
Foundations of Abstract Interpretation
(Week 8)

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

1

COMP6131 Software Security Analysis 2025

Classes in the Next Three Weeks

... Control-flow
Traversal

Manual
Translation

Lab-Exercise-3

Translation
Rules AEMgr AbstractExecution

Automated
Translation

Assignment-3

Assertion Verification
Buff-overflow Detection

Safe

Unsafe

*.ll

2

COMP6131 Software Security Analysis 2025

Outline of Today’s lecture

• An Introduction to Abstract Interpretation: What and Why
• Abstract Interpretation vs Symbolic Execution
• Definitions: Abstract domains, Abstract State and Abstract Trace.
• Step-by-Step Motivating Examples.
• Widening and Narrowing to Improve Analysis Speed and Precision

3

COMP6131 Software Security Analysis 2025

Abstract Interpretation

Abstract interpretation or Abstract Execution [Cousot & Cousot, POPL’77]1, a
general framework for static analysis, aims to soundly approximate the potential
concrete values program variables may take during runtime, based on
monotonic functions over ordered sets, particularly lattices.

4

COMP6131 Software Security Analysis 2025

https://dl.acm.org/doi/pdf/10.1145/512950.512973

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

5

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

5

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

or

What is the
abstract value?

5

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

or

What is the
abstract value?

5

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

or

What is the
abstract value?

5

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

or

What is the
abstract value?

5

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

Precise

or

What is the
abstract value?

5

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Applications

• Program Optimization: allows compilers to make safe assumptions about a
program’s behavior, leading to more efficient code generation.

• Range Analysis: abstractly determines the loop’s value range, aiding in
memory optimization and eliminating redundant checks within this range.

• Hardware Design and Analysis: used to verify that hardware designs meet
certain specifications and to optimize the designs for better performance or
lower power consumption.

• Analyzing Hardware Circuits: By creating an abstract model of the circuit, it
can predict how the circuit will behave under various input conditions.

• Code Analysis (This Course): provides a systematic approach to
approximate program behavior through value abstractions.

• Security Analysis: crucial for early detection of bugs (e.g., assertion errors and
buffer overflows), reducing debugging time and enhancing code reliability.

6

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Applications

• Program Optimization: allows compilers to make safe assumptions about a
program’s behavior, leading to more efficient code generation.

• Range Analysis: abstractly determines the loop’s value range, aiding in
memory optimization and eliminating redundant checks within this range.

• Hardware Design and Analysis: used to verify that hardware designs meet
certain specifications and to optimize the designs for better performance or
lower power consumption.

• Analyzing Hardware Circuits: By creating an abstract model of the circuit, it
can predict how the circuit will behave under various input conditions.

• Code Analysis (This Course): provides a systematic approach to
approximate program behavior through value abstractions.

• Security Analysis: crucial for early detection of bugs (e.g., assertion errors and
buffer overflows), reducing debugging time and enhancing code reliability.

6

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Applications

• Program Optimization: allows compilers to make safe assumptions about a
program’s behavior, leading to more efficient code generation.

• Range Analysis: abstractly determines the loop’s value range, aiding in
memory optimization and eliminating redundant checks within this range.

• Hardware Design and Analysis: used to verify that hardware designs meet
certain specifications and to optimize the designs for better performance or
lower power consumption.

• Analyzing Hardware Circuits: By creating an abstract model of the circuit, it
can predict how the circuit will behave under various input conditions.

• Code Analysis (This Course): provides a systematic approach to
approximate program behavior through value abstractions.

• Security Analysis: crucial for early detection of bugs (e.g., assertion errors and
buffer overflows), reducing debugging time and enhancing code reliability.

6

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Tools
Widely used in safety-critical systems (e.g., aerospace industries) and commercial
software products to enhance reliability, security, and performance.

• Astrée is used to analyze and ensure the safety of software in modern
aircraft, such as the Airbus A380.

• Polyspace is highly valued in the automotive and aerospace industries for
ensuring software compliance with safety standards such as ISO 26262 for
automotive software.

