Foundations of Abstract Interpretation
(Week 8)

Yulei Sui

School of Computer Science and Engineering
University of New South Wales, Australia

- ___|]
COMP6131 Software Security Analysis 2025

Classes in the Next Three Weeks

Control-flow
Traversal

COMP6131 Software Security Analysis 2025

Lab-Exercise-3

Manual
Translation
AEMgr AbstractExecution
Rules

o v ‘,"
Automated /.' []
Translation

Assignment-3

Trace
Merging

Assertion Verification
Buff-overflow Detection

Safe

Unsafe

Outline of Today’s lecture

An Introduction to Abstract Interpretation: What and Why

Abstract Interpretation vs Symbolic Execution

Definitions: Abstract domains, Abstract State and Abstract Trace.
Step-by-Step Motivating Examples.

Widening and Narrowing to Improve Analysis Speed and Precision

e
COMP6131 Software Security Analysis 2025

Abstract Interpretation

Abstract interpretation or Abstract Execution [Cousot & Cousot, POPL77]", a
general framework for static analysis, aims to soundly approximate the potential
concrete values program variables may take during runtime, based on
monotonic functions over ordered sets, particularly lattices.

__|
COMP6131 Software Security Analysis 2025

https://dl.acm.org/doi/pdf/10.1145/512950.512973

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

- __|]
COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Q Concrete Abstract

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

x=0or 2

4

What is the
abstract value?

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a
finite number of abstract values.

Abstract

x=0o0r2) = 3 9 _3
$ 0
What is the /

abstract value? Lo S mgmmeee . T
1 (2 / 3 ,@2;]

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a

finite number of abstract values.

x=0or 2
What is the

abstract value?

COMP6131 Software Security Analysis 2025

a Abstract

3 -2 -1
P > [0,2]
Y £

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a

finite number of abstract values.
\Concrete

x=0or 2 3 9
2 ~
What is the // /
2 A
abstract value* 1 ‘\2 e

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Levels of Abstractions
The key lies in abstracting a potentially infinite number of concrete values into a

finite number of abstract values.
\Concrete

x=0or 2 3 9
2 ~
What is the // /
2 A
abstract value* 1 ‘\2 e

COMP6131 Software Security Analysis 2025

Abstract Interpretation: Applications

* Program Optimization: allows compilers to make safe assumptions about a
program’s behavior, leading to more efficient code generation.

* Range Analysis: abstractly determines the loop’s value range, aiding in
memory optimization and eliminating redundant checks within this range.

e
COMP6131 Software Security Analysis 2025

Abstract Interpretation: Applications

* Program Optimization: allows compilers to make safe assumptions about a
program’s behavior, leading to more efficient code generation.
* Range Analysis: abstractly determines the loop’s value range, aiding in
memory optimization and eliminating redundant checks within this range.
¢ Hardware Design and Analysis: used to verify that hardware designs meet
certain specifications and to optimize the designs for better performance or
lower power consumption.
* Analyzing Hardware Circuits: By creating an abstract model of the circuit, it
can predict how the circuit will behave under various input conditions.

e
COMP6131 Software Security Analysis 2025

Abstract Interpretation: Applications

* Program Optimization: allows compilers to make safe assumptions about a
program’s behavior, leading to more efficient code generation.
* Range Analysis: abstractly determines the loop’s value range, aiding in
memory optimization and eliminating redundant checks within this range.
¢ Hardware Design and Analysis: used to verify that hardware designs meet
certain specifications and to optimize the designs for better performance or
lower power consumption.
* Analyzing Hardware Circuits: By creating an abstract model of the circuit, it
can predict how the circuit will behave under various input conditions.
e Code Analysis (This Course): provides a systematic approach to
approximate program behavior through value abstractions.
e Security Analysis: crucial for early detection of bugs (e.g., assertion errors and
buffer overflows), reducing debugging time and enhancing code reliability.

e 6
COMP6131 Software Security Analysis 2025

Abstract Interpretation: Tools
Widely used in safety-critical systems (e.g., aerospace industries) and commercial
software products to enhance reliability, security, and performance.

- ___|]
COMP6131 Software Security Analysis 2025

Abstract Interpretation: Tools
Widely used in safety-critical systems (e.g., aerospace industries) and commercial
software products to enhance reliability, security, and performance.

Astrée is used to analyze and ensure the safety of software in modern
aircraft, such as the Airbus A380.

Polyspace is highly valued in the automotive and aerospace industries for
ensuring software compliance with safety standards such as ISO 26262 for
automotive software.

Ikos is specialized in detecting run-time errors and numerical computation
issues, making it ideal for space and aeronautics software.

SPARK is used in the aerospace industry for writing and verifying
safety-critical avionics software.

Infer is a static analysis tool developed by Facebook to identify bugs in mobile
and web applications.

Other tools: Frama-C, Julia Static Analyzer, BAP, Soot and many more ...

I —— 7
COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution

Soundness

¢ Abstract interpretation aims for sound results. It can conservatively
approximate all possible execution paths and runtime behaviors.

- __|]
COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution

Soundness

¢ Abstract interpretation aims for sound results. It can conservatively
approximate all possible execution paths and runtime behaviors.

¢ Symbolic execution can be unsound. It precisely explores individual yet

feasible paths, facing a “path explosion” problem in large programs, and may
result in under-approximation of program behaviors.

COMP6131 Software Security Analysis 2025

Assignment-2 vs. Assighment-3

Assighment-2
¢ Delegate the constraint solving to the z3 SMT solver.
e Each time, it returns one solution with concrete values for all variables in
the search space when the solver is satisfiable.
¢ Per-path verification without handling the inner parts of a loop.
Assignment-3

¢ Use Abstract State (AEState) and Abstract Trace (a set of AEStates for all
ICFGNodes) to compute and maintain abstract values of variables.

¢ Abstract all possible values of a variable into a value interval (for scalars)
or an address set (for memory addresses).
e Approximate loop behaviors based on widening and narrowing.

