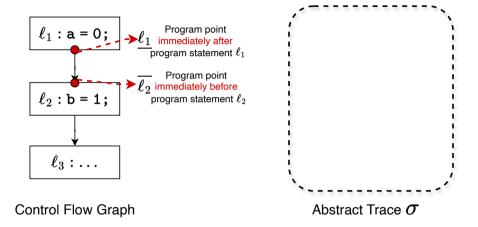
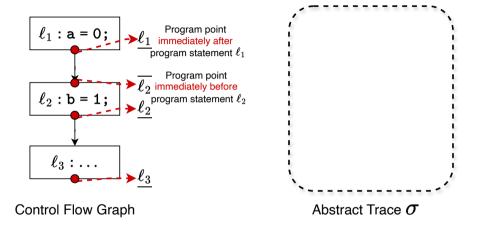
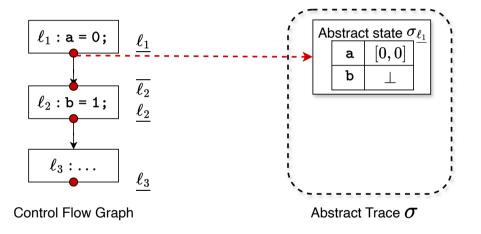


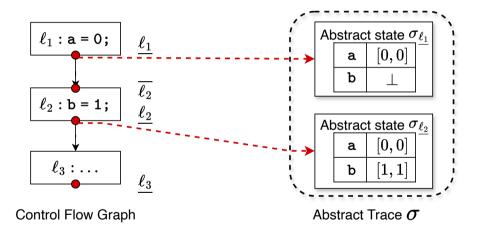

Figure: Powerset integer domain  $\mathbb{C}$  and its abstraction as the interval domain  $\mathbb{A}_{interval}$ .


#### **Abstract State and Abstract Trace**

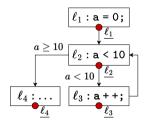

An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map
 AS: V → A associating program variables V with an abstract value in A,
 approximating the runtime states of program variables.


#### **Abstract State and Abstract Trace**

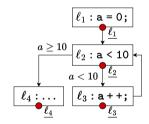

- An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map  $AS: \mathcal{V} \to \mathbb{A}$  associating program variables  $\mathcal{V}$  with an abstract value in  $\mathbb{A}$ , approximating the runtime states of program variables.
- An abstract trace  $\sigma \in \mathbb{L} \times \mathcal{V} \to \mathbb{A}$  represents a list of abstract states before  $(\overline{\ell})$  and after  $(\underline{\ell})$  each program statement  $\ell$  (preAbsTrace and postAbsTrace in Assignment-3).


|                                                           | Notation      | Domain                                                           |
|-----------------------------------------------------------|---------------|------------------------------------------------------------------|
| Abstract trace                                            | $\sigma$      | $\mathbb{L} 	imes \mathcal{V} 	o \mathbb{A}_{\mathit{Interval}}$ |
| Abstract state at program point $L \in \mathbb{L}$        | $\sigma_{L}$  | $\mathcal{V} 	o \mathbb{A}_{	extit{Interval}}$                   |
| Abstract value of $x$ at program point $L \in \mathbb{L}$ | $\sigma_L(x)$ | $\mathbb{A}$ Interval                                            |



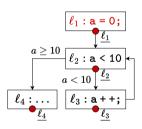







| Abstract                                                                                                                                     |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| trace                                                                                                                                        |  |  |  |  |  |  |  |
| $\sigma_{\ell_1}(a)$                                                                                                                         |  |  |  |  |  |  |  |
| $\sigma_{\underline{\ell_2}}(a)$                                                                                                             |  |  |  |  |  |  |  |
| $ \begin{array}{c c} \sigma_{\ell_1}(a) \\ \hline \sigma_{\ell_2}(a) \\ \hline \sigma_{\ell_3}(a) \\ \hline \sigma_{\ell_4}(a) \end{array} $ |  |  |  |  |  |  |  |
| $\sigma_{\ell_4}(a)$                                                                                                                         |  |  |  |  |  |  |  |



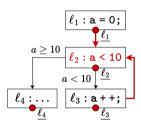

| Abstract                                                                                                                                 |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| trace                                                                                                                                    |  |  |  |  |  |  |  |
| $\sigma_{\ell_1}(a)$                                                                                                                     |  |  |  |  |  |  |  |
| $\sigma_{\ell_2}(a)$                                                                                                                     |  |  |  |  |  |  |  |
| $\begin{array}{c} \sigma_{\ell_1}(a) \\ \hline \sigma_{\ell_2}(a) \\ \hline \sigma_{\ell_3}(a) \\ \hline \sigma_{\ell_4}(a) \end{array}$ |  |  |  |  |  |  |  |
| $\sigma_{\ell_4}(a)$                                                                                                                     |  |  |  |  |  |  |  |



What is the abstract state after analyzing each statement?

|                                                                                                                                              |  |  |  |  |  | • |  | • |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|---|--|---|
| Abstract                                                                                                                                     |  |  |  |  |  |   |  |   |
| trace                                                                                                                                        |  |  |  |  |  |   |  |   |
| $\sigma_{\ell_1}(a)$                                                                                                                         |  |  |  |  |  |   |  |   |
| $\sigma_{\ell_2}(a)$                                                                                                                         |  |  |  |  |  |   |  |   |
| $\sigma_{\ell_3}(a)$                                                                                                                         |  |  |  |  |  |   |  |   |
| $ \begin{array}{c c} \sigma_{\ell_1}(a) \\ \hline \sigma_{\ell_2}(a) \\ \hline \sigma_{\ell_3}(a) \\ \hline \sigma_{\ell_4}(a) \end{array} $ |  |  |  |  |  |   |  |   |




What is the abstract state after analyzing each statement?

$$\sigma_{\ell_1}(a) := \! F_1() = \! [{ extbf{0}}, { extbf{0}}]$$

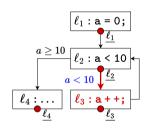
Control Flow Graph

 $F_1, \dots, F_4$  are t**ransfer functions** which indicate how abstract states are updated

|                                                                                                                                              |  |  |  |  |  | • |  | • |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|---|--|---|
| Abstract                                                                                                                                     |  |  |  |  |  |   |  |   |
| trace                                                                                                                                        |  |  |  |  |  |   |  |   |
| $\sigma_{\ell_1}(a)$                                                                                                                         |  |  |  |  |  |   |  |   |
| $\sigma_{\ell_2}(a)$                                                                                                                         |  |  |  |  |  |   |  |   |
| $ \begin{array}{c c} \sigma_{\ell_1}(a) \\ \hline \sigma_{\ell_2}(a) \\ \hline \sigma_{\ell_3}(a) \\ \hline \sigma_{\ell_4}(a) \end{array} $ |  |  |  |  |  |   |  |   |
| $\sigma_{\ell_4}(a)$                                                                                                                         |  |  |  |  |  |   |  |   |



Control Flow Graph


#### What is the abstract state after analyzing each statement?

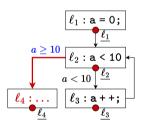
$$\sigma_{\ell_1}(a) := \! F_1() = \! [0,0]$$

$$\sigma_{\ell_2}(a) := F_2(\sigma_{\ell_1}, \sigma_{\ell_3}) = rac{\sigma_{\ell_1}(a) \sqcup \sigma_{\ell_3}(a)}{}$$

$$F_1,\ldots,F_4$$
 are t**ransfer functions** which indicate how abstract states are updated

|                                                                                                                                              |  |  |  |  | • |  | • |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|---|--|---|
| Abstract                                                                                                                                     |  |  |  |  |   |  |   |
| trace                                                                                                                                        |  |  |  |  |   |  |   |
| $\sigma_{\ell_1}(a)$                                                                                                                         |  |  |  |  |   |  |   |
| $\sigma_{\ell_2}(a)$                                                                                                                         |  |  |  |  |   |  |   |
| $ \begin{array}{c c} \sigma_{\ell_1}(a) \\ \hline \sigma_{\ell_2}(a) \\ \hline \sigma_{\ell_3}(a) \\ \hline \sigma_{\ell_4}(a) \end{array} $ |  |  |  |  |   |  |   |
| $\sigma_{\ell_4}(a)$                                                                                                                         |  |  |  |  |   |  |   |




Control Flow Graph

#### What is the abstract state after analyzing each statement?

$$egin{aligned} \sigma_{\underline{\ell_1}}(a) &:= F_1() = [0,0] \ \ \sigma_{\underline{\ell_2}}(a) &:= F_2(\sigma_{\underline{\ell_1}},\sigma_{\underline{\ell_3}}) = \ \sigma_{\underline{\ell_1}}(a) \sqcup \sigma_{\underline{\ell_3}}(a) \ \ \ \sigma_{\underline{\ell_3}}(a) &:= F_3(\sigma_{\underline{\ell_2}}) = \ ([-\infty,9] \sqcap \sigma_{\underline{\ell_2}}(a)) + [1,1] \end{aligned}$$

 $F_1, \dots, F_4$  are transfer functions which indicate how abstract states are updated