• Ikos is specialized in detecting run-time errors and numerical computation
issues, making it ideal for space and aeronautics software.

• SPARK is used in the aerospace industry for writing and verifying
safety-critical avionics software.

• Infer is a static analysis tool developed by Facebook to identify bugs in mobile
and web applications.

• Other tools: Frama-C, Julia Static Analyzer, BAP, Soot and many more . . .

7

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Tools
Widely used in safety-critical systems (e.g., aerospace industries) and commercial
software products to enhance reliability, security, and performance.

• Astrée is used to analyze and ensure the safety of software in modern
aircraft, such as the Airbus A380.

• Polyspace is highly valued in the automotive and aerospace industries for
ensuring software compliance with safety standards such as ISO 26262 for
automotive software.

• Ikos is specialized in detecting run-time errors and numerical computation
issues, making it ideal for space and aeronautics software.

• SPARK is used in the aerospace industry for writing and verifying
safety-critical avionics software.

• Infer is a static analysis tool developed by Facebook to identify bugs in mobile
and web applications.

• Other tools: Frama-C, Julia Static Analyzer, BAP, Soot and many more . . .
7

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Soundness

• Abstract interpretation aims for sound results. It can conservatively
approximate all possible execution paths and runtime behaviors.

• Symbolic execution can be unsound. It precisely explores individual yet
feasible paths, facing a “path explosion” problem in large programs, and may
result in under-approximation of program behaviors.

8

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Soundness

• Abstract interpretation aims for sound results. It can conservatively
approximate all possible execution paths and runtime behaviors.

• Symbolic execution can be unsound. It precisely explores individual yet
feasible paths, facing a “path explosion” problem in large programs, and may
result in under-approximation of program behaviors.

8

COMP6131 Software Security Analysis 2025

Assignment-2 vs. Assignment-3

Assignment-2
• Delegate the constraint solving to the z3 SMT solver.
• Each time, it returns one solution with concrete values for all variables in

the search space when the solver is satisfiable.
• Per-path verification without handling the inner parts of a loop.

Assignment-3
• Use Abstract State (AEState) and Abstract Trace (a set of AEStates for all

ICFGNodes) to compute and maintain abstract values of variables.
• Abstract all possible values of a variable into a value interval (for scalars)

or an address set (for memory addresses).
• Approximate loop behaviors based on widening and narrowing.

9

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

 void analyzeThis(int x) {
 int sum = 0;
 for (int i = 0; i < x; ++i) {

sum += i;
 }
 }

10

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Abstract
Interpretation

 void analyzeThis(int x) {
 int sum = 0;
 for (int i = 0; i < x; ++i) {

sum += i;
 }
 }

Sound (include all non-negative numbers)
imprecise (may include infeasible numbers: 2, 4, 5, ...)

10

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Abstract
Interpretation

Symbolic
Execution

 void analyzeThis(int x) {
 int sum = 0;
 for (int i = 0; i < x; ++i) {

sum += i;
 }
 }

Sound (include all non-negative numbers)
imprecise (may include infeasible numbers: 2, 4, 5, ...)

Path Answer
0

10

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Abstract
Interpretation

Symbolic
Execution

 void analyzeThis(int x) {
 int sum = 0;
 for (int i = 0; i < x; ++i) {

sum += i;
 }
 }

Sound (include all non-negative numbers)
imprecise (may include infeasible numbers: 2, 4, 5, ...)

Path Answer
0
1

10

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Abstract
Interpretation

Symbolic
Execution

 void analyzeThis(int x) {
 int sum = 0;
 for (int i = 0; i < x; ++i) {

sum += i;
 }
 }

Sound (include all non-negative numbers)
imprecise (may include infeasible numbers: 2, 4, 5, ...)

Path Answer
0
1
3

10

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Abstract
Interpretation

Symbolic
Execution

 void analyzeThis(int x) {
 int sum = 0;
 for (int i = 0; i < x; ++i) {

sum += i;
 }
 }

Sound (include all non-negative numbers)
imprecise (may include infeasible numbers: 2, 4, 5, ...)