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

£1void analyzeThis(int x) {

Lo int sum = 0;
L3 for (int i = 0; i < x; +1i) {
44 sum += i;
Uy }
eﬁ} sum = ?
._Y‘—\— ——
// - \~\~\~ =~ \\
S N
;7 2 4 5. N
/ \
Lo)
\
N ,/
N —4 P
S -3 -2 -1 _-

COMP6131 Software Security Analysis 2025

10

Abstract Interpretation vs. Symbolic Execution

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

£1void analyzeThis(int x) { Abstract @
2 int sum = 9;)) AInterpretation
L3 for (int i = 0; i < x; +i) { /

7 sum += 1i; / Sound (include all non-negative numbers)
imprecise (may include infeasible numbers: 2, 4,5, ...)

e 10

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

£1void analyzeThis(int x) { Abstract @
52 G Sl S AInterpretation
h ,

for (int i = 0; i < x; +1i) { /

7 sum += 1i; / Sound (include all non-negative numbers)

Symbolic
Execution

imprecise (may include infeasible numbers: 2, 4,5, ...)

Path

Answer

Zlﬂegﬁeg*)ls

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

£1void analyzeThis(int x) { Abstract @

b G Sl S)) AInterpretation

L3 for (int i = 0; i < x; +i) { /

4y sum += 1i; / Sound (include all non-negative numbers)

Symbolic
Execution

imprecise (may include infeasible numbers: 2, 4,5, ...)

Path Answer
by — Ly — 63 — [6 0
[1%[2%Z3—)[4—)€54}l6 1

COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

£1void analyzeThis(int x) { Abstract @
b G Sl S AInterpretation

{3 for (int i = 0; i < x; +i) { /

7 sum += 1i; / Sound (include all non-negative numbers)

Uy } imprecise (may include infeasible numbers: 2, 4,5, ...)
Lo } sum ="?

Symbolic
Execution

Path Answer
llﬂegﬁeg*)ls 0
[1%[2%Z3—)[4—)€54}l6 1
1*)lg*}lg—)&;—)fg,*}fs%&;—)fg,*}fﬁ 3

10
COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

£1void analyzeThis(int x) { Abstract @
b G Sl S AInterpretation

{3 for (int i = 0; i < x; +i) {

7 sum += 1i; / Sound (include all non-negative numbers)

Uy } imprecise (may include infeasible numbers: 2, 4,5, ...)
Lo } sum ="?

Symbolic
Execution

Path Answer
ll — 42 — 63 — [6 0
b=y =Ly = Ly — s — L 1
1*)lg*}lg—)&;—)fg,*}fs%&;—)fg,*}fﬁ 3
...... infinite paths!

10
COMP6131 Software Security Analysis 2025

Abstract Interpretation vs. Symbolic Execution

Over-Approximation (soundness) vs. Under-Approximation (unsoundness)

£1void analyzeThis(

Lo int sum = 0;
L3 for (int i =
44 sum += i;
Ly }

56} sum =?

COMP6131 Software Security Analysis 2025

int x) { l Abstract
/1 Interpretation
0; i < x; Hi){,,’ P
/" Sound (include all non-negative numbers)

/

imprecise (may include infeasible numbers: 2, 4,5, ...)

Symbolic | Precise (only include feasible numbers: 0,1, 3, 6, ...)
/. _.-""| Execution | unsound (cannot cover all possible numbers)
-

Path Answer
llﬂegﬁeg*)ls 0
b — Ly =Ly = Ly — s — L 1
1*)lg*}lg—)&;—)fg,*}ls%&;—)fg,*}fﬁ 3

...... infinite paths!

10

Importance of Soundness

¢ Reliability: Ensures comprehensive coverage of all possible program states,
reducing unforeseen behavior in production.

- ___|]
COMP6131 Software Security Analysis 2025

11

Importance of Soundness

¢ Reliability: Ensures comprehensive coverage of all possible program states,
reducing unforeseen behavior in production.

¢ Quality Assurance: Crucial for critical systems where failure can have
serious consequences, ensuring software behaves as intended.

__|
COMP6131 Software Security Analysis 2025

11

Importance of Soundness

¢ Reliability: Ensures comprehensive coverage of all possible program states,
reducing unforeseen behavior in production.

¢ Quality Assurance: Crucial for critical systems where failure can have
serious consequences, ensuring software behaves as intended.

¢ Confidence in Maintenance: Provides a safety net for code changes,
reducing the risk of introducing new bugs.

COMP6131 Software Security Analysis 2025

11

Abstract Interpretation vs. Symbolic Execution

Termination

¢ Abstract interpretation is typically guaranteed to terminate within a finite
step. Uses an abstracted, and hence more manageable, version of the state
space to represent the infinite number of runtime states and paths.

- ___|]
COMP6131 Software Security Analysis 2025

12

Abstract Interpretation vs. Symbolic Execution

Termination

e Abstract interpretation is typically guaranteed to terminate within a finite
step. Uses an abstracted, and hence more manageable, version of the state
space to represent the infinite number of runtime states and paths.

e Symbolic execution may struggle with termination in complex or large-scale
programs. The need to explore numerous paths in detail, especially in
programs with loops and recursive calls, can lead to non-termination or
impractical analysis times.

I —— 12

COMP6131 Software Security Analysis 2025

Importance of Termination

¢ Deterministic: Ensures consistent outcomes and predictable resource use
for the same input.

- __|]
COMP6131 Software Security Analysis 2025

13

Importance of Termination

¢ Deterministic: Ensures consistent outcomes and predictable resource use
for the same input.

e Efficiency: Reduces computational load by using abstracted state spaces,
speeding up the analysis process.

COMP6131 Software Security Analysis 2025

13

Importance of Termination

¢ Deterministic: Ensures consistent outcomes and predictable resource use
for the same input.

e Efficiency: Reduces computational load by using abstracted state spaces,
speeding up the analysis process.

e Coverage: ensure that all parts of the code are analyzed, avoiding missed
sections and ensuring thorough coverage for detecting issues.

e
COMP6131 Software Security Analysis 2025

13

Abstract Interpretation: A Code Example

[1,3]

if (cond)
x=1;
else
X=3; X
x =?
X

{1,3}

COMP6131 Software Security Analysis 2025

14

Abstract Interpretation: A Code Example

if (cond)
x=1;
else
X=3;
x =?