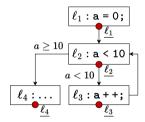
|                                                                                                                                              |  |  |  |  |  | • |  | • |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|---|--|---|
| Abstract                                                                                                                                     |  |  |  |  |  |   |  |   |
| trace                                                                                                                                        |  |  |  |  |  |   |  |   |
| $\sigma_{\ell_1}(a)$                                                                                                                         |  |  |  |  |  |   |  |   |
| $\sigma_{\underline{\ell_2}}(a)$                                                                                                             |  |  |  |  |  |   |  |   |
| $\sigma_{\ell_3}(a)$                                                                                                                         |  |  |  |  |  |   |  |   |
| $ \begin{array}{c c} \sigma_{\ell_1}(a) \\ \hline \sigma_{\ell_2}(a) \\ \hline \sigma_{\ell_3}(a) \\ \hline \sigma_{\ell_4}(a) \end{array} $ |  |  |  |  |  |   |  |   |



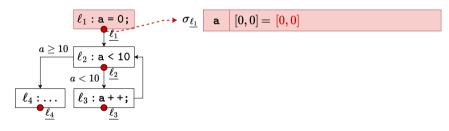
Control Flow Graph

#### What is the abstract state after analyzing each statement?

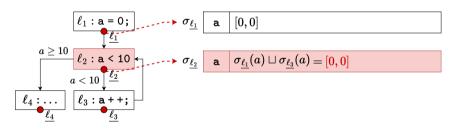
$$\sigma_{\underline{\ell_1}}(a) := \! F_1() = \! [0,0]$$


$$\sigma_{\ell_2}(a) := F_2(\sigma_{\ell_1},\sigma_{\ell_3}) = \, \sigma_{\ell_1}(a) \sqcup \sigma_{\ell_3}(a)$$

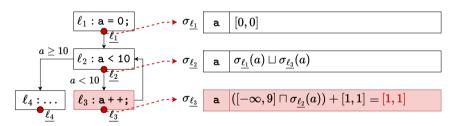
$$\sigma_{\ell_3}(a) := F_3(\sigma_{\ell_2}) = ([-\infty, 9] \sqcap \sigma_{\ell_2}(a)) + [1, 1]$$


$$\sigma_{\ell_4}(a) := F_4(\sigma_{\ell_2}) = (\llbracket 10, \infty 
vert \sqcap \sigma_{\ell_2}(a))$$

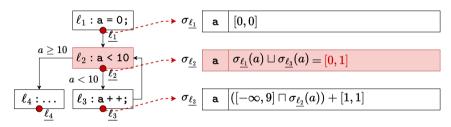
 $F_1, \ldots, F_4$  are t**ransfer functions** which indicate how abstract states are updated


| Abstract                                                                                                        | Init |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|
| trace                                                                                                           |      |  |  |  |  |  |  |
| $\sigma_{\ell_1}(a)$                                                                                            | Τ    |  |  |  |  |  |  |
| $\sigma_{\ell_2}(a)$                                                                                            |      |  |  |  |  |  |  |
| $ \begin{array}{c c} \sigma_{\ell_2}(a) \\ \hline \sigma_{\ell_3}(a) \\ \hline \sigma_{\ell_4}(a) \end{array} $ | Τ.   |  |  |  |  |  |  |
| $\sigma_{\ell_4}(a)$                                                                                            | Τ.   |  |  |  |  |  |  |

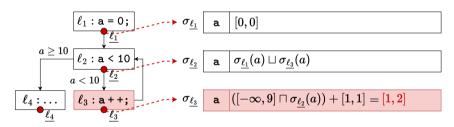



| Abstract                                                       | Init    | After analyzing    |  |  |  |  |  |  |
|----------------------------------------------------------------|---------|--------------------|--|--|--|--|--|--|
| trace                                                          |         | analyzing $\ell_1$ |  |  |  |  |  |  |
| $\sigma_{\ell_1}(a)$                                           |         | [0, 0]             |  |  |  |  |  |  |
| $\sigma_{\ell_2}(a)$                                           | $\perp$ | Τ                  |  |  |  |  |  |  |
| $\sigma_{\ell_2}(a)$ $\sigma_{\ell_3}(a)$ $\sigma_{\ell_4}(a)$ | $\perp$ | Τ                  |  |  |  |  |  |  |
| $\sigma_{\underline{\ell_4}}(a)$                               |         |                    |  |  |  |  |  |  |

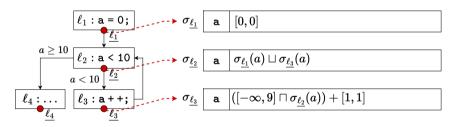



| Abstract                         | Init  | After     | 1 <sup>th</sup> loop iter |  |  |  |  |  |
|----------------------------------|-------|-----------|---------------------------|--|--|--|--|--|
| trace                            | 11110 | analyzing | After $\ell_2$            |  |  |  |  |  |
| $\sigma_{\ell_1}(a)$             |       | [0,0]     | [0, 0]                    |  |  |  |  |  |
| $\sigma_{\ell_2}(a)$             |       |           | [0, 0]                    |  |  |  |  |  |
| $\sigma_{\underline{\ell_3}}(a)$ |       |           |                           |  |  |  |  |  |
| $\sigma_{\ell_4}(a)$             | Т     | Т         |                           |  |  |  |  |  |

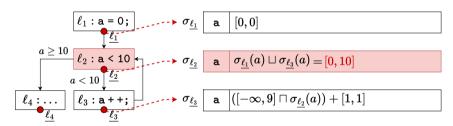



| Abstract                         | Init    | After     | 1 <sup>th</sup> loo | 1 <sup>th</sup> loop iter |  |  |  |  |  |
|----------------------------------|---------|-----------|---------------------|---------------------------|--|--|--|--|--|
| trace                            | 11110   | analyzing | After               | After                     |  |  |  |  |  |
| 11400                            |         | $\ell_1$  | ℓ2                  | $\ell_3$                  |  |  |  |  |  |
| $\sigma_{\ell_1}(a)$             | $\perp$ | [0, 0]    | [0, 0]              | [0, 0]                    |  |  |  |  |  |
| $\sigma_{\underline{\ell_2}}(a)$ | $\perp$ | Τ         | [0, 0]              | [0, 0]                    |  |  |  |  |  |
| $\sigma_{\ell_3}(a)$             |         | Τ         |                     | [1, 1]                    |  |  |  |  |  |
| $\sigma_{\ell_4}(a)$             |         |           |                     |                           |  |  |  |  |  |

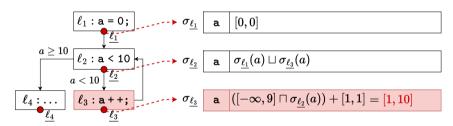



| Abstract             | Init  | After              | 1 <sup>th</sup> loo | op iter        | 2 <sup>nd</sup> lo | op iter |  |  |  |
|----------------------|-------|--------------------|---------------------|----------------|--------------------|---------|--|--|--|
| trace                | 11111 | analyzing $\ell_1$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$     |         |  |  |  |
| $\sigma_{\ell_1}(a)$ | Τ     | [0, 0]             | [0, 0]              | [0, 0]         | [0, 0]             |         |  |  |  |
| $\sigma_{\ell_2}(a)$ | Τ     |                    | [0, 0]              | [0, 0]         | [0, 1]             |         |  |  |  |
| $\sigma_{\ell_3}(a)$ |       | Τ                  |                     | [1, 1]         | [1, 1]             |         |  |  |  |
| $\sigma_{\ell_4}(a)$ |       |                    |                     |                |                    |         |  |  |  |

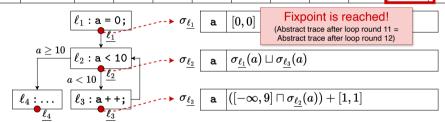



| Abstract             | Init After |                    | 1 <sup>th</sup> loop iter |                         | 2 <sup>nd</sup> lo | op iter                 |  |  |  |
|----------------------|------------|--------------------|---------------------------|-------------------------|--------------------|-------------------------|--|--|--|
| trace                | 11110      | analyzing $\ell_1$ | After $\ell_2$            | After<br>ℓ <sub>3</sub> | After $\ell_2$     | After<br>ℓ <sub>3</sub> |  |  |  |
| $\sigma_{\ell_1}(a)$ | $\perp$    | [0, 0]             | [0, 0]                    | [0, 0]                  | [0, 0]             | [0, 0]                  |  |  |  |
| $\sigma_{\ell_2}(a)$ | Τ          |                    | [0, 0]                    | [0, 0]                  | [0, 1]             | [0, 1]                  |  |  |  |
| $\sigma_{\ell_3}(a)$ |            | Т                  | Т                         | [1, 1]                  | [1, 1]             | [1, 2]                  |  |  |  |
| $\sigma_{\ell_4}(a)$ | Τ          | Τ                  | Т                         | Т                       |                    |                         |  |  |  |

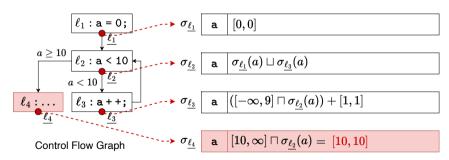



| Abstract             | Init | After     | 1 <sup>th</sup> loo | op iter | 2 <sup>nd</sup> lo | op iter | 11 <sup>th</sup> lo | op iter |  |  |
|----------------------|------|-----------|---------------------|---------|--------------------|---------|---------------------|---------|--|--|
| trace                |      | analyzing | After $\ell_2$      | After   | After $\ell_2$     | After   | <br>After           | After   |  |  |
| $\sigma_{\ell_1}(a)$ |      | [0,0]     | [0,0]               | [0,0]   | [0,0]              | [0,0]   | <br>[0,0]           | [0,0]   |  |  |
| $\sigma_{\ell_2}(a)$ |      | <u></u>   | [0,0]               | [0,0]   | [0, 1]             | [0, 1]  | <br>[0, 10]         | [0, 10] |  |  |
| $\sigma_{\ell_3}(a)$ |      |           | <u></u>             | [1, 1]  | [1, 1]             | [1, 2]  | <br>[1, 10]         | [1, 10] |  |  |
| $\sigma_{\ell_4}(a)$ |      | 1         | 1                   | <u></u> | 1                  | <u></u> | <br>1               | 1       |  |  |

