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Outline of Today’s lecture

• An Introduction to Abstract Interpretation: What and Why
• Abstract Interpretation vs Symbolic Execution
• Definitions: Abstract domains, Abstract State and Abstract Trace.
• Step-by-Step Motivating Examples.
• Widening and Narrowing to Improve Analysis Speed and Precision
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Abstract Interpretation

Abstract interpretation or Abstract Execution [Cousot & Cousot, POPL’77]1, a
general framework for static analysis, aims to soundly approximate the potential
concrete values program variables may take during runtime, based on
monotonic functions over ordered sets, particularly lattices.
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Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

5

COMP6131 Software Security Analysis 2025



Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

5

COMP6131 Software Security Analysis 2025



Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

or

What is the
abstract value? 

5

COMP6131 Software Security Analysis 2025



Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

or

What is the
abstract value? 

5

COMP6131 Software Security Analysis 2025



Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

or

What is the
abstract value? 

5

COMP6131 Software Security Analysis 2025



Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract

or

What is the
abstract value? 

5

COMP6131 Software Security Analysis 2025
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The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Concrete Abstract
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Abstract Interpretation: Applications

• Program Optimization: allows compilers to make safe assumptions about a
program’s behavior, leading to more efficient code generation.

• Range Analysis: abstractly determines the loop’s value range, aiding in
memory optimization and eliminating redundant checks within this range.

• Hardware Design and Analysis: used to verify that hardware designs meet
certain specifications and to optimize the designs for better performance or
lower power consumption.

• Analyzing Hardware Circuits: By creating an abstract model of the circuit, it
can predict how the circuit will behave under various input conditions.

• Code Analysis (This Course): provides a systematic approach to
approximate program behavior through value abstractions.

• Security Analysis: crucial for early detection of bugs (e.g., assertion errors and
buffer overflows), reducing debugging time and enhancing code reliability.
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Abstract Interpretation: Tools
Widely used in safety-critical systems (e.g., aerospace industries) and commercial
software products to enhance reliability, security, and performance.

• Astrée is used to analyze and ensure the safety of software in modern
aircraft, such as the Airbus A380.

• Polyspace is highly valued in the automotive and aerospace industries for
ensuring software compliance with safety standards such as ISO 26262 for
automotive software.

• Ikos is specialized in detecting run-time errors and numerical computation
issues, making it ideal for space and aeronautics software.

• SPARK is used in the aerospace industry for writing and verifying
safety-critical avionics software.

• Infer is a static analysis tool developed by Facebook to identify bugs in mobile
and web applications.

• Other tools: Frama-C, Julia Static Analyzer, BAP, Soot and many more . . .
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Abstract Interpretation vs. Symbolic Execution
Soundness

• Abstract interpretation aims for sound results. It can conservatively
approximate all possible execution paths and runtime behaviors.

• Symbolic execution can be unsound. It precisely explores individual yet
feasible paths, facing a “path explosion” problem in large programs, and may
result in under-approximation of program behaviors.
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Assignment-2 vs. Assignment-3

Assignment-2
• Delegate the constraint solving to the z3 SMT solver.
• Each time, it returns one solution with concrete values for all variables in

the search space when the solver is satisfiable.
• Per-path verification without handling the inner parts of a loop.

Assignment-3
• Use Abstract State (AEState) and Abstract Trace (a set of AEStates for all

ICFGNodes) to compute and maintain abstract values of variables.
• Abstract all possible values of a variable into a value interval (for scalars)

or an address set (for memory addresses).
• Approximate loop behaviors based on widening and narrowing.
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Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

  void analyzeThis(int x) {
      int sum = 0;
      for (int i = 0; i < x; ++i) {

sum += i;
      }
  } 
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Abstract Interpretation vs. Symbolic Execution
Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

Abstract
Interpretation

Symbolic
Execution

  void analyzeThis(int x) {
      int sum = 0;
      for (int i = 0; i < x; ++i) {
          sum += i;
      }
  } 

Sound (include all non-negative numbers)
imprecise (may include infeasible numbers: 2, 4, 5, ...)

Precise (only include feasible numbers: 0, 1, 3, 6, ...)
unsound (cannot cover all possible numbers)

Path Answer
0
1
3

...... ...infinite paths!
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Importance of Soundness

• Reliability: Ensures comprehensive coverage of all possible program states,
reducing unforeseen behavior in production.

• Quality Assurance: Crucial for critical systems where failure can have
serious consequences, ensuring software behaves as intended.

• Confidence in Maintenance: Provides a safety net for code changes,
reducing the risk of introducing new bugs.
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Abstract Interpretation vs. Symbolic Execution
Termination

• Abstract interpretation is typically guaranteed to terminate within a finite
step. Uses an abstracted, and hence more manageable, version of the state
space to represent the infinite number of runtime states and paths.