COMP6131 Software Security Analysis 2025

Coarse-grained
but faster

14

Abstract Interpretation: A Code Example

if (cond)
x=1; Fine-grained
else but slower
x=3; X [173]
x =72
x {1,3}

14
COMP6131 Software Security Analysis 2025

Concrete Domain and Abstract Domain: Formal Definition
Concrete Domain

¢ S denotes the set of concrete values that a program variable can have.
* E.g., S = Z represents the concrete values that an integer variable can have.

¢ A concrete domain C is the powerset of S, denoted as C = P(S).
® E.g. The powerset integer domain is a concrete domain for integer variables.

Abstract Domain

* An abstract domain A contains abstract values approximating a set of
concrete values.
e An abstract domain is typically implemented using a lattice
L= (A, C,Mu,L,T) structure, a set of abstract values following a partial
order, also equipped with two binary operations.
® [is a partial order relation on A (e.g., C is the subset (C) on a power set).
® M and LI are the meet and join binary operations, and | and T are unique least
and greatest elements of A.
|
COMP6131 Software Security Analysis 2025

15

An Example: Abstract Sign Domain
An abstract domain that approximates a set of concrete values with their signs.
e Lattice is defined as L = (P({—,0,+}),C, M, U, L, T).
e Partial order: aC b« aC b. Eg.{+}C{0,+} < {+} C{0,+}.
* Meet operator am b: returns the greatest lower bound (GLB) that is less
than or equal to both a and b (move downwards along the lattice)
e {+}m{0}=1
e Join operator all b: returns the least upper bound (LUB) that is greater
than or equal to both a and b (move upwards along the lattice)
* {+1u{0} ={+0}
e Approximation: concrete value set {1, 3} is over-approximated as {+}.
After concretization, it is restored as {x € Z|x > 0}, a super set of {1,3}.

P
{+0} {0,—

}
Approximate Concretize
@----- 0 Choo--
L
Conorete
values domain values
16
COMP6131 Software Security Analysis 2025

An Example, the Best Abstraction using Sign Domain

4
4
4

V4
Approxmf\}lénz {+,0} {0, -} VS.
V8.
4
- Concretize
Q.
Approximation 1
1
Concrete Sign Concrete
values domain values

Approximation 1 (more precise than Approximation 2) is the best abstraction!

COMP6131 Software Security Analysis 2025

17

Galois Connection

When each concrete value has a unique best abstraction, the correspondence is a

Galois connection, which is a two-way connections between abstract domain
and concrete domain using abstraction function and concretization function.
e Abstraction function o : C — A maps a set of concrete values to its abstract
ones;
e Concretization function v : A — C maps a set of abstract values to concrete
ones.

e
COMP6131 Software Security Analysis 2025

18

Galois Connection

When each concrete value has a unique best abstraction, the correspondence is a

Galois connection, which is a two-way connections between abstract domain
and concrete domain using abstraction function and concretization function.

e Abstraction function o : C — A maps a set of concrete values to its abstract
ones;

e Concretization function v : A — C maps a set of abstract values to concrete
ones.

Example: Abstraction/concretization functions on sign domain

Ysign(T) = Z asign(€) = {+} if c € Z~g
Ysign({—1}) = {x[x < 0} asign(€) ={-} if c € Zo
Ysign({+}) = {x[x > 0} asign(€) = {+,0} if ¢ € Z>o

e
COMP6131 Software Security Analysis 2025

18

Galois Connection of Sign Domain

3 751gn(—|—) !
- vsim({-1) = {wl-’v <0}

- Ysigm{+}) = {z|e > 0} |
sign({—,0}) = {z]z < 0}

{-1,0,1,10} B e e /T\
: Ysign({L}) = @ ‘ -0 0,+
..“.‘“‘{‘71,0, 1}...{0,1 10} {{/}\};}{/{\}}
S N N S -} {0} {+
— {+} lfC EL >0
. {-1,0} {0,1 1,10 e
{ ol /. } . {-}ifeeZy | 1

{+,0} ifc € Z>y! (b) Sign domain
{ 0} ’LfC E Z<0
1 ife=

T otherwzse

19

COMP6131 Software Security Analysis 2025

Interval Domain

The interval domain is an abstract domain that represents a set of integers that fall

between two given endpoints.
e Lattice is defined as
Lintervalz <H7 Ea |_|7 I—la J—7 T>7 Where H:{[av b] | a7 b € ZU {—OO, +OO}} U {J—}
e Partial order: [a1, b1] C [az2, bo] < @ < ay A by < bo.
* E.g, [0,0],[0,1] € Ajntervar, Satisfying [0,0] C [0, 1].

e
COMP6131 Software Security Analysis 2025

20

Interval Domain

The interval domain is an abstract domain that represents a set of integers that fall
between two given endpoints.

e | attice is defined as

Lintervalz <H7 Ea |_|7 |_|, J—7 T>v where H:{[aa b] | a, b SYAY {—OO, +OO}} U {J—}
e Partial order: a1, b1] C [a2, bp] < @2 < a1 A by < by.
* E.g, [0,0],[0,1] € Ajntervar, Satisfying [0,0] C [0, 1].

[700,:&7’00]

o0, 1]+ [o0,10]. | 1, oo]...[0, toc] Given & =[3,8] and & =[7,12).
. 2110 g
[] Meet operation a; M a, returns the greatest Lower Bound (GLB):
® GLB =[7, 8], the largest range that is shared by both a; and a..
[-.1 o B 0 9] Join operation a; Ul a returns the Least Upper Bound (LUB):
L ~. e LUB =[3,12], the smallest range that includes both a; and a,.