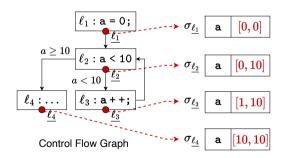



| Abstract             | Init    | After              | 1 <sup>th</sup> loop iter |                | 2 <sup>nd</sup> lo | op iter        | 11 <sup>th</sup> loop iter 12 <sup>nd</sup> loop it |                | oop iter             |  |  |
|----------------------|---------|--------------------|---------------------------|----------------|--------------------|----------------|-----------------------------------------------------|----------------|----------------------|--|--|
| trace                |         | analyzing $\ell_1$ | After $\ell_2$            | After $\ell_3$ | After $\ell_2$     | After $\ell_3$ | <br>After ℓ <sub>2</sub>                            | After $\ell_3$ | After ℓ <sub>2</sub> |  |  |
| $\sigma_{\ell_1}(a)$ | $\perp$ | [0, 0]             | [0, 0]                    | [0, 0]         | [0, 0]             | [0, 0]         | <br>[0, 0]                                          | [0, 0]         | [0, 0]               |  |  |
| $\sigma_{\ell_2}(a)$ |         |                    | [0, 0]                    | [0, 0]         | [0, 1]             | [0, 1]         | <br>[0, 10]                                         | [0, 10]        | [0, 10]              |  |  |
| $\sigma_{\ell_3}(a)$ | $\perp$ | Τ                  | Т                         | [1, 1]         | [1, 1]             | [1, 2]         | <br>[1, 10]                                         | [1, 10]        | [1, 10]              |  |  |
| $\sigma_{\ell_4}(a)$ |         |                    | Т                         |                | Т                  |                | <br>                                                |                |                      |  |  |

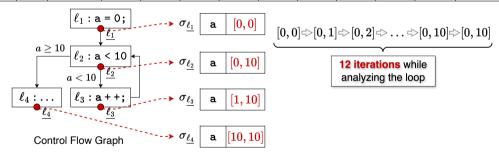



| Abstract             | Init | After     | 1 <sup>th</sup> loc | op iter | 2 <sup>nd</sup> lo | op iter  | 11 <sup>th</sup> lo | op iter | 12 <sup>nd</sup> lo | oop iter |  |
|----------------------|------|-----------|---------------------|---------|--------------------|----------|---------------------|---------|---------------------|----------|--|
| trace                |      | analyzing | After               | After   | After              | After    | <br>After           | After   | After               | After    |  |
| 1.400                |      | $\ell_1$  | $\ell_2$            | ℓ3      | ℓ <sub>2</sub>     | $\ell_3$ | ℓ2                  | ℓ3      | $\ell_2$            | ℓ3       |  |
| $\sigma_{\ell_1}(a)$ | Τ    | [0, 0]    | [0, 0]              | [0, 0]  | [0, 0]             | [0, 0]   | <br>[0, 0]          | [0, 0]  | [0, 0]              | [0, 0]   |  |
| $\sigma_{\ell_2}(a)$ | Τ    |           | [0, 0]              | [0, 0]  | [0, 1]             | [0, 1]   | <br>[0, 10]         | [0, 10] | [0, 10]             | [0, 10]  |  |
| $\sigma_{\ell_3}(a)$ |      |           | Т                   | [1, 1]  | [1, 1]             | [1, 2]   | <br>[1, 10]         | [1, 10] | [1, 10]             | [1, 10]  |  |
| $\sigma_{\ell_4}(a)$ | Τ    | Т         | Т                   | Т       |                    | Т        | <br>                |         | Т                   |          |  |



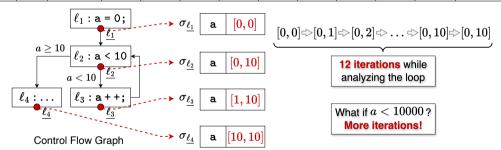

|                                  |      |           |                           |          |                    |                |                     |          |                  |          | - |
|----------------------------------|------|-----------|---------------------------|----------|--------------------|----------------|---------------------|----------|------------------|----------|---|
| Abstract                         | Init | After     | 1 <sup>th</sup> loop iter |          | 2 <sup>nd</sup> lo | op iter        | 11 <sup>th</sup> lo | op iter  | 12 <sup>nd</sup> | oop iter |   |
| trace                            |      | analyzing | After                     | After    | After              | After          | <br>After           | After    | After            | After    |   |
| 1.400                            |      | $\ell_1$  | $\ell_2$                  | $\ell_3$ | l ℓ <sub>2</sub>   | ℓ <sub>3</sub> | $\ell_2$            | $\ell_3$ | $\ell_2$         | $\ell_3$ |   |
| $\sigma_{\ell_1}(a)$             | Τ    | [0, 0]    | [0, 0]                    | [0, 0]   | [0, 0]             | [0, 0]         | <br>[0, 0]          | [0, 0]   | [0, 0]           | [0, 0]   |   |
| $\sigma_{\underline{\ell_2}}(a)$ | Τ    |           | [0, 0]                    | [0, 0]   | [0, 1]             | [0, 1]         | <br>[0, 10]         | [0, 10]  | [0, 10]          | [0, 10]  |   |
| $\sigma_{\ell_3}(a)$             |      |           | Т                         | [1, 1]   | [1, 1]             | [1, 2]         | <br>[1, 10]         | [1, 10]  | [1, 10]          | [1, 10]  |   |
| $\sigma_{\ell_4}(a)$             |      |           | Т                         | Т        | 1                  |                | <br>                | Т        |                  |          |   |




| Abstract             | Init After |           | 1 <sup>th</sup> loo | op iter  | 2 <sup>nd</sup> lo | 2 <sup>nd</sup> loop iter |  | 11 <sup>th</sup> loop iter |          | 12 <sup>nd</sup> lo | oop iter | After     |
|----------------------|------------|-----------|---------------------|----------|--------------------|---------------------------|--|----------------------------|----------|---------------------|----------|-----------|
| traca                | 11111      | analyzing | After               | After    | After              | After                     |  | After                      | After    | After               | After    | analyzing |
| trace                |            | $\ell_1$  | $\ell_2$            | $\ell_3$ | $\ell_2$           | $\ell_3$                  |  | $\ell_2$                   | $\ell_3$ | $\ell_2$            | $\ell_3$ | $\ell_4$  |
| $\sigma_{\ell_1}(a)$ | $\perp$    | [0, 0]    | [0, 0]              | [0, 0]   | [0, 0]             | [0, 0]                    |  | [0, 0]                     | [0, 0]   | [0, 0]              | [0, 0]   | [0, 0]    |
| $\sigma_{\ell_2}(a)$ |            |           | [0, 0]              | [0, 0]   | [0, 1]             | [0, 1]                    |  | [0, 10]                    | [0, 10]  | [0, 10]             | [0, 10]  | [0, 10]   |
| $\sigma_{\ell_3}(a)$ | $\perp$    |           |                     | [1, 1]   | [1, 1]             | [1, 2]                    |  | [1, 10]                    | [1, 10]  | [1, 10]             | [1, 10]  | [1, 10]   |
| $\sigma_{\ell_4}(a)$ |            |           | Τ.                  |          |                    |                           |  |                            | Т        |                     |          | [10, 10]  |



| Abstract             | Init    | After     | 1 <sup>th</sup> loo | op iter  | 2 <sup>nd</sup> lo | op iter  | 11 <sup>th</sup> loop iter |          | 12 <sup>nd</sup> lo | op iter  | After     |
|----------------------|---------|-----------|---------------------|----------|--------------------|----------|----------------------------|----------|---------------------|----------|-----------|
| trace                | 11111   | analyzing | After               | After    | After              | After    | <br>After                  | After    | After               | After    | analyzing |
| trace                |         | $\ell_1$  | $\ell_2$            | $\ell_3$ | $\ell_2$           | $\ell_3$ | $\ell_2$                   | $\ell_3$ | $\ell_2$            | $\ell_3$ | $\ell_4$  |
| $\sigma_{\ell_1}(a)$ | $\perp$ | [0, 0]    | [0, 0]              | [0, 0]   | [0, 0]             | [0, 0]   | <br>[0, 0]                 | [0, 0]   | [0, 0]              | [0, 0]   | [0, 0]    |
| $\sigma_{\ell_2}(a)$ |         |           | [0, 0]              | [0, 0]   | [0, 1]             | [0, 1]   | <br>[0, 10]                | [0, 10]  | [0, 10]             | [0, 10]  | [0, 10]   |
| $\sigma_{\ell_3}(a)$ | $\perp$ |           | Т                   | [1, 1]   | [1, 1]             | [1, 2]   | <br>[1, 10]                | [1, 10]  | [1, 10]             | [1, 10]  | [1, 10]   |
| $\sigma_{\ell_4}(a)$ |         | Т         | Τ                   |          |                    |          | <br>                       | Т        |                     | Т        | [10, 10]  |