• Symbolic execution may struggle with termination in complex or large-scale
programs. The need to explore numerous paths in detail, especially in
programs with loops and recursive calls, can lead to non-termination or
impractical analysis times.
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Importance of Termination

• Deterministic: Ensures consistent outcomes and predictable resource use
for the same input.

• Efficiency: Reduces computational load by using abstracted state spaces,
speeding up the analysis process.

• Coverage: ensure that all parts of the code are analyzed, avoiding missed
sections and ensuring thorough coverage for detecting issues.
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Abstract Interpretation: A Code Example

 if(cond)
   x=1;
 else
   x=3;
 x = ?
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Coarse-grained
but faster
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Abstract Interpretation: A Code Example

 if(cond)
   x=1;
 else
   x=3;
 x = ?

Fine-grained
but slower
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Concrete Domain and Abstract Domain: Formal Definition
Concrete Domain

• S denotes the set of concrete values that a program variable can have.
• E.g., S = Z represents the concrete values that an integer variable can have.

• A concrete domain C is the powerset of S, denoted as C = P(S).
• E.g. The powerset integer domain is a concrete domain for integer variables.

Abstract Domain

• An abstract domain A contains abstract values approximating a set of
concrete values.

• An abstract domain is typically implemented using a lattice
L = ⟨A,⊑,⊓,⊔,⊥,⊤⟩ structure, a set of abstract values following a partial
order, also equipped with two binary operations.

• ⊑ is a partial order relation on A (e.g., ⊑ is the subset (⊆) on a power set).
• ⊓ and ⊔ are the meet and join binary operations, and ⊥ and ⊤ are unique least

and greatest elements of A.
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An Example: Abstract Sign Domain
An abstract domain that approximates a set of concrete values with their signs.

• Lattice is defined as L = ⟨P({−,0,+}),⊑,⊓,⊔,⊥,⊤⟩.
• Partial order: a ⊑ b ⇔ a ⊆ b. E.g., {+} ⊑ {0,+} ⇔ {+} ⊆ {0,+}.
• Meet operator a ⊓ b: returns the greatest lower bound (GLB) that is less

than or equal to both a and b (move downwards along the lattice)
• {+} ⊓ {0} = ⊥

• Join operator a ⊔ b: returns the least upper bound (LUB) that is greater
than or equal to both a and b (move upwards along the lattice)

• {+} ⊔ {0} = {+,0}
• Approximation: concrete value set {1,3} is over-approximated as {+}.

After concretization, it is restored as {x ∈ Z|x > 0}, a super set of {1,3}.

Sign
domain

Approximate

Concrete
values

Concrete
values

Concretize
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An Example, the Best Abstraction using Sign Domain

Sign
domain

Approximation 1

Concrete
values

Concrete
values

Concretize

Approximation 2

Concretize

VS.
VS.

Approximation 1 (more precise than Approximation 2) is the best abstraction!
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Galois Connection
When each concrete value has a unique best abstraction, the correspondence is a
Galois connection, which is a two-way connections between abstract domain
and concrete domain using abstraction function and concretization function.

• Abstraction function α : C → A maps a set of concrete values to its abstract
ones;

• Concretization function γ : A → C maps a set of abstract values to concrete
ones.

Example: Abstraction/concretization functions on sign domain

γSign(⊤) = Z
γSign({−}) = {x |x < 0}
γSign({+}) = {x |x > 0}
. . .

αSign(c) = {+} if c ∈ Z>0

αSign(c) = {−} if c ∈ Z<0

αSign(c) = {+,0} if c ∈ Z≥0

. . .
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Galois Connection of Sign Domain

(a) Powerset integer domain

(b) Sign domain
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Interval Domain
The interval domain is an abstract domain that represents a set of integers that fall
between two given endpoints.

• Lattice is defined as
Linterval =⟨I,⊑,⊓,⊔,⊥,⊤⟩, where I={[a,b] | a,b ∈ Z ∪ {−∞,+∞}} ∪ {⊥}.

• Partial order: [a1,b1] ⊑ [a2,b2] ⇔ a2 ≤ a1 ∧ b1 ≤ b2.
• E.g., [0,0], [0,1] ∈ Ainterval , satisfying [0,0] ⊑ [0,1].

(b) Interval domain

Given a1 =[3, 8] and a2 =[7, 12].

Meet operation a1 ⊓ a2 returns the greatest Lower Bound (GLB):
• GLB = [7, 8], the largest range that is shared by both a1 and a2.

Join operation a1 ⊔ a2 returns the Least Upper Bound (LUB):
• LUB = [3,12], the smallest range that includes both a1 and a2.

LUB and GLB of lattice Linterval are [−∞,+∞] and ⊥ respectively.
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Galois Connection between C and Ainterval

(b) Interval domain(a) Powerset integer domain

Figure: Powerset integer domain C and its abstraction as the interval domain Ainterval .
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Abstract State and Abstract Trace
• An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map

AS : V → A associating program variables V with an abstract value in A,
approximating the runtime states of program variables.