L1 . oo .

e LD 00 DY

LUB and GLB of lattice Linseryq are [—oo, +o00] and L respectively.
(b) Interval domain

20
COMP6131 Software Security Analysis 2025

Galois Connection between C and A jnerva

‘ {-1,0,1,10} Finteral([a, b]) = {z|a < z < b}
' E 'YInterval(J-) =g ;

{7:[,0,1}...{0,1,’/10}.;. L [:\1,1] [o,i'(ﬂ)]

e 1,0} {01} ... {110)....| Vtesa(e) = [min(e), mas()] |
! O‘Intewal(z) =1 1

10 [01] ... [1,10]

N 11 00

1, 1] =

(a) Powerset integer domain (b) Interval domain

Figure: Powerset integer domain C and its abstraction as the interval domain A jpseryar-

- ___|]
COMP6131 Software Security Analysis 2025

21

Abstract State and Abstract Trace

e An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map
AS : V — A associating program variables V with an abstract value in A,
approximating the runtime states of program variables.

- ___|]
COMP6131 Software Security Analysis 2025

22

Abstract State and Abstract Trace

e An abstract state (AEState in Lab-3 and Assignment-3) is defined as a map
AS : V — A associating program variables V with an abstract value in A,
approximating the runtime states of program variables.

e An abstract trace o € L. x V — A represents a list of abstract states before
(¢) and after (¢) each program statement ¢ (preAbsTrace and postAbsTrace in
Assignment-3).

Notation Domain

Abstract trace o L XV = Apervar
Abstract state at program point L € L oL VY — Anterval
Abstract value of x at program point Lc L o/(x) A nterval

I —— 22
COMP6131 Software Security Analysis 2025

Abstract Trace : A Simple Example

% \
. =0- Program point 4 \
li:a 9’_ 1>, immediately after : :
~ program statement £1 1 :
1
- I
L 1
ly:b=1; ! !
L 1
L 1
L 1
L 1
¢ ' '
: 1
3 .. ; I|
S o U
Control Flow Graph Abstract Trace O

- __|]
COMP6131 Software Security Analysis 2025

23

Abstract Trace : A Simple Example

4 “ > N
. =0- Program point . \
li:a 9’_ 1>, immediately after : :
" program statement £1 1 :
L 1
_ — Program point ! 1
» {5 immediately before : 1
ly:b=1; program statement £5 h :
L 1
L 1
L 1
L 1
¢ ' '
: 1

3 .. ; I|

S o U

Control Flow Graph Abstract Trace O

- __|]
COMP6131 Software Security Analysis 2025

Abstract Trace : A Simple Example

£1:a=0'

ly :b=1;
£3:..
@-

4 1

Program point
mmediately after

" program statement /1

Program point

)K2 immediately before

>0

>t

Control Flow Graph

COMP6131 Software Security Analysis 2025

program statement £

P e T T TR

Abstract Trace O

23

Abstract Trace : A Simple Example

/’ \\

l:a=0; | g :' Abstract state ¢, |

S > | a|[0,0]] | !

_ : b| I !

fhib=1; | 2 : :

e b . :

! ' '

! 1

: 1

53 . L :

o 3 . K
Control Flow Graph Abstract Trace O

- __|]
COMP6131 Software Security Analysis 2025

Abstract Trace : A Simple Example

I’ \\
l:a=0; | g | | Abstract state ¢, |
I . > [a]l00] |
1
_ 1 b 1 :
22 : 1
€2 :b=1; £2 - :
I . \ | Abstract state oy, | !
______ N b
----- Ly Lal00] |
L3 ' :
’ @ £_3 % ° [1, 1] ¢’l
Control Flow Graph Abstract Trace O

- __|]
COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract

trace

a¢,(a)

oy, (a)

o5(a)
ae,(2)

Control Flow Graph

COMP6131 Software Security Analysis 2025

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract

trace

a¢,(a)

oy, (a)

o5(a)

ae,(2)

What is the abstract state after analyzing each statement?

Control Flow Graph

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract
trace
04 (a)
o,(a)
oe5(a)
0'24(8)

What is the abstract state after analyzing each statement?
on(a) =Fy() =[0,0]

Control Flow Graph F1, ..., Fy are transfer functions which indicate how
abstract states are updated

24
COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops
Abstract
trace
04 (a)
o,(a)
oe5(a)
0'24(8)

What is the abstract state after analyzing each statement?
ou(a) :=Fi() =[0,0]

o1,(a) := Fa(oy,, aé) = oy,(a) Uoy(a)

Control Flow Graph F1, ..., Fy are transfer functions which indicate how
abstract states are updated

24
COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract

trace
04 (a)
o,(a)
oe5(a)
Oy (a)

What is the abstract state after analyzing each statement?
ou(a) :=Fi() =[0,0]

0, (a) == Fa(04,,04,) = 0¢,(a) U og(a)

og(a) = Fy(04,) = ([~00,9]M0or,(a)) +[1,1]

Control Flow Graph F1, ..., Fy are transfer functions which indicate how
abstract states are updated

24
COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract

trace

04 (a)

o,(a)

a,(a)

0'24(8)

Control Flow Graph

COMP6131 Software Security Analysis 2025

What is the abstract state after analyzing each statement?

au,(a) = Fi() =[0,0]
0, (a) == Fa(04,,04,) = 0¢,(a) U og(a)

o1,(a) := F3(04,) = ([-00,9] Moy, (a)) + [1,1]
(

o1,(a) := Fy(oy,) = ([10, 00] M a1,(a))

F1, ..., Fy are transfer functions which indicate how
abstract states are updated

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract

trace

a¢,(a)

oy, (a)

1
1
0'573(3) 1
1

ae,(2)

Control Flow Graph

COMP6131 Software Security Analysis 2025

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |nit After
analyzing
trace ¢
op(a) | L [0, 0]
O, (a) 1 1
Oty (a) 1 1
Tty (a) 1 1L

Control Flow Graph

COMP6131 Software Security Analysis 2025

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |nit After 10 Joop iter
analyzing | After
trace ')
1 2
on(a) | L [0,0] | [0,0]
ogla) | L L [0,0]
I3 (a) L L 1
Tty (a) 1 1 1