| Abstract             | Init | After     | 1 <sup>th</sup> lo | 1 <sup>th</sup> loop iter |          | op iter | 11 <sup>th</sup> lo | op iter | 12 <sup>nd</sup> lo | oop iter | After     |
|----------------------|------|-----------|--------------------|---------------------------|----------|---------|---------------------|---------|---------------------|----------|-----------|
| trace                |      | analyzing | After              | After                     | After    | After   | After               | After   | After               | After    | analyzing |
|                      |      | $\ell_1$  | $\ell_2$           | $\ell_3$                  | $\ell_2$ | ℓ3      | l ℓ <sub>2</sub>    | ℓ3      | $\ell_2$            | $\ell_3$ | $\ell_4$  |
| $\sigma_{\ell_1}(a)$ | 1    | [0, 0]    | [0, 0]             | [0, 0]                    | [0, 0]   | [0, 0]  | <br>[0, 0]          | [0, 0]  | [0, 0]              | [0, 0]   | [0, 0]    |
| $\sigma_{\ell_2}(a)$ |      | $\perp$   | [0,0]              | [0, 0]                    | [0, 1]   | [0, 1]  | <br>[0, 10]         | [0, 10] | [0, 10]             | [0, 10]  | [0, 10]   |
| $\sigma_{\ell_3}(a)$ |      |           | Ι.                 | [1, 1]                    | [1, 1]   | [1, 2]  | <br>[1, 10]         | [1, 10] | [1, 10]             | [1, 10]  | [1, 10]   |
| $\sigma_{\ell_4}(a)$ |      |           |                    |                           |          |         | <br>                |         |                     |          | [10, 10]  |



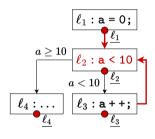
# **Abstract Trace: Naive Fixed-Point Computation for Loops**

| Abstract             | Init | After              | 1 <sup>th</sup> loo | op iter        | 2 <sup>nd</sup> lo | op iter        | 11 <sup>th</sup> lo | op iter        | 12 <sup>nd</sup> lo | oop iter       | After              |
|----------------------|------|--------------------|---------------------|----------------|--------------------|----------------|---------------------|----------------|---------------------|----------------|--------------------|
| trace                |      | analyzing $\ell_1$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$     | After $\ell_3$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$      | After $\ell_3$ | analyzing $\ell_4$ |
| $\sigma_{\ell_1}(a)$ | Τ    | [0,0]              | [0, 0]              | [0, 0]         | [0, 0]             | [0, 0]         | <br>[0, 0]          | [0, 0]         | [0, 0]              | [0, 0]         | [0, 0]             |
| $\sigma_{\ell_2}(a)$ | 1    | $\perp$            | [0, 0]              | [0, 0]         | [0, 1]             | [0, 1]         | <br>[0, 10]         | [0, 10]        | [0, 10]             | [0, 10]        | [0, 10]            |
| $\sigma_{\ell_3}(a)$ | 1    |                    |                     | [1, 1]         | [1, 1]             | [1,2]          | <br>[1, 10]         | [1, 10]        | [1, 10]             | [1, 10]        | [1, 10]            |
| $\sigma_{\ell_4}(a)$ | Т    |                    |                     |                |                    |                | <br>                |                |                     |                | [10, 10]           |



Widening technique can accelerate the fixpoint computation of  $\sigma_{\ell_2}(a)$ .

Naive fixpoint computation: value changes of  $\sigma_{\underline{\ell_2}}(a)$ 

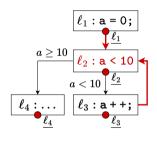

$$[0,0] \Longrightarrow [0,1] \Longrightarrow \ldots \Longrightarrow [0,10] \Longrightarrow [0,10]$$

Widening technique can accelerate the fixpoint computation of  $\sigma_{\ell_2}(a)$ .

Naive fixpoint computation: value changes of  $\sigma_{\underline{\ell_2}}(a)$ 

$$[0,0]$$
  $\bigcirc$   $[0,1]$   $\bigcirc$   $[0,10]$   $\bigcirc$   $[0,10]$   $\bigcirc$   $[0,+\infty]$  aggressively update  $\sigma_{\ell_2}(a)$ 

Widening at the  $k^{th}$  iteration in the loop for analyzing  $\ell_2$  to update  $\sigma_{\ell_2}$ .




Control Flow Graph

$$\sigma_{\underline{\ell_2}}(a) := \qquad \qquad \sigma_{\underline{\ell_1}}(a) \sqcup \sigma_{\underline{\ell_3}}(a)$$
 Apply widening operator  $abla$   $\sigma_{\underline{\ell_2}}(a) := \sigma_{\underline{\ell_2}}^{k-1}(a) 
abla (\sigma_{\underline{\ell_1}}(a) \sqcup \sigma_{\underline{\ell_3}}^{k-1}(a))$ 

 $\sigma_{\underline{\ell_2}}^k$  denotes the value of  $\sigma_{\underline{\ell_2}}$  after the  $k^{th}$  analysis of  $\ell_2$ , and  $\sigma_{\underline{\ell_1}}$  does not have a superscription as it is updated only once and is not involved in the loop

Widening at the  $k^{th}$  iteration in the loop for analyzing  $\ell_2$  to update  $\sigma_{\ell_2}$ .



Control Flow Graph



 $\sigma_{\ell_1}$  does not have a superscription as it is updated only once and is not involved in the loop

What is a Widening Operator?

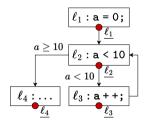
## **Widening Operator**

The Widening Operator  $(\nabla : \mathbb{A} \times \mathbb{A} \to \mathbb{A})$  is formally defined on a poset  $(\mathbb{A}, \sqsubseteq)$ .  $\nabla$  on interval domain could be defined as:

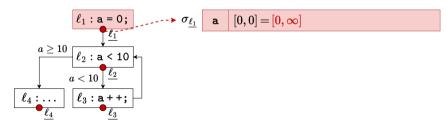
$$[\ell_1, h_1] \nabla [\ell_2, h_2] = [\ell_3, h_3]$$

## **Widening Operator**

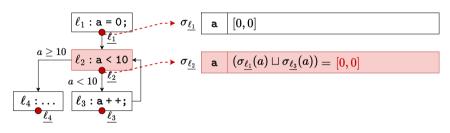
The Widening Operator  $(\nabla : \mathbb{A} \times \mathbb{A} \to \mathbb{A})$  is formally defined on a poset  $(\mathbb{A}, \sqsubseteq)$ .  $\nabla$  on interval domain could be defined as:


$$[\ell_1, h_1] \nabla [\ell_2, h_2] = [\ell_3, h_3]$$

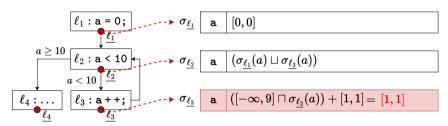
where


$$I_3 = \begin{cases} -\infty & I_2 < I_1 \\ I_1 & I_2 \ge I_1 \end{cases}, h_3 = \begin{cases} +\infty & h_2 > h_1 \\ h_1 & h_2 \le h_1 \end{cases}$$

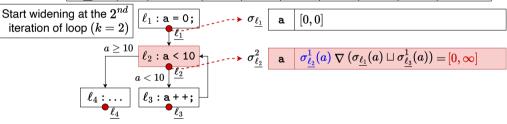
As a concrete example,  $[0,0]\nabla[0,1] = [0,+\infty]$ .


| Abstract                                                                                                                                     | Init |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|
| trace                                                                                                                                        |      |  |  |  |  |
| $\sigma_{\underline{\ell_1}}(a)$                                                                                                             |      |  |  |  |  |
| $\sigma_{\ell_2}(a)$                                                                                                                         |      |  |  |  |  |
| $\sigma_{\ell_3}(a)$                                                                                                                         |      |  |  |  |  |
| $ \begin{array}{c c} \sigma_{\ell_1}(a) \\ \hline \sigma_{\ell_2}(a) \\ \hline \sigma_{\ell_3}(a) \\ \hline \sigma_{\ell_4}(a) \end{array} $ |      |  |  |  |  |

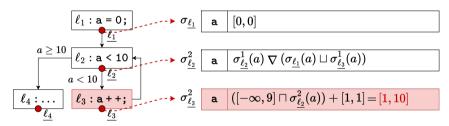



| Abstract                         | Init | After analyzing |  |  |  |  |
|----------------------------------|------|-----------------|--|--|--|--|
| trace                            |      | analyzing       |  |  |  |  |
| lidoo                            |      | $\ell_1$        |  |  |  |  |
| $\sigma_{\underline{\ell_1}}(a)$ |      | [0, 0]          |  |  |  |  |
| $\sigma_{\ell_2}(a)$             |      |                 |  |  |  |  |
| $\sigma_{\ell_3}(a)$             | 1    |                 |  |  |  |  |
| $\sigma_{\underline{\ell_4}}(a)$ |      |                 |  |  |  |  |