Path Answer
0
1
3

...... ...infinite paths!

10

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Abstract
Interpretation

Symbolic
Execution

 void analyzeThis(int x) {
 int sum = 0;
 for (int i = 0; i < x; ++i) {
 sum += i;
 }
 }

Sound (include all non-negative numbers)
imprecise (may include infeasible numbers: 2, 4, 5, ...)

Precise (only include feasible numbers: 0, 1, 3, 6, ...)
unsound (cannot cover all possible numbers)

Path Answer
0
1
3

...... ...infinite paths!

10

COMP6131 Software Security Analysis 2025

Importance of Soundness

• Reliability: Ensures comprehensive coverage of all possible program states,
reducing unforeseen behavior in production.

• Quality Assurance: Crucial for critical systems where failure can have
serious consequences, ensuring software behaves as intended.

• Confidence in Maintenance: Provides a safety net for code changes,
reducing the risk of introducing new bugs.

11

COMP6131 Software Security Analysis 2025

Importance of Soundness

• Reliability: Ensures comprehensive coverage of all possible program states,
reducing unforeseen behavior in production.

• Quality Assurance: Crucial for critical systems where failure can have
serious consequences, ensuring software behaves as intended.

• Confidence in Maintenance: Provides a safety net for code changes,
reducing the risk of introducing new bugs.

11

COMP6131 Software Security Analysis 2025

Importance of Soundness

• Reliability: Ensures comprehensive coverage of all possible program states,
reducing unforeseen behavior in production.

• Quality Assurance: Crucial for critical systems where failure can have
serious consequences, ensuring software behaves as intended.

• Confidence in Maintenance: Provides a safety net for code changes,
reducing the risk of introducing new bugs.

11

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Termination

• Abstract interpretation is typically guaranteed to terminate within a finite
step. Uses an abstracted, and hence more manageable, version of the state
space to represent the infinite number of runtime states and paths.

• Symbolic execution may struggle with termination in complex or large-scale
programs. The need to explore numerous paths in detail, especially in
programs with loops and recursive calls, can lead to non-termination or
impractical analysis times.

12

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution
Termination

• Abstract interpretation is typically guaranteed to terminate within a finite
step. Uses an abstracted, and hence more manageable, version of the state
space to represent the infinite number of runtime states and paths.

• Symbolic execution may struggle with termination in complex or large-scale
programs. The need to explore numerous paths in detail, especially in
programs with loops and recursive calls, can lead to non-termination or
impractical analysis times.

12

COMP6131 Software Security Analysis 2025

Importance of Termination

• Deterministic: Ensures consistent outcomes and predictable resource use
for the same input.

• Efficiency: Reduces computational load by using abstracted state spaces,
speeding up the analysis process.

• Coverage: ensure that all parts of the code are analyzed, avoiding missed
sections and ensuring thorough coverage for detecting issues.

13

COMP6131 Software Security Analysis 2025

Importance of Termination

• Deterministic: Ensures consistent outcomes and predictable resource use
for the same input.

• Efficiency: Reduces computational load by using abstracted state spaces,
speeding up the analysis process.

• Coverage: ensure that all parts of the code are analyzed, avoiding missed
sections and ensuring thorough coverage for detecting issues.

13

COMP6131 Software Security Analysis 2025

Importance of Termination

• Deterministic: Ensures consistent outcomes and predictable resource use
for the same input.

• Efficiency: Reduces computational load by using abstracted state spaces,
speeding up the analysis process.

• Coverage: ensure that all parts of the code are analyzed, avoiding missed
sections and ensuring thorough coverage for detecting issues.

13

COMP6131 Software Security Analysis 2025

Abstract Interpretation: A Code Example

 if(cond)
 x=1;
 else
 x=3;
 x = ?

14

COMP6131 Software Security Analysis 2025

Abstract Interpretation: A Code Example

 if(cond)
 x=1;
 else
 x=3;
 x = ?

Coarse-grained
but faster

14

COMP6131 Software Security Analysis 2025

Abstract Interpretation: A Code Example

 if(cond)
 x=1;
 else
 x=3;
 x = ?