=0;| _..--» 0y

Control Flow Graph

COMP6131 Software Security Analysis 2025

s> Oy

a | 0,0

a ‘ o, (a) Uog(a) =0,0]

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |nit After 10 Joop iter

trace analyzing After After
4 L2 L3

o (@) | L [0,0] | [0,0] | [0,0]

op(a) | L 1 [0,0] [[0,0]

Oy (a) 1 1 1 [1,1]
o (@) | L 1 T T

=0;| _.---» oy,

Control Flow Graph

COMP6131 Software Security Analysis 2025

P d 0‘[2

Lo Oy

a | 0,0

a ‘Uﬁ(a) '—"74_3(‘1)

a ‘([—00, 9]Nag(e) +[1,1] =[1,1]

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |nit After 1M loop iter | 277 loop iter
trace analyzing After After After
44 L L3 Lo
[(a) 1 [07 0] [07 0] [07 0] [o» 0]
og(a) | L 1 [0,0] | [0,0] | [0,1]
o’gs(a) 1 1 1 (1,11 | [1,1]
o,(@ | L T I 1 T
>o1 | a [[0,0) |
>0 | a ‘a'é(a)l_lag_s(a):[(),l] ‘
o> o1 | a |([-00,9]Mon(a) + [1,1] |

Control Flow Graph

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |nit After 1M loop iter | 277 loop iter
trace analyzing After After After After
44 Lo L3 L2 L3
g¢4 (a) 1 [07 0] [07 0] [07 0] [o» 0] [07 0]
ay,(a) L L [0,0] | [0,0] | [0,1] | [0,1]
O’gs(a) 1 1 1 1,171 1,11 | [1.2]
o,(@ | L T I T T I
>o1 | a [[0,0) |
>0y | oa ‘aé(a)l_lag_s(a) \
>0y a ‘([—oo,g]l_lcré(a))+[1,1] =1[1,2] ‘

Control Flow Graph

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |pit After 1M loop iter | 277 loop iter 11M loop iter
. analyzing | After After After After After After
ace 44 Lo L3 Lo L3 Lo L3
op (@) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | ... [0,0] | [0,0]
033(3) 1 1 1 1,171 00,11 | [1,2] [1,10]| [1,10]

o @ | L T T T T T [... [L T

-> 04 | a ‘ [0,0] ‘
>0 | a ‘Uﬁ(a)l—lal_s(a) ‘
>0y a ‘([—oo,g]ﬂ%(a))ﬂl,l] ‘

Control Flow Graph

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |pit After 1M loop iter | 277 loop iter 11M joop iter | 12" loop iter
i analyzing | After After After After T After After After
ace 44 Lo L3 Lo L3 Lo L3 Lo
op (@) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | ... [0,0] | [0,0] | [0,0Q]
so@ [T L 0.0 0.0 0,101 . | 0] [0 [0.70]
053(3) 1 1 1 [1,1] [1,1] [1,2] [1,10]| [1,10]| [1,10]
o @ | L T T T T T ... | L T T

Control Flow Graph

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |pit After 1M loop iter | 277 loop iter 11M joop iter | 12" loop iter
; analyzing | After After After After T After After After After
race 44 Lo L3 Lo L3 Lo L3 Lo L3
op(a) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | ... [0,0] | [0,0] | [0,0] | [O,0]
@ | T T [0 00 01 0.1 . | 0] [0 [0,10] [0,70]
053(3) 1 1 1 [1,1] [1,1] [1,2] [1,10]| [1,10]| [1,10]] [1,10]

o @ | L T T T T T ... | L T T T

Control Flow Graph

COMP6131 Software Security Analysis 2025

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |nit After 1M loop iter | 277 loop iter 11M loop iter | 127 Igop iter [
analyzing | After After After After After After After After
trace 44 L L3 Lo L3 Lo L3 £ L3
o (a) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] [0,0] | [0,0] | [0,0]f [O,0]
op(a) | L L [0,0] | [0,0] | [0,1] | [0,1] [0,10]] [0,10]| [0,10f [0,10]
O’gs(a) 1 1 1 [1,1] [1,1] [1,2] [1,10]| [1,10]| [1,10f [1,10]
o@ | L T T T T T I T I I

COMP6131 Software Security Analysis 2025

Control Flow Graph

[0,0] Fixpoint is reached!

(Abstract trace after loop round 11 = :|

Abstract trace after loop round 12)

a ‘Uﬁ(a) Uoy(a)

a [([=00,9]Nor,(a) +[1,1]

24

Abstract Trace: Naive Fixed-Point Computation for Loops

COMP6131 Software Security Analysis 2025

Control Flow Graph)

-=» Oy,

Tte-o>» Oy,

Abstract | |pit After 1M loop iter | 277 loop iter 11M joop iter | 12" loop iter After
analyzing | After After After After After After After After | analyzing
trace /4 Lo L3 Lo L3 Lo L3 Lo L3 Ly
op(a) | L [0,0] | [0,0] [[0,0] | [0,0] | [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0]
ay,(a) 1 1 [0,0] | [0,0] | [0,1] | [0,1] [0,10]| [0,10]| [0,10]] [O,10]| [0,10]
o(a) | L L Loy ne [1,10]] [1,10]] [1,10][[1,10]] [1,10]
7@ | L I I I T I T I T T | [10,10]
>o1 | a |00 |
> 00| a [ou(a)Uo(a) |

a |([=00,9] Moy, (a)) + [1,1]

a ‘[1O,oo]l_lag_2(a) = [10,10]

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | |pit After 1M loop iter | 277 loop iter 11M joop iter | 12" loop iter After
analyzing | After After After After After After After After | analyzing
trace 2 L2 43 L2 43 L2 43 2 3 Yy
op(a) | L [0,0] | [0,0] [[0,0] | [0,0] | [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0]
ay,(a) L L [0,0] | [0,0] | [0,1] | [0,1] [0,10]| [0,10]| [0,10]] [O,10]| [O,10]
o(a) | L L Loy ne [1,10]] [1,10]] [1,10][[1,10]] [1,10]
7@ | L I I I T I T I T T | [10,10]