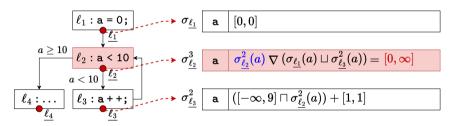



| Abstract                         | Init  | After     | 1 <sup>th</sup> lo | op iter |  |  |  |
|----------------------------------|-------|-----------|--------------------|---------|--|--|--|
| trace                            | 11111 | analyzing | After              |         |  |  |  |
|                                  | 1     | [0, 0]    | [0, 0]             |         |  |  |  |
| $\sigma_{\ell_1}(a)$             |       | [0,0]     | [0, 0]             |         |  |  |  |
| $\sigma_{\underline{\ell_2}}(a)$ |       |           | [0, 0]             |         |  |  |  |
| $\sigma_{\underline{\ell_3}}(a)$ |       |           |                    |         |  |  |  |
| $\sigma_{\underline{\ell_4}}(a)$ | 上     | Ţ         | 工                  |         |  |  |  |




| Abstract                         | Init | After     | 1 <sup>th</sup> loo | op iter |  |  |  |
|----------------------------------|------|-----------|---------------------|---------|--|--|--|
| trace                            |      | analyzing | After               | After   |  |  |  |
| $\sigma_{\ell_1}(a)$             | 1    | [0,0]     | [0,0]               | [0,0]   |  |  |  |
|                                  |      | [0,0]     |                     |         |  |  |  |
| $\sigma_{\underline{\ell_2}}(a)$ | 上    |           | [0, 0]              | [0, 0]  |  |  |  |
| $\sigma_{\underline{\ell_3}}(a)$ | 1    |           |                     | [1, 1]  |  |  |  |
| $\sigma_{\underline{\ell_4}}(a)$ |      | Т         | 上                   | 工       |  |  |  |

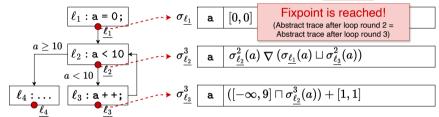



| _                                |         |           |                     | •        |                    |         |  |  |
|----------------------------------|---------|-----------|---------------------|----------|--------------------|---------|--|--|
| Abstract                         | Init    | After     | 1 <sup>th</sup> loo | op iter  | 2 <sup>nd</sup> lo | op iter |  |  |
| trace                            | 11111   | analyzing | After               | After    | After              |         |  |  |
|                                  |         | $\ell_1$  | $\ell_2$            | $\ell_3$ | $\ell_2$           |         |  |  |
| $\sigma_{\underline{\ell_1}}(a)$ | $\perp$ | [0, 0]    | [0, 0]              | [0, 0]   | [0, 0]             |         |  |  |
| $\sigma_{\underline{\ell_2}}(a)$ | $\perp$ |           | [0, 0]              | [0, 0]   | $[0,\infty]$       |         |  |  |
| $\sigma_{\ell_3}(a)$             |         |           | 上                   | [1, 1]   | [1, 1]             |         |  |  |
| $\sigma_{\underline{\ell_4}}(a)$ | $\perp$ | Т         | 上                   | 上        |                    |         |  |  |

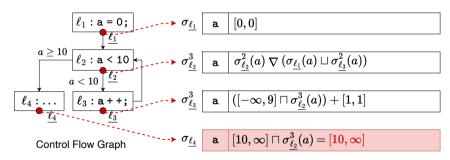


| Abstract             | II III ai |           | 1 <sup>th</sup> loo | op iter                 | 2 <sup>nd</sup> loop iter |                |  |  |
|----------------------|-----------|-----------|---------------------|-------------------------|---------------------------|----------------|--|--|
| trace                |           | analyzing | After $\ell_2$      | After<br>ℓ <sub>3</sub> | After $\ell_2$            | After $\ell_3$ |  |  |
| $\sigma_{\ell_1}(a)$ |           | [0,0]     | [0, 0]              | [0, 0]                  | [0, 0]                    | [0, 0]         |  |  |
| $\sigma_{\ell_2}(a)$ |           | 1         | [0, 0]              | [0, 0]                  | $[0,\infty]$              | $[0,\infty]$   |  |  |
| $\sigma_{\ell_3}(a)$ |           |           |                     | [1, 1]                  | [1, 1]                    | [1, 10]        |  |  |
| $\sigma_{\ell_4}(a)$ | Т         |           | Т                   |                         | 1                         | Т              |  |  |

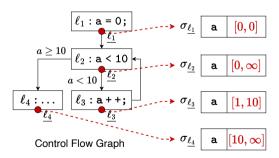



| Abstract                         | 11111 |           | 1 <sup>th</sup> loo | op iter | 2 <sup>nd</sup> lo | op iter | 3 <sup>rd</sup> loop iter |  |  |
|----------------------------------|-------|-----------|---------------------|---------|--------------------|---------|---------------------------|--|--|
| trace                            | 11111 | analyzing | After               | After   | After              | After   | After                     |  |  |
| $\sigma_{\ell_1}(a)$             | 1     | [0,0]     | [0,0]               | [0,0]   | [0,0]              | [0,0]   | [0,0]                     |  |  |
|                                  |       | [0,0]     |                     | . , ,   |                    |         |                           |  |  |
| $\sigma_{\underline{\ell_2}}(a)$ |       |           | [0, 0]              | [0, 0]  | [0, ∞]             | [0, ∞]  | $[0,\infty]$              |  |  |
| $\sigma_{\underline{\ell_3}}(a)$ | 1     | Ι Τ       | $\perp$             | [1, 1]  | [1, 1]             | [1, 10] | [1, 10]                   |  |  |
| $\sigma_{\underline{\ell_4}}(a)$ | Т     | 工         | Т                   | Т       | Т                  | Т       | Т                         |  |  |

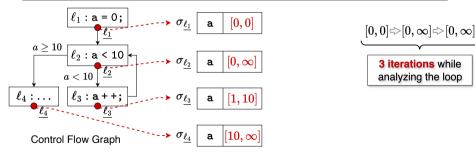



| Abstract                         | Init  | After     | 1 <sup>th</sup> loo | op iter | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> lo | op iter      |  |
|----------------------------------|-------|-----------|---------------------|---------|--------------------|--------------|--------------------|--------------|--|
| trace                            | 11111 | analyzing | After               | After   | After              | After        | After              | After        |  |
| $\sigma_{\ell_1}(a)$             | 1     | [0,0]     | [0,0]               | [0,0]   | [0,0]              | [0,0]        | [0,0]              | [0,0]        |  |
|                                  |       | [0,0]     | [0, 0]              | [0, 0]  | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$       | $[0,\infty]$ |  |
| $\sigma_{\ell_2}(a)$             |       |           | [0, 0]              | L / 3   | $[0,\infty]$       | . , ,        |                    | . , ,        |  |
| $\sigma_{\underline{\ell_3}}(a)$ |       |           |                     | [1, 1]  | [1, 1]             | [1, 10]      | [1, 10]            | [1, 10]      |  |
| $\sigma_{\underline{\ell_4}}(a)$ | 上     | Τ         |                     |         | Ι Τ                | $\perp$      |                    | Ι Τ          |  |

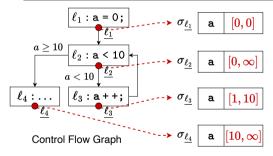


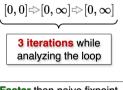

| Abstract                         | Init | After     | 1 <sup>th</sup> loo | op iter  | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> lo | op iter  |  |
|----------------------------------|------|-----------|---------------------|----------|--------------------|--------------|--------------------|----------|--|
| trace                            |      | analyzing | After               | After    | After              | After        | After              | After    |  |
| 1.400                            |      | $\ell_1$  | $\ell_2$            | $\ell_3$ | $\ell_2$           | $\ell_3$     | $\ell_2$           | $\ell_3$ |  |
| $\sigma_{\ell_1}(a)$             | Т    | [0, 0]    | [0, 0]              | [0, 0]   | [0, 0]             | [0, 0]       | [0, 0]             | [0, 0]   |  |
| $\sigma_{\underline{\ell_2}}(a)$ | 1    | Т         | [0, 0]              | [0, 0]   | $[0,\infty]$       | $[0,\infty]$ | [0, ∞]             | [0, ∞]   |  |
| $\sigma_{\underline{\ell_3}}(a)$ |      | Т         | Т                   | [1, 1]   | [1, 1]             | [1, 10]      | [1, 10]            | [1, 10]  |  |
| $\sigma_{\underline{\ell_4}}(a)$ |      | Т         | Т                   | 工        | Т                  | Т            | $\perp$            |          |  |




| Abstract                         |       |           | 1 <sup>th</sup> loo | op iter | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> loo | After          |              |
|----------------------------------|-------|-----------|---------------------|---------|--------------------|--------------|---------------------|----------------|--------------|
| trace                            | 11111 | analyzing | After               | After   | After              | After        | After               | After          | analyzing    |
|                                  |       | $\ell_1$  | $\ell_2$            | ℓ3      | $\ell_2$           | ℓ3           | $\ell_2$            | ℓ <sub>3</sub> | $\ell_4$     |
| $\sigma_{\underline{\ell_1}}(a)$ | Τ.    | [0,0]     | [0, 0]              | [0, 0]  | [0, 0]             | [0, 0]       | [0, 0]              | [0, 0]         | [0, 0]       |
| $\sigma_{\ell_2}(a)$             |       | Т         | [0, 0]              | [0, 0]  | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$        | $[0,\infty]$   | $[0,\infty]$ |
| $\sigma_{\ell_3}(a)$             |       | Т         | Т                   | [1, 1]  | [1, 1]             | [1, 10]      | [1, 10]             | [1, 10]        | [1, 10]      |
| $\sigma_{\ell_4}(a)$             |       |           |                     |         |                    | Т            |                     | Т              | [10, ∞]      |