Fine-grained
but slower

14

COMP6131 Software Security Analysis 2025

Concrete Domain and Abstract Domain: Formal Definition
Concrete Domain

• S denotes the set of concrete values that a program variable can have.
• E.g., S = Z represents the concrete values that an integer variable can have.

• A concrete domain C is the powerset of S, denoted as C = P(S).
• E.g. The powerset integer domain is a concrete domain for integer variables.

Abstract Domain

• An abstract domain A contains abstract values approximating a set of
concrete values.

• An abstract domain is typically implemented using a lattice
L = ⟨A,⊑,⊓,⊔,⊥,⊤⟩ structure, a set of abstract values following a partial
order, also equipped with two binary operations.

• ⊑ is a partial order relation on A (e.g., ⊑ is the subset (⊆) on a power set).
• ⊓ and ⊔ are the meet and join binary operations, and ⊥ and ⊤ are unique least

and greatest elements of A.
15

COMP6131 Software Security Analysis 2025

An Example: Abstract Sign Domain
An abstract domain that approximates a set of concrete values with their signs.

• Lattice is defined as L = ⟨P({−,0,+}),⊑,⊓,⊔,⊥,⊤⟩.
• Partial order: a ⊑ b ⇔ a ⊆ b. E.g., {+} ⊑ {0,+} ⇔ {+} ⊆ {0,+}.
• Meet operator a ⊓ b: returns the greatest lower bound (GLB) that is less

than or equal to both a and b (move downwards along the lattice)
• {+} ⊓ {0} = ⊥

• Join operator a ⊔ b: returns the least upper bound (LUB) that is greater
than or equal to both a and b (move upwards along the lattice)

• {+} ⊔ {0} = {+,0}
• Approximation: concrete value set {1,3} is over-approximated as {+}.

After concretization, it is restored as {x ∈ Z|x > 0}, a super set of {1,3}.

Sign
domain

Approximate

Concrete
values

Concrete
values

Concretize

16

COMP6131 Software Security Analysis 2025

An Example, the Best Abstraction using Sign Domain

Sign
domain

Approximation 1

Concrete
values

Concrete
values

Concretize

Approximation 2

Concretize

VS.
VS.

Approximation 1 (more precise than Approximation 2) is the best abstraction!
17

COMP6131 Software Security Analysis 2025

Galois Connection
When each concrete value has a unique best abstraction, the correspondence is a
Galois connection, which is a two-way connections between abstract domain
and concrete domain using abstraction function and concretization function.

• Abstraction function α : C → A maps a set of concrete values to its abstract
ones;

• Concretization function γ : A → C maps a set of abstract values to concrete
ones.

Example: Abstraction/concretization functions on sign domain

γSign(⊤) = Z
γSign({−}) = {x |x < 0}
γSign({+}) = {x |x > 0}
. . .

αSign(c) = {+} if c ∈ Z>0

αSign(c) = {−} if c ∈ Z<0

αSign(c) = {+,0} if c ∈ Z≥0

. . .

18

COMP6131 Software Security Analysis 2025

Galois Connection
When each concrete value has a unique best abstraction, the correspondence is a
Galois connection, which is a two-way connections between abstract domain
and concrete domain using abstraction function and concretization function.

• Abstraction function α : C → A maps a set of concrete values to its abstract
ones;

• Concretization function γ : A → C maps a set of abstract values to concrete
ones.

Example: Abstraction/concretization functions on sign domain

γSign(⊤) = Z
γSign({−}) = {x |x < 0}
γSign({+}) = {x |x > 0}
. . .

αSign(c) = {+} if c ∈ Z>0

αSign(c) = {−} if c ∈ Z<0

αSign(c) = {+,0} if c ∈ Z≥0

. . .

18

COMP6131 Software Security Analysis 2025

Galois Connection of Sign Domain

(a) Powerset integer domain

(b) Sign domain

19

COMP6131 Software Security Analysis 2025

Interval Domain
The interval domain is an abstract domain that represents a set of integers that fall
between two given endpoints.