COMP6131 Software Security Analysis 2025

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | it After 1 loop iter 29 |oop iter 117 loop iter | 12" loop iter | | After
¢ analyzing™ [After After After After After After After After | analyzing
race 44 L L3 Lo L3 Lo L3 £ L3 la
on,@ | L | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | ... | [0,0] | [0,0] | [0,0] | [0,0] | [0.0]
o,@ | L T []10,0] | 10,0] | [0,1] | [0,1] | ...]| [0,10] [0,10] [0,10] [0,10] Ji0,10]
azs(a) 1 1 1 [1,1] [1,1] [1,2] [1,10]| [1,10]] [1,10]] [1,10]| [1,10]
o@ | L T T T T T T I T | [10,10]

098] 10, 010, 1) 0, 2] ... =0, 10} [0, 10]

AN

1
Y
> Oy H [0,10] 12 iterations while

J

analyzing the loop

COMP6131 Software Security Analysis 2025

24

Abstract Trace: Naive Fixed-Point Computation for Loops

Abstract | it After 1 loop iter 29 |oop iter 11" loop iter | 12" loop iter | | After
t analyzing After After After After After After After After analyzing
race 44 2 L3 2 L3 2 L3 Lo L3 Ly
e, (a) L [0,0] 0,0 0,0 0,0 0,0 .. 0,0] | [0,0] | [0,0] 0,0] [0,0]
or,(a) i L 1] 10,0 0,0 0,1 0,1 0,10]| [0,10] [0,10]] [0,10][[[O,10]
O’gs(a) 1 1 1L (1,17 1 1,11 | [1,2] [1,10]| [1,10]] [1,10]] [1,10]| [1,10]
o,(@ | L I T T I T I 1 T [10,10]

098] 10, 010, 1) 0, 2] ... =0, 10} [0, 10]

AN

1
Y
> Oy H [0,10] 12 iterations while

J

analyzing the loop

What if @ < 100007
More iterations!

COMP6131 Software Security Analysis 2025

Widening: Accelerating Fixed-Point Computation

Widening technique can accelerate the fixpoint computation of o, (a).

Naive fixpoint computation: value changes of 0@(0)

[0,0]=>[0,1] > ... => [0,10]=>[0,10]

COMP6131 Software Security Analysis 2025

25

Widening: Accelerating Fixed-Point Computation

Widening technique can accelerate the fixpoint computation of o, (a).

Naive fixpoint computation: value changes of U@(a)
[0,0]=>[0,1]c> ... = > [0,10]=>[0, 10]
U—Widening >0, +00)

aggressively update o, (a)

25
COMP6131 Software Security Analysis 2025

Widening: Accelerating Fixed-Point Computation

Widening at the k' iteration in the loop for analyzing ¢, to update Oty

Control Flow Graph

COMP6131 Software Security Analysis 2025

oy,(a) == oy, (a) Uoy,(a)

Apply widening operator V

oha) = ol @V (on(e) Ual (@)

O’Z denotes the value of 0y, after the Eth analysis of £3, and

UZ does not have a superscription as it is updated only once
- and is not involved in the loop

26

Widening: Accelerating Fixed-Point Computation

Widening at the k' iteration in the loop for analyzing ¢, to update Oty

Control Flow Graph

What is a Widening Operator?

COMP6131 Software Security Analysis 2025

oy,(a) == oy, (a) Uoy,(a)

Apply widening operator V

oha) = ol @V (on(e) Ual (@)

O’Z denotes the value of 0y, after the Eth analysis of £3, and

O'Z does not have a superscription as it is updated only once
- and is not involved in the loop

26

Widening Operator

The Widening Operator (v : A x A — A) is formally defined on a poset (A,C). V
on interval domain could be defined as:

(61,]V [l2, ho] = [¢5, hs]

COMP6131 Software Security Analysis 2025

27

Widening Operator

The Widening Operator (v : A x A — A) is formally defined on a poset (A,C). V
on interval domain could be defined as:

[¢1, h1]V[l2, ho] = [£3, hs]
where

fh— —0 b </ _ oo ho > My
3 ho >4 hy hy < hy

As a concrete example, [0,0]V[0, 1] = [0, +o<].

- ___|]
COMP6131 Software Security Analysis 2025

27

Widening: The Loop Example

Abstract

trace

a¢,(a)

o, (a)

o5(a)

a,(a)

Control Flow Graph

COMP6131 Software Security Analysis 2025

28

Widening: The Loop Example

Abstract | |nit After
analyzing
trace ¢
op(a) | L [0, 0]
o, (a) 1 1
O’gfs(a) 1 1
Tty (a) 1 1

Control Flow Graph

COMP6131 Software Security Analysis 2025

28

Widening: The Loop Example

Abstract | |nit After 17 Joop iter
analyzing | After
trace 0 A
on(a) | L [0,0] | [0,0]
ogla) | L L [0,0]
o,(a) | L T T
Tty (a) €L 1 1

Control Flow Graph

COMP6131 Software Security Analysis 2025

28

Widening: The Loop Example

Abstract | |nit After 17 Joop iter
analyzing After After
trace 0 A A
o (a) | L [0,0] | [0,0] | [0,0]
o(a) | L 1 [0,0] [[0,0]
Oy (a) 1 1 1L [1,1]
o (@) | L 1 T T

Control Flow Graph

COMP6131 Software Security Analysis 2025

a | 0,0

a | (o1,(a) Uog(a))

a ‘ ([_007 9] M 0'13_2(0,)) + [17 1] = []-a 1]

28

Widening: The Loop Example

Abstract | |pit After 1M loopiter | 277 loop iter

trace analyzing After After After

44 2 L3 L2

aﬁ(a) €L [0,0] [0,0] | [0,0] | [0,0]
ay,(a) il L [0,0] | [0,0] | [0,cc]
azs(a) 1 1 1 (1,11 | [1,1]
o,(@ | L I I I T