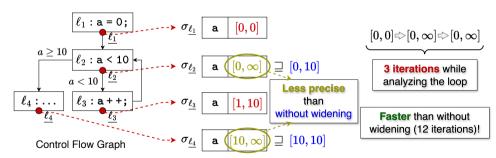



| Abstract                         |         |           | 1 <sup>th</sup> loo | op iter | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> loo | op iter      | After        |
|----------------------------------|---------|-----------|---------------------|---------|--------------------|--------------|---------------------|--------------|--------------|
| trace                            | 11111   | analyzing | After               | After   | After              | After        | After               | After        | analyzing    |
|                                  |         | $\ell_1$  | $\ell_2$            | ℓ3      | $\ell_2$           | ℓ3           | $\ell_2$            | $\ell_3$     | $\ell_4$     |
| $\sigma_{\underline{\ell_1}}(a)$ | $\perp$ | [0, 0]    | [0, 0]              | [0, 0]  | [0,0]              | [0, 0]       | [0, 0]              | [0, 0]       | [0, 0]       |
| $\sigma_{\ell_2}(a)$             |         | Τ.        | [0, 0]              | [0, 0]  | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$        | $[0,\infty]$ | $[0,\infty]$ |
| $\sigma_{\ell_3}(a)$             |         |           |                     | [1, 1]  | [1, 1]             | [1, 10]      | [1, 10]             | [1, 10]      | [1, 10]      |
| $\sigma_{\underline{\ell_4}}(a)$ |         | Т         |                     |         |                    |              | Т                   |              | [10, ∞]      |




| _                                |      | •         |                     | •        |                    |              |                     |              |              |
|----------------------------------|------|-----------|---------------------|----------|--------------------|--------------|---------------------|--------------|--------------|
| Abstract                         | Init | After     | 1 <sup>th</sup> loo | op iter  | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> loo | op iter      | After        |
| trace                            |      | analyzing | After               | After    | After              | After        | After               | After        | analyzing    |
| trace                            |      | $\ell_1$  | $\ell_2$            | $\ell_3$ | $\ell_2$           | $\ell_3$     | $\ell_2$            | $\ell_3$     | $\ell_4$     |
| $\sigma_{\underline{\ell_1}}(a)$ | Τ    | [0, 0]    | [0, 0]              | [0, 0]   | [0, 0]             | [0, 0]       | [0, 0]              | [0, 0]       | [0, 0]       |
| $\sigma_{\underline{\ell_2}}(a)$ |      | Τ         | [0, 0]              | [0, 0]   | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$        | $[0,\infty]$ | $[0,\infty]$ |
| $\sigma_{\underline{\ell_3}}(a)$ |      |           |                     | [1, 1]   | [1, 1]             | [1, 10]      | [1, 10]             | [1, 10]      | [1, 10]      |
| $\sigma_{\underline{\ell_4}}(a)$ |      |           | 工                   | $\perp$  | Т                  | $\perp$      | Т                   | Т            | [10, ∞]      |




| _                                |      | •         |                    | •        |                    |              |                    |              |           |
|----------------------------------|------|-----------|--------------------|----------|--------------------|--------------|--------------------|--------------|-----------|
| Abstract                         | Init | After     | 1 <sup>th</sup> lo | op iter  | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> lo | op iter      | After     |
| trace                            |      | analyzing | After              | After    | After              | After        | After              | After        | analyzing |
| Hacc                             |      | $\ell_1$  | $\ell_2$           | $\ell_3$ | $\ell_2$           | $\ell_3$     | $\ell_2$           | $\ell_3$     | $\ell_4$  |
| $\sigma_{\underline{\ell_1}}(a)$ | 1    | [0, 0]    | [0, 0]             | [0, 0]   | [0, 0]             | [0, 0]       | [0, 0]             | [0, 0]       | [0, 0]    |
| $\sigma_{\underline{\ell_2}}(a)$ |      | Τ         | [0, 0]             | [0, 0]   | [0, ∞]             | $[0,\infty]$ | $[0,\infty]$       | $[0,\infty]$ | [0, ∞]    |
| $\sigma_{\underline{\ell_3}}(a)$ |      |           |                    | [1, 1]   | [1, 1]             | [1, 10]      | [1, 10]            | [1, 10]      | [1, 10]   |
| $\sigma_{\underline{\ell_4}}(a)$ |      |           |                    | $\perp$  | 工                  | Н            | $\perp$            | Т            | [10, ∞]   |





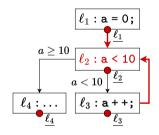
Faster than naive fixpoint computation (12 iterations)!

| Abstract                         | Init  | After                 | 1 <sup>th</sup> loo | op iter | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> lo | op iter      | After        |
|----------------------------------|-------|-----------------------|---------------------|---------|--------------------|--------------|--------------------|--------------|--------------|
| trace                            | 11111 | analyzing             | After               | After   | After              | After        | After              | After        | analyzing    |
|                                  |       | <i>ℓ</i> <sub>1</sub> | $\ell_2$            | ℓ3      | $\ell_2$           | ℓ3           | ℓ2                 | ℓ3           | $\ell_4$     |
| $\sigma_{\underline{\ell_1}}(a)$ | 1     | [0, 0]                | [0, 0]              | [0, 0]  | [0, 0]             | [0, 0]       | [0, 0]             | [0, 0]       | [0, 0]       |
| $\sigma_{\ell_2}(a)$             | 1     | Τ.                    | [0, 0]              | [0, 0]  | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$ |
| $\sigma_{\ell_3}(a)$             | 1     |                       | Т                   | [1, 1]  | [1, 1]             | [1, 10]      | [1, 10]            | [1, 10]      | [1, 10]      |
| $\sigma_{\underline{\ell_4}}(a)$ | 1     | Т                     |                     |         | Τ                  | Т            |                    |              | [10, ∞]      |



Narrowing technique can eliminate the precision loss after a widening operation (e.g., by improving imprecise  $\sigma_{\ell_2}$  and  $\sigma_{\ell_4}$ ).

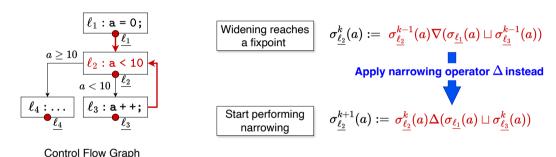
Naive fixpoint computation: value changes of  $\sigma_{\ell_2}(a)$ 


$$[0,0]$$
  $\bigcirc$   $[0,1]$   $\bigcirc$   $[0,10]$   $\bigcirc$   $[0,10]$   $\bigcirc$   $[0,+\infty]$ 

Narrowing technique can eliminate the precision loss after a widening operation (e.g., by improving imprecise  $\sigma_{\ell_2}$  and  $\sigma_{\ell_4}$ ).

Naive fixpoint computation: value changes of  $\sigma_{\ell_2}(a)$ 

$$[0,0]$$
  $[0,1]$   $\dots$   $[0,10]$   $[0,10]$   $[0,+\infty]$  aggressively update  $\sigma_{\ell_2}(a)$  Narrowing  $[0,10]$  conservatively update  $\sigma_{\ell_2}(a)$ 


After the widening reaches a fixpoint at the  $k^{th}$  iteration when analyzing the loop, we start performing narrowing at the  $(k+1)^{th}$  to update  $\sigma_{\ell_2}$ .



Widening reaches a fixpoint

$$\sigma^k_{\underline{\ell_2}}(a) := \ \sigma^{k-1}_{\underline{\ell_2}}(a) 
abla (\sigma_{\underline{\ell_1}}(a) \sqcup \sigma^{k-1}_{\underline{\ell_3}}(a))$$

After the widening reaches a fixpoint at the  $k^{th}$  iteration when analyzing the loop, we start performing narrowing at the  $(k+1)^{th}$  to update  $\sigma_{\ell_2}$ .



What is a Narrowing Operator?