• Lattice is defined as
Linterval =⟨I,⊑,⊓,⊔,⊥,⊤⟩, where I={[a,b] | a,b ∈ Z ∪ {−∞,+∞}} ∪ {⊥}.

• Partial order: [a1,b1] ⊑ [a2,b2] ⇔ a2 ≤ a1 ∧ b1 ≤ b2.
• E.g., [0,0], [0,1] ∈ Ainterval , satisfying [0,0] ⊑ [0,1].

(b) Interval domain

Given a1 =[3, 8] and a2 =[7, 12].

Meet operation a1 ⊓ a2 returns the greatest Lower Bound (GLB):
• GLB = [7, 8], the largest range that is shared by both a1 and a2.

Join operation a1 ⊔ a2 returns the Least Upper Bound (LUB):
• LUB = [3,12], the smallest range that includes both a1 and a2.

LUB and GLB of lattice Linterval are [−∞,+∞] and ⊥ respectively.

20

COMP6131 Software Security Analysis 2025

Interval Domain
The interval domain is an abstract domain that represents a set of integers that fall
between two given endpoints.

• Lattice is defined as
Linterval =⟨I,⊑,⊓,⊔,⊥,⊤⟩, where I={[a,b] | a,b ∈ Z ∪ {−∞,+∞}} ∪ {⊥}.

• Partial order: [a1,b1] ⊑ [a2,b2] ⇔ a2 ≤ a1 ∧ b1 ≤ b2.
• E.g., [0,0], [0,1] ∈ Ainterval , satisfying [0,0] ⊑ [0,1].

(b) Interval domain

Given a1 =[3, 8] and a2 =[7, 12].

Meet operation a1 ⊓ a2 returns the greatest Lower Bound (GLB):
• GLB = [7, 8], the largest range that is shared by both a1 and a2.

Join operation a1 ⊔ a2 returns the Least Upper Bound (LUB):
• LUB = [3,12], the smallest range that includes both a1 and a2.

LUB and GLB of lattice Linterval are [−∞,+∞] and ⊥ respectively.

20

COMP6131 Software Security Analysis 2025

Galois Connection between C and Ainterval

(b) Interval domain(a) Powerset integer domain

Figure: Powerset integer domain C and its abstraction as the interval domain Ainterval .

21

COMP6131 Software Security Analysis 2025

Abstract State and Abstract Trace
• An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map

AS : V → A associating program variables V with an abstract value in A,
approximating the runtime states of program variables.

• An abstract trace σ ∈ L× V → A represents a list of abstract states before
(ℓ) and after (ℓ) each program statement ℓ (preAbsTrace and postAbsTrace in
Assignment-3).

Notation Domain

Abstract trace σ L× V → AInterval

Abstract state at program point L ∈ L σL V → AInterval

Abstract value of x at program point L ∈ L σL(x) AInterval

22

COMP6131 Software Security Analysis 2025

Abstract State and Abstract Trace
• An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map

AS : V → A associating program variables V with an abstract value in A,
approximating the runtime states of program variables.

• An abstract trace σ ∈ L× V → A represents a list of abstract states before
(ℓ) and after (ℓ) each program statement ℓ (preAbsTrace and postAbsTrace in
Assignment-3).

Notation Domain

Abstract trace σ L× V → AInterval

Abstract state at program point L ∈ L σL V → AInterval

Abstract value of x at program point L ∈ L σL(x) AInterval

22

COMP6131 Software Security Analysis 2025

Abstract Trace : A Simple Example

Control Flow Graph

Program point
immediately after

 program statement

Abstract Trace

23

COMP6131 Software Security Analysis 2025

Abstract Trace : A Simple Example

Control Flow Graph

Program point
immediately after

 program statement

Program point
immediately before

 program statement

Abstract Trace

23

COMP6131 Software Security Analysis 2025

Abstract Trace : A Simple Example

Control Flow Graph

Program point
immediately after

 program statement

Program point
immediately before

 program statement

Abstract Trace

23

COMP6131 Software Security Analysis 2025

Abstract Trace : A Simple Example

Control Flow Graph

Abstract state

Abstract Trace

23

COMP6131 Software Security Analysis 2025

Abstract Trace : A Simple Example

Control Flow Graph

Abstract state

Abstract state

Abstract Trace

23

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

What is the abstract state after analyzing each statement?