• An abstract trace σ ∈ L× V → A represents a list of abstract states before
(ℓ) and after (ℓ) each program statement ℓ (preAbsTrace and postAbsTrace in
Assignment-3).

Notation Domain

Abstract trace σ L× V → AInterval

Abstract state at program point L ∈ L σL V → AInterval

Abstract value of x at program point L ∈ L σL(x) AInterval
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Abstract Trace : A Simple Example

Control Flow Graph

Program point
immediately after

 program statement    

Abstract Trace
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Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph
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What is the abstract state after analyzing each statement?
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 are transfer functions which indicate how
abstract states are updated

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

What is the abstract state after analyzing each statement?

 are transfer functions which indicate how
abstract states are updated

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

What is the abstract state after analyzing each statement?

 are transfer functions which indicate how
abstract states are updated

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace

Init
After

analyzing
ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a)

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a)

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a)

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a)

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

What is the abstract state after analyzing each statement?

 are transfer functions which indicate how
abstract states are updated

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥

⊥ [0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥

⊥ ⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥

⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0]

[0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥

[0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥

⊥ [1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥

⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter

2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0]

[0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0]

[0, 0] [0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥ ⊥

[1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥

⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter

2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0]

[0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0]

[0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1]

[1, 1] . . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥

⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter

. . .
11th loop iter 12nd loop iter After

analyzing
ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0]

[0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1]

[0, 1] . . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1]

. . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥

⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter

. . .
11th loop iter 12nd loop iter After

analyzing
ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

. . . [0, 0] [0, 0] [0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1]

. . . [0, 10] [0, 10] [0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2]

. . . [1, 10] [1, 10] [1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

. . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter

12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0]

[0, 0] [0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10]

[0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10]

[1, 10]

σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥

⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0]

[0, 0]

σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10]

[0, 10]

σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥

⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥

[10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter

After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥

[10, 10]

Control Flow Graph

Fixpoint is reached!
(Abstract trace after loop round 11 =
Abstract trace after loop round 12)

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract

trace
Init

After
analyzing

ℓ1

1th loop iter 2nd loop iter
. . .

11th loop iter 12nd loop iter After
analyzing

ℓ4

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

After
ℓ2

After
ℓ3

σℓ1 (a) ⊥ [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] . . . [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
σℓ2 (a) ⊥ ⊥ [0, 0] [0, 0] [0, 1] [0, 1] . . . [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]
σℓ3 (a) ⊥ ⊥ ⊥ [1, 1] [1, 1] [1, 2] . . . [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
σℓ4 (a) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ [10, 10]

Control Flow Graph

24

COMP6131 Software Security Analysis 2025



Widening: Accelerating Fixed-Point Computation

Widening technique can accelerate the fixpoint computation of σℓ2(a).

Naive fixpoint computation: value changes of
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Widening: Accelerating Fixed-Point Computation

Widening at the k th iteration in the loop for analyzing ℓ2 to update σℓ2 .

Control Flow Graph
denotes the value of after the       analysis of

Apply widening operator

does not have a superscription as it is updated only once
and is not involved in the loop

, and

What is a Widening Operator?
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Widening Operator

The Widening Operator (▽ : A× A → A) is formally defined on a poset (A,⊑). ∇
on interval domain could be defined as:

[ℓ1,h1]∇[ℓ2,h2] = [ℓ3,h3]

where

l3 =

{
−∞ l2 < l1
l1 l2 ≥ l1

,h3 =

{
+∞ h2 > h1
h1 h2 ≤ h1

As a concrete example, [0,0]∇[0,1] = [0,+∞].
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Narrowing: Precision Refinement
Narrowing technique can eliminate the precision loss after a widening operation
(e.g., by improving imprecise σℓ2 and σℓ4).

Naive fixpoint computation: value changes of

Widening
aggressively update

29

COMP6131 Software Security Analysis 2025



Narrowing: Precision Refinement
Narrowing technique can eliminate the precision loss after a widening operation
(e.g., by improving imprecise σℓ2 and σℓ4).

Naive fixpoint computation: value changes of

Widening
aggressively update

Narrowing

 conservatively update

29

COMP6131 Software Security Analysis 2025



Narrowing: Precision Refinement
After the widening reaches a fixpoint at the k th iteration when analyzing the loop,
we start performing narrowing at the (k + 1)th to update σℓ2 .

Control Flow Graph

Widening reaches
a fixpoint 

What is a Narrowing Operator?
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Narrowing Operator

The Narrowing Operator (∆ : A× A → A) is formally defined on a poset (A,⊑). ∆
on interval domain could be defined as:

[l1,h1]∆[l2,h2] = [l3,h3]

where

l3 =

{
l2 l1 ≡ −∞
l1 l1 ̸= −∞ ,h3 =

{
h2 h1 ≡ ∞
h1 h1 ̸= ∞

As a concrete example, [0,∞]∆[0,10] = [0,10].
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Narrowing: The Loop Example
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