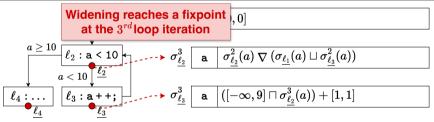
### **Narrowing Operator**

The Narrowing Operator  $(\Delta : \mathbb{A} \times \mathbb{A} \to \mathbb{A})$  is formally defined on a poset  $(\mathbb{A}, \sqsubseteq)$ .  $\Delta$  on interval domain could be defined as:

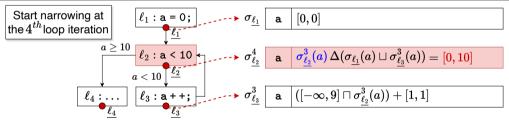
$$[I_1, h_1]\Delta[I_2, h_2] = [I_3, h_3]$$

### **Narrowing Operator**

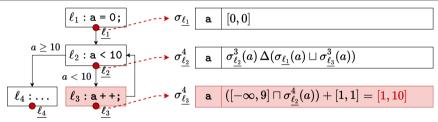
The Narrowing Operator  $(\Delta : \mathbb{A} \times \mathbb{A} \to \mathbb{A})$  is formally defined on a poset  $(\mathbb{A}, \sqsubseteq)$ .  $\Delta$  on interval domain could be defined as:


$$[I_1, h_1]\Delta[I_2, h_2] = [I_3, h_3]$$

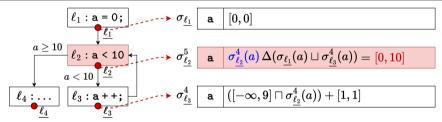
where


$$I_3 = \begin{cases} I_2 & I_1 \equiv -\infty \\ I_1 & I_1 \neq -\infty \end{cases}, h_3 = \begin{cases} h_2 & h_1 \equiv \infty \\ h_1 & h_1 \neq \infty \end{cases}$$

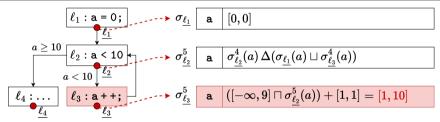
As a concrete example,  $[0, \infty]\Delta[0, 10] = [0, 10]$ .


| Abstract                         | Init  | After     | 1 <sup>th</sup> loo | op iter  | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> loo | op iter      |  |  |  |
|----------------------------------|-------|-----------|---------------------|----------|--------------------|--------------|---------------------|--------------|--|--|--|
| trace                            | 11111 | analyzing | After               | After    | After              | After        | After               | After        |  |  |  |
| trace                            |       | $\ell_1$  | $\ell_2$            | $\ell_3$ | $\ell_2$           | $\ell_3$     | $\ell_2$            | $\ell_3$     |  |  |  |
| $\sigma_{\ell_1}(a)$             | Т     | [0, 0]    | [0, 0]              | [0, 0]   | [0, 0]             | [0, 0]       | [0, 0]              | [0, 0]       |  |  |  |
| $\sigma_{\underline{\ell_2}}(a)$ |       | Τ.        | [0, 0]              | [0, 0]   | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$        | $[0,\infty]$ |  |  |  |
| $\sigma_{\underline{\ell_3}}(a)$ |       | Т         | Т                   | [1, 1]   | [1, 1]             | [1, 10]      | [1, 10]             | [1, 10]      |  |  |  |
| $\sigma_{\ell_4}(a)$             |       | Τ         |                     | Т        | Т                  |              | Т                   |              |  |  |  |

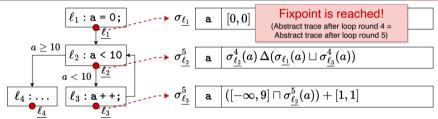



| Abstract                         | Init | After     | 1 <sup>th</sup> loo | p iter   | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> loo | op iter  | 4 <sup>th</sup> lo | op iter |  |  |
|----------------------------------|------|-----------|---------------------|----------|--------------------|--------------|---------------------|----------|--------------------|---------|--|--|
| trace                            |      | analyzing | After               | After    | After              | After        | After               | After    | After              |         |  |  |
|                                  |      | $\ell_1$  | $\ell_2$            | $\ell_3$ | $\ell_2$           | $\ell_3$     | $\ell_2$            | $\ell_3$ | $\ell_2$           |         |  |  |
| $\sigma_{\underline{\ell_1}}(a)$ | 1    | [0, 0]    | [0, 0]              | [0, 0]   | [0, 0]             | [0, 0]       | [0, 0]              | [0, 0]   | [0, 0]             |         |  |  |
| $\sigma_{\underline{\ell_2}}(a)$ | Ι Τ  | $\vdash$  | [0, 0]              | [0, 0]   | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$        | [0, ∞]   | [0, 10]            |         |  |  |
| $\sigma_{\underline{\ell_3}}(a)$ |      | Т         | Т                   | [1, 1]   | [1, 1]             | [1, 10]      | [1, 10]             | [1, 10]  | [1, 10]            |         |  |  |
| $\sigma_{\underline{\ell_4}}(a)$ | Ι Τ  | $\vdash$  | Т                   | Т        | Т                  | Т            | $\perp$             | Т        |                    |         |  |  |

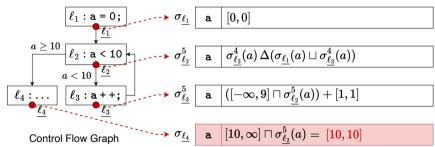



| Abstract                         | Init    | After              | 1 <sup>th</sup> loo | op iter  | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> loo | op iter      | 4 <sup>th</sup> loo | op iter  |  |  |
|----------------------------------|---------|--------------------|---------------------|----------|--------------------|--------------|---------------------|--------------|---------------------|----------|--|--|
| trace                            |         | analyzing $\ell_1$ | After               | After    | After              | After        | After               | After        | After               | After    |  |  |
|                                  |         | €1                 | $\ell_2$            | $\ell_3$ | $\ell_2$           | $\ell_3$     | $\ell_2$            | $\ell_3$     | $\ell_2$            | $\ell_3$ |  |  |
| $\sigma_{\ell_1}(a)$             | $\perp$ | [0, 0]             | [0, 0]              | [0, 0]   | [0, 0]             | [0, 0]       | [0, 0]              | [0, 0]       | [0, 0]              | [0, 0]   |  |  |
| $\sigma_{\underline{\ell_2}}(a)$ |         | Т                  | [0, 0]              | [0, 0]   | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$        | $[0,\infty]$ | [0, 10]             | [0, 10]  |  |  |
| $\sigma_{\underline{\ell_3}}(a)$ |         |                    |                     | [1, 1]   | [1, 1]             | [1, 10]      | [1, 10]             | [1, 10]      | [1, 10]             | [1, 10]  |  |  |
| $\sigma_{\underline{\ell_4}}(a)$ |         | Т                  | Т                   |          |                    |              | $\perp$             |              | Т                   |          |  |  |

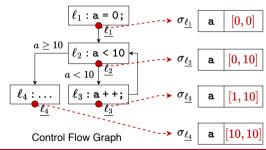



| Abstract                         | Init | After              | 1 <sup>th</sup> loo | op iter        | 2 <sup>nd</sup> lo | op iter        | 3 <sup>rd</sup> loo | op iter                 | 4 <sup>th</sup> loo | op iter        | 5 <sup>th</sup> loo | op iter |  |
|----------------------------------|------|--------------------|---------------------|----------------|--------------------|----------------|---------------------|-------------------------|---------------------|----------------|---------------------|---------|--|
| trace                            |      | analyzing $\ell_1$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$     | After $\ell_3$ | After $\ell_2$      | After<br>ℓ <sub>3</sub> | After $\ell_2$      | After $\ell_3$ | After $\ell_2$      |         |  |
| $\sigma_{\ell_1}(a)$             |      | [0, 0]             | [0, 0]              | [0, 0]         | [0, 0]             | [0, 0]         | [0, 0]              | [0, 0]                  | [0, 0]              | [0, 0]         | [0, 0]              |         |  |
| $\sigma_{\underline{\ell_2}}(a)$ | Т    | Т                  | [0, 0]              | [0, 0]         | $[0,\infty]$       | $[0,\infty]$   | $[0,\infty]$        | $[0,\infty]$            | [0, 10]             | [0, 10]        | [0, 10]             |         |  |
| $\sigma_{\underline{\ell_3}}(a)$ |      | Т                  |                     | [1, 1]         | [1, 1]             | [1, 10]        | [1, 10]             | [1, 10]                 | [1, 10]             | [1, 10]        | [1, 10]             |         |  |
| $\sigma_{\ell_4}(a)$             | Т    | Т                  |                     |                |                    | Т              | $\perp$             |                         | Т                   |                |                     |         |  |

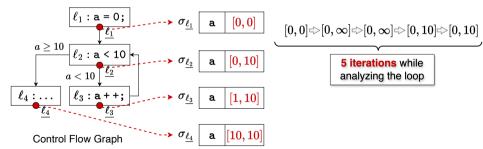



| Abstract                         | Init | After              | 1 <sup>th</sup> loo | op iter        | 2 <sup>nd</sup> lo | op iter                 | 3 <sup>rd</sup> loo | op iter                 | 4 <sup>th</sup> loc | op iter        | 5 <sup>th</sup> loo | op iter        | After              |
|----------------------------------|------|--------------------|---------------------|----------------|--------------------|-------------------------|---------------------|-------------------------|---------------------|----------------|---------------------|----------------|--------------------|
| trace                            |      | analyzing $\ell_1$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$     | After<br>ℓ <sub>3</sub> | After $\ell_2$      | After<br>ℓ <sub>3</sub> | After $\ell_2$      | After $\ell_3$ | After $\ell_2$      | After $\ell_3$ | analyzing $\ell_4$ |
| $\sigma_{\ell_1}(a)$             |      | [0, 0]             | [0, 0]              | [0, 0]         | [0, 0]             | [0, 0]                  | [0, 0]              | [0,0]                   | [0, 0]              | [0, 0]         | [0, 0]              | [0, 0]         |                    |
| $\sigma_{\underline{\ell_2}}(a)$ |      | Т                  | [0, 0]              | [0, 0]         | $[0,\infty]$       | $[0,\infty]$            | $[0,\infty]$        | $[0,\infty]$            | [0, 10]             | [0, 10]        | [0, 10]             | [0, 10]        |                    |
| $\sigma_{\underline{\ell_3}}(a)$ |      |                    |                     | [1, 1]         | [1, 1]             | [1, 10]                 | [1, 10]             | [1, 10]                 | [1, 10]             | [1, 10]        | [1, 10]             | [1, 10]        |                    |
| $\sigma_{\ell_4}(a)$             | Т    | Т                  |                     |                |                    |                         | $\perp$             |                         |                     |                |                     | Т              |                    |