Start widening at the 2"¢ .
iteration of loop (k = 2) SR ‘ [0,0]
a>10 2 1
> 0f | a \ a},(@) V (94,(@) U oy, (@) =[0, o0

Control Flow Graph

COMP6131 Software Security Analysis 2025

28

Widening: The Loop Example

Abstract | |nit After 1M loop iter | 279 loop iter
analyzing After After After After
trace 51 25 05 25 o5
g¢4 (a) 1 [07 0] [07 0] [07 0] [o» 0] [07 0]
oy,(a) i i [0,0] | [0,0] | [0,00]| [0, 0]
oes(a) i L il (1,11 | 1,11 | [1,10]
o,(@ | L T T T T I

Control Flow Graph

COMP6131 Software Security Analysis 2025

28

Widening: The Loop Example

Abstract | |nit After 1M loopiter | 2" loopiter | 3 loop iter
analyzing After After After After After
trace 44 Lo £3 Lo L3 L2
o (@) | L [0, 0] [0.0] | [0,0] | [0,0] | [0,0] | [0,0]
on(@ | L T 1 [0,0] [[0,0] | [0,00] 10,50]| [0,
033(3) 1 1 1 (1,11 | 1,11 | [1,10]] [1,10]
7@ | L I I I I T T

Control Flow Graph

COMP6131 Software Security Analysis 2025

28

Widening: The Loop Example

Abstract | |nit After 1M loopiter | 2" loopiter | 3 loop iter
analyzing After After After After After After
trace 44 2 L3 2 L3 Lo L3
op(a) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0]
or,(a) i L [0,0] | [0,0] | [0,00]| [0,00]| [0,00]| [O,00]
033(3) 1 1 1 [1,1] [1,1] [1,10]| [1,10]| [1,10]
o @ | L T T T T T T T

Control Flow Graph

COMP6131 Software Security Analysis 2025

28

Widening: The Loop Example

Abstract | |pit After 1™ loop iter | 2™ loopiter | 3" logpiter |
analyzing | After After After After After After
trace 44 2 L3 2 L3 L2 ‘ %]
o (a) | L [0, 0] [0,0] [[0,0] [[0,0] | [0,0] | [0,0]] [0,0]
Oty (a) L L [07 0] [07 0] [O» OO] [07 OO] [07 oo [0» OO]
Uls(a) 1 1 1 (1,11 | [1,1] | [1,10]] [1,10} [1,10]
op,(@) | L I I I I I T |

[0,0] Fixpoint is reached!
’ (Abstract trace after loop round 2 =
Abstract trace after loop round 3)

a | o%,(a) V (01, (a) U0y, (a))

a | ([~00,91 M0}, (a)) +[1,1]

Control Flow Graph

COMP6131 Software Security Analysis 2025

Widening: The Loop Example

COMP6131 Software Security Analysis 2025

Abstract | |nit After 1M loopiter | 2" loopiter | 3 loop iter After

analyzing After After After Ater After After analyzing
trace 44 Lo £3 Lo L3 Lo L3 Ly

o (@) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] [0,0]

(@) | L L [0,0] | [0,0] | [0,00]] [0,00]| [0,00]] [0,00]] [0, 0]

ags(a) 1 1 1L (1,11 | 1,11 | [1,10]{ [1,10]] [1,10]] [1,10]

o, @ | L I T I I I I T | [10, 0]

a | 0,0

a [([~00,91 M0}, (a)) +[1,1]

a ‘ [10, 00] M &} (a) = [10, o0]

28

Widening: The Loop Example

Abstract | |nit After 1M loopiter | 2" loopiter | 3 loop iter After
analyzing After After After Ater After After analyzing
trace 44 Lo £3 Lo L3 Lo L3 Ly
op(a) | L [0,0] | [0,0] [[0,0] | [0,0] | [0,0] [[0,0] | [0,0] | [0,0]
opla) | L L [0,0] | [0,0] | [0,00]] [0,00]| [0,00]] [0,00]] [0,00]
aes(a) 1 1 1L (1,11 | 1,11 | [1,10]{ [1,10]] [1,10]] [1,10]
7@ | L I I T I I T [[10, 9]

COMP6131 Software Security Analysis 2025

28

Widening: The Loop Example

COMP6131 Software Security Analysis 2025

J

Abstract | |nit After 17 loop iter | 2™ loopiter | 3 loop iter After
analyzing [~ After After After After After After analyzing
trace 44 L L3 Lo L3 2 L3 la
o (a) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0] [0,0]
Oty (a) L L [07 0] [07 0] [O» OO] [07 OO] [07 ()O] [O’ OO] [0 OC]
ZNC) 1 1 T 1T [11,11 | 1, 10]] [T,10][[1,70]] [1,10]
o, (a) | L I I T T T T T [10,]
[0, 0]=>[0, o0]=>10, o0]
AN
Y

3 iterations while
analyzing the loop

28

Widening: The Loop Example

COMP6131 Software Security Analysis 2025

Abstract | |nit After 17 loop iter | 2™ loopiter | 3 loop iter After
trace analyzing After After ‘After After ‘After After analyzing
44 L L3 Lo L3 2 L3 la
o¢,(a) 1 [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0] [0,0]
Oty (a) L L [07 0] [07 0] [O» OO] [07 OO] [07 ()O] [O’ OO] [0 OC]
U@s(a) 1 1 iR [1,1] 11, 1] [T, 10]] [1, 10 |1, 10] [1,10]
o, (a) | L I I T T T T T [10,]
= H [0, 0]=>[0, o0]=>10, o0]
AN J
Y

3 iterations while
analyzing the loop

Faster than naive fixpoint
computation (12 iterations)!