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

What is the abstract state after analyzing each statement?

 are transfer functions which indicate how
abstract states are updated

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

What is the abstract state after analyzing each statement?

 are transfer functions which indicate how
abstract states are updated

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

What is the abstract state after analyzing each statement?

 are transfer functions which indicate how
abstract states are updated

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

What is the abstract state after analyzing each statement?

 are transfer functions which indicate how
abstract states are updated

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0]

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥

[0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥

⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥

⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter

2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0]

[0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0]

[0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥ ⊥

[1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥

⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter

2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0]

[0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0]

[0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1]

[1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥

⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter

. . .
11th loop iter 12nd loop iter After

analyzing
ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1]

[0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1]

. . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥

⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter

. . .
11th loop iter 12nd loop iter After

analyzing
ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

. . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1]

. . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2]

. . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

. . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter

12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0]

[0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10]

[0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10]

[1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥

⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0]

[0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10]

[0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥

⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥

[10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥

[10, 10]

Control Flow Graph

Fixpoint is reached!
(Abstract trace after loop round 11 =
Abstract trace after loop round 12)

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025

Widening: Accelerating Fixed-Point Computation

Widening technique can accelerate the fixpoint computation of σℓ2(a).

Naive fixpoint computation: value changes of

25

COMP6131 Software Security Analysis 2025

Widening: Accelerating Fixed-Point Computation

Widening technique can accelerate the fixpoint computation of σℓ2(a).

Naive fixpoint computation: value changes of

Widening
aggressively update

25

COMP6131 Software Security Analysis 2025

Widening: Accelerating Fixed-Point Computation

Widening at the k th iteration in the loop for analyzing ℓ2 to update σℓ2 .

Control Flow Graph
denotes the value of after the analysis of

Apply widening operator

does not have a superscription as it is updated only once
and is not involved in the loop

, and

What is a Widening Operator?

26

COMP6131 Software Security Analysis 2025

Widening: Accelerating Fixed-Point Computation

Widening at the k th iteration in the loop for analyzing ℓ2 to update σℓ2 .

Control Flow Graph
denotes the value of after the analysis of

Apply widening operator

does not have a superscription as it is updated only once
and is not involved in the loop

, and

What is a Widening Operator?

26

COMP6131 Software Security Analysis 2025

Widening Operator

The Widening Operator (▽ : A× A → A) is formally defined on a poset (A,⊑). ∇
on interval domain could be defined as:

[ℓ1,h1]∇[ℓ2,h2] = [ℓ3,h3]

where

l3 =

{
−∞ l2 < l1
l1 l2 ≥ l1

,h3 =

{
+∞ h2 > h1
h1 h2 ≤ h1

As a concrete example, [0,0]∇[0,1] = [0,+∞].

27

COMP6131 Software Security Analysis 2025

Widening Operator

The Widening Operator (▽ : A× A → A) is formally defined on a poset (A,⊑). ∇
on interval domain could be defined as:

[ℓ1,h1]∇[ℓ2,h2] = [ℓ3,h3]

where

l3 =

{
−∞ l2 < l1
l1 l2 ≥ l1

,h3 =

{
+∞ h2 > h1
h1 h2 ≤ h1

As a concrete example, [0,0]∇[0,1] = [0,+∞].