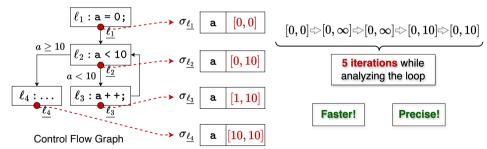



| Abstract                         | Init | After              | 1 <sup>th</sup> loo | op iter        | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> loo | op iter      | 4 <sup>th</sup> loc | op iter        | 5 <sup>th</sup> Ic | op iter        | After              |
|----------------------------------|------|--------------------|---------------------|----------------|--------------------|--------------|---------------------|--------------|---------------------|----------------|--------------------|----------------|--------------------|
| trace                            |      | analyzing $\ell_1$ | After $\ell_2$      | After $\ell_3$ | After              | After        | After               | After        | After $\ell_2$      | After $\ell_3$ | After $\ell_2$     | After $\ell_3$ | analyzing $\ell_4$ |
|                                  |      |                    | _                   |                | $\ell_2$           | $\ell_3$     | $\ell_2$            | $\ell_3$     |                     |                |                    | -              |                    |
| $\sigma_{\ell_1}(a)$             | 1    | [0, 0]             | [0, 0]              | [0, 0]         | [0, 0]             | [0, 0]       | [0, 0]              | [0, 0]       | [0, 0]              | [0, 0]         | [0, 0]             | [0, 0]         |                    |
| $\sigma_{\underline{\ell_2}}(a)$ | Т    |                    | [0, 0]              | [0, 0]         | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$        | $[0,\infty]$ | [0, 10]             | [0, 10]        | [0, 10             | [0, 10]        |                    |
| $\sigma_{\underline{\ell_3}}(a)$ |      |                    |                     | [1, 1]         | [1, 1]             | [1, 10]      | [1, 10]             | [1, 10]      | [1, 10]             | [1, 10]        | [1, 10             | [1, 10]        |                    |
| $\sigma_{\underline{\ell_4}}(a)$ |      |                    |                     |                |                    | Т            | Т                   |              | Т                   |                |                    |                |                    |




| Abstract                         | Init | After              | 1 <sup>th</sup> loo | op iter        | 2 <sup>nd</sup> lo | op iter        | 3 <sup>rd</sup> loo | p iter         | 4 <sup>th</sup> loc | p iter         | 5 <sup>th</sup> loo | op iter              | After              |
|----------------------------------|------|--------------------|---------------------|----------------|--------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------------|--------------------|
| trace                            |      | analyzing $\ell_1$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$     | After $\ell_3$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$      | After ℓ <sub>3</sub> | analyzing $\ell_4$ |
| $\sigma_{\ell_1}(a)$             |      | [0, 0]             | [0, 0]              | [0, 0]         | [0,0]              | [0, 0]         | [0,0]               | [0,0]          | [0, 0]              | [0, 0]         | [0, 0]              | [0, 0]               | [0, 0]             |
| $\sigma_{\underline{\ell_2}}(a)$ |      | Т                  | [0, 0]              | [0, 0]         | $[0,\infty]$       | $[0,\infty]$   | $[0,\infty]$        | $[0,\infty]$   | [0, 10]             | [0, 10]        | [0, 10]             | [0, 10]              | [0, 10]            |
| $\sigma_{\underline{\ell_3}}(a)$ |      |                    |                     | [1, 1]         | [1, 1]             | [1, 10]        | [1, 10]             | [1, 10]        | [1, 10]             | [1, 10]        | [1, 10]             | [1, 10]              | [1, 10]            |
| $\sigma_{\underline{\ell_4}}(a)$ | Т    | Т                  |                     | Т              |                    |                | $\perp$             |                |                     | Т              |                     | Т                    | [10, 10]           |




| Abstract                         | Init | After              | 1 <sup>th</sup> loo | op iter        | 2 <sup>nd</sup> lo | op iter      | 3 <sup>rd</sup> loo | op iter      | 4 <sup>th</sup> loc | p iter                  | 5 <sup>th</sup> loo | op iter        | After              |
|----------------------------------|------|--------------------|---------------------|----------------|--------------------|--------------|---------------------|--------------|---------------------|-------------------------|---------------------|----------------|--------------------|
| trace                            |      | analyzing $\ell_1$ | After $\ell_2$      | After $\ell_3$ | After              | After        | After               | After        | After $\ell_2$      | After<br>ℓ <sub>3</sub> | After $\ell_2$      | After $\ell_3$ | analyzing $\ell_4$ |
|                                  |      | ē                  | <sup>2</sup> 2      | -3             | $\ell_2$           | $\ell_3$     | $\ell_2$            | $\ell_3$     | <sup>c</sup> 2      | -63                     | -22                 | ~3             |                    |
| $\sigma_{\ell_1}(a)$             | 工    | [0, 0]             | [0, 0]              | [0, 0]         | [0, 0]             | [0, 0]       | [0, 0]              | [0, 0]       | [0, 0]              | [0, 0]                  | [0, 0]              | [0, 0]         | [0, 0]             |
| $\sigma_{\ell_2}(a)$             |      | $\vdash$           | [0, 0]              | [0, 0]         | $[0,\infty]$       | $[0,\infty]$ | $[0,\infty]$        | $[0,\infty]$ | [0, 10]             | [0, 10]                 | [0, 10]             | [0, 10]        | [0, 10]            |
| $\sigma_{\underline{\ell_3}}(a)$ |      | $\perp$            | Т                   | [1, 1]         | [1, 1]             | [1, 10]      | [1, 10]             | [1, 10]      | [1, 10]             | [1, 10]                 | [1, 10]             | [1, 10]        | [1, 10]            |
| $\sigma_{\underline{\ell_4}}(a)$ |      | $\dashv$           | Т                   |                |                    |              | $\perp$             |              |                     | $\perp$                 |                     |                | [10, 10]           |



| Abstract                         | Init | After     | 1 <sup>th</sup> loo | op iter        | 2 <sup>nd</sup> lo | op iter | 3 <sup>rd</sup> loo | p iter         | 4 <sup>th</sup> loo | p iter         | 5 <sup>th</sup> loo | op iter        | After              |
|----------------------------------|------|-----------|---------------------|----------------|--------------------|---------|---------------------|----------------|---------------------|----------------|---------------------|----------------|--------------------|
| trace                            |      | analyzing | After $\ell_2$      | After $\ell_3$ | After              | After   | After $\ell_2$      | After $\ell_3$ | After $\ell_2$      | After $\ell_3$ | After $\ell_2$      | After $\ell_3$ | analyzing $\ell_4$ |
| $\sigma_{\ell_1}(a)$             |      | [0,0]     | [0,0]               | [0,0]          | [0,0]              | [0,0]   | [0, 0]              | [0, 0]         | [0, 0]              | [0, 0]         | [0, 0]              | [0, 0]         | [0, 0]             |
| $\sigma_{\ell_2}(a)$             |      | <u></u>   | [0,0]               | [0, 0]         | $[0,\infty]$       | [0, ∞]  | [0, ∞]              | [0, ∞]         | [0, 10]             | [0, 10]        | [0, 10]             | [0, 10]        |                    |
| $\sigma_{\underline{\ell_3}}(a)$ |      |           |                     | [1, 1]         | [1, 1]             | [1, 10] | [1, 10]             | [1, 10]        | [1, 10]             | [1, 10]        | [1, 10]             | [1, 10]        | [1, 10]            |
| $\sigma_{\underline{\ell_4}}(a)$ |      | Τ         |                     | Т              |                    |         |                     |                | Т                   |                |                     | Т              | [10, 10]           |



| Abstract                         | Init | After     | 1 <sup>th</sup> loop iter |                | 2 <sup>nd</sup> loop iter |         | 3 <sup>rd</sup> loop iter |                | 4 <sup>th</sup> loop iter |                | 5 <sup>th</sup> loop iter |                | After              |
|----------------------------------|------|-----------|---------------------------|----------------|---------------------------|---------|---------------------------|----------------|---------------------------|----------------|---------------------------|----------------|--------------------|
| trace                            |      | analyzing | After $\ell_2$            | After $\ell_3$ | After                     | After   | After $\ell_2$            | After $\ell_3$ | After $\ell_2$            | After $\ell_3$ | After $\ell_2$            | After $\ell_3$ | analyzing $\ell_4$ |
| $\sigma_{\ell_1}(a)$             |      | [0,0]     | [0,0]                     | [0,0]          | [0,0]                     | [0,0]   | [0, 0]                    | [0, 0]         | [0, 0]                    | [0, 0]         | [0, 0]                    | [0, 0]         | [0, 0]             |
| $\sigma_{\ell_2}(a)$             |      | <u></u>   | [0,0]                     | [0, 0]         | $[0,\infty]$              | [0, ∞]  | [0, ∞]                    | [0, ∞]         | [0, 10]                   | [0, 10]        | [0, 10]                   | [0, 10]        |                    |
| $\sigma_{\underline{\ell_3}}(a)$ |      |           | 1                         | [1, 1]         | [1, 1]                    | [1, 10] | [1, 10]                   | [1, 10]        | [1, 10]                   | [1, 10]        | [1, 10]                   | [1, 10]        | [1, 10]            |
| $\sigma_{\ell_4}(a)$             |      | Τ         |                           | Т              |                           |         |                           |                |                           |                |                           | Т              | [10, 10]           |