27

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥

[0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥

⊥ [0,∞]

σℓ3 (a) ⊥

⊥ ⊥ [1, 10]

σℓ4 (a) ⊥

⊥ ⊥ ⊥ ⊥ ⊥

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0]

[0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥

[0,∞]

σℓ3 (a) ⊥ ⊥

⊥ [1, 10]

σℓ4 (a) ⊥ ⊥

⊥ ⊥ ⊥ ⊥

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter

2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0]

[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0]

[0,∞]

σℓ3 (a) ⊥ ⊥ ⊥

[1, 10]

σℓ4 (a) ⊥ ⊥ ⊥

⊥ ⊥ ⊥

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter

2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0]

[0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0]

[0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1]

[1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥

⊥ ⊥

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter

3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞]

[0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1]

[1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

Control Flow Graph

Start widening at the
 iteration of loop

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter

3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞]

[0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10]

[1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞]

[0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Control Flow Graph

Fixpoint is reached!
(Abstract trace after loop round 2 =
Abstract trace after loop round 3)

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10,∞]

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10,∞]

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10,∞]

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10,∞]

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Widening: The Loop Example
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0,∞]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10,∞]

Control Flow Graph

28

COMP6131 Software Security Analysis 2025

Narrowing: Precision Refinement
Narrowing technique can eliminate the precision loss after a widening operation
(e.g., by improving imprecise σℓ2 and σℓ4).

Naive fixpoint computation: value changes of

Widening
aggressively update

29

COMP6131 Software Security Analysis 2025

Narrowing: Precision Refinement
Narrowing technique can eliminate the precision loss after a widening operation
(e.g., by improving imprecise σℓ2 and σℓ4).

Naive fixpoint computation: value changes of

Widening
aggressively update

Narrowing

 conservatively update

29

COMP6131 Software Security Analysis 2025

Narrowing: Precision Refinement
After the widening reaches a fixpoint at the k th iteration when analyzing the loop,
we start performing narrowing at the (k + 1)th to update σℓ2 .

Control Flow Graph

Widening reaches
a fixpoint

What is a Narrowing Operator?

30

COMP6131 Software Security Analysis 2025

Narrowing: Precision Refinement
After the widening reaches a fixpoint at the k th iteration when analyzing the loop,
we start performing narrowing at the (k + 1)th to update σℓ2 .

Control Flow Graph

Start performing
narrowing

Apply narrowing operator instead

Widening reaches
a fixpoint

What is a Narrowing Operator?

30

COMP6131 Software Security Analysis 2025

Narrowing Operator

The Narrowing Operator (∆ : A× A → A) is formally defined on a poset (A,⊑). ∆
on interval domain could be defined as:

[l1,h1]∆[l2,h2] = [l3,h3]

where

l3 =

{
l2 l1 ≡ −∞
l1 l1 ̸= −∞ ,h3 =

{
h2 h1 ≡ ∞
h1 h1 ̸= ∞

As a concrete example, [0,∞]∆[0,10] = [0,10].

31

COMP6131 Software Security Analysis 2025

Narrowing Operator

The Narrowing Operator (∆ : A× A → A) is formally defined on a poset (A,⊑). ∆
on interval domain could be defined as:

[l1,h1]∆[l2,h2] = [l3,h3]

where

l3 =

{
l2 l1 ≡ −∞
l1 l1 ̸= −∞ ,h3 =

{
h2 h1 ≡ ∞
h1 h1 ̸= ∞

As a concrete example, [0,∞]∆[0,10] = [0,10].

31

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter

4th loop iter 5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞]

[0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10]

[1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

Widening reaches a fixpoint
at the loop iteration

32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter

5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10]

[0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10]

[1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

Start narrowing at
the loop iteration

32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter

5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10] [0, 10]

[0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]

[1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ [10, 10]

Control Flow Graph
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter 5th loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10] [0, 10] [0, 10]

[0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ [10, 10]

Control Flow Graph
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter 5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

[10, 10]

Control Flow Graph
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter 5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

[10, 10]

Control Flow Graph

Fixpoint is reached!
(Abstract trace after loop round 4 =
Abstract trace after loop round 5)

32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter 5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter 5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter 5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter 3rd loop iter 4th loop iter 5th loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After

ℓ2

After

ℓ3

After

ℓ2

After

ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0,∞] [0,∞] [0,∞] [0,∞] [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph
32

COMP6131 Software Security Analysis 2025