28

Widening: The Loop Example

COMP6131 Software Security Analysis 2025

3 [0,10]

than

Less precise

without widening

J

3 iterations while
analyzing the loop

Abstract | |nit After 1M loopiter | 2" loopiter | 3 loop iter After
analyzing | After After After After After After analyzing
trace 44 L L3 Lo L3 L2 L3 la
op(a) | L [0, 0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0]
ogla) | L 1 [0,0] | [0,0] | [0,00]| [0,00]] [0,00]| [0,00]| [0,00]
0e3(a) 1 1 1 (1,11 | 1,11 | [1,10]{ [1,10]] [1,10]] [1,10]
o,(@ | L I T T T T T T [10, 0]
4 H [0,0]=>[0, 00]=>[0, 00]
AN
Y
2

—r

Faster than without
widening (12 iterations)!

28

Narrowing: Precision Refinement
Narrowing technique can eliminate the precision loss after a widening operation
(e.g., by improving imprecise oy, and oy,).

Naive fixpoint computation: value changes of aé(a)
[0,0]=>[0,1]c> ... = > [0,10]=>[0, 10]
U—Widening >0, +00)

aggressively update o, (a)

29
COMP6131 Software Security Analysis 2025

Narrowing: Precision Refinement
Narrowing technique can eliminate the precision loss after a widening operation
(e.g., by improving imprecise oy, and oy,).

Naive fixpoint computation: value changes of aé(a)
[0,0]=>[0,1]c> ... = > [0,10]=>[0, 10]
U—Widening >0, +00)

aggressively update o, (a) |_|

Narrowing

[0,10] <—

conservatively update ¢, (a)

29
COMP6131 Software Security Analysis 2025

Narrowing: Precision Refinement

After the widening reaches a fixpoint at the k' iteration when analyzing the loop,
we start performing narrowing at the (k + 1) to update 00,

Widening reaches
a fixpoint =2

’Z4:... ‘ ’33:a++;
e) *y

Control Flow Graph

COMP6131 Software Security Analysis 2025

Narrowing: Precision Refinement

After the widening reaches a fixpoint at the k' iteration when analyzing the loop,
we start performing narrowing at the (k + 1) to update 00,

Widening reaches
a fixpoint

]e4:'... | [£5:a++;

A

Control Flow Graph

Start performing
narrowing

What is a Narrowing Operator?

COMP6131 Software Security Analysis 2025

30

Narrowing Operator

The Narrowing Operator (A : A x A — A) is formally defined on a poset (A,C). A
on interval domain could be defined as:

[, M]A[k, ho] = [k, hs]

COMP6131 Software Security Analysis 2025

31

Narrowing Operator

The Narrowing Operator (A : A x A — A) is formally defined on a poset (A,C). A
on interval domain could be defined as:

[, h]A[k, ha] = [k, hs]
where

I = - ho hy =

- hs =
ST L h#—00’B T 1h h#£
As a concrete example, [0, c0]A[0, 10] = [0, 10].

- __|]
COMP6131 Software Security Analysis 2025

31

Narrowing: The Loop Example

Abstract | nit After 1% loop iter | 27 loop iter | 37 loop iter

¢ analyzing After After After After After After

race 0 p) p)

1 2 3 Lo L3 123 43

o (a) | L [0,0] [0,0] | [0,0] [[0,0] | [0,0] | [0,0] | [0,0]
op(a) | L 1 [0,0] | [0,0] | [0,00]| [0,00]| [0,00]] [0,00]
ou,(a) 1 1 1 (1,11 | [1,1] | [1,10]] [1,10]] [1,10]
o, (@ | L T T I I T I I

COMP6131 Software Security Analysis 2025

Widening reaches a fixpoint) |

at the 3"loop iteration

Control Flow Graph

a | 7,(0) V (01,(a) U0}, (a)

a [([=00,91 M0}, (a)) +[1,1]

32

Narrowing: The Loop Example

Abstract | nit After 1M loopiter | 2™ loopiter | 3™ loopiter | 47 loop iter
trace analyzing After After After After After After After
44 Lo ‘3 2 03 I 23 L2
op(a) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0]
op(a) | L 1 [0,0] | [0,0] | [0,00]]| [0,00]| [0,00]| [0,00]] [0,10]
oﬁ(a) 1 1 1 (1,11 | 1,11 | [1,10]] [1,10]] [1,10]] [1,10]
00,(a) | L T T I I T I I T
Start narrowing at o> 04| a ‘ [0,0]
the 4 1oop iteration - -
4 3 3
>l a ‘aé(a)A(oé(a) Uo},(e)) = [0, 10]

Control Flow Graph

COMP6131 Software Security Analysis 2025

a [([=00,91 M0}, (a)) +[1,1]

32

Narrowing: The Loop Example

Abstract | nit After 1M loopiter | 2™ loopiter | 3™ loopiter | 47 loop iter
trace analyzing After After After After After After After After
44 2 3 I l3 12 03 2 3
op(a) | L [0,0] [0,0] | [0,0] [[0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0]
op(a) | L 1 [0,0] | [0,0] | [0,00]| [0,00]] [0,00]| [0,00]| [0,10]] [0,10]
oﬁ(a) 1 1 1 (1,11 | 1,11 | [1,10]| [1,10]] [1,10] [1,10] [1,10]
o, (@ | L T T I I T I I T I
b
> 0n | a | [0,0]
4 S (A Lol
o o [[oh(@ Aoy (@) U o ()
4
> | a ‘([—oo,Q]l‘Iazz(a))+[1,1] = [1,10]

Control Flow Graph

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract | nit After 1M loopiter | 2" loopiter | 37 loop iter 4™ Joop iter 5T loop iter
trace analyzing After After After After After After After After After
44 2 3 I l3 12 03 2 3 Lo
oy, (a) il [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0] | [0,0] | [0,0] | [0,0]
ali(a) 1 1 [0,0] | [0,0] | [0,00]| [0,00]| [0,00]| [0,00]| [0,10] [0,10]| [O,10]
ZNE) 1 1 1 (1,11 | 1,11 | [1,10]] [1,10]] [1,10] [1,10]f [1,10]| [1,10]
o, (@ | L I I I 1 I I T I I T
> on | a [[0,0) |
5 1 1
>0y, a ‘ op,(a) Aoy (a) U oy, (a)) = [0,10] ‘

COMP6131 Software Security Analysis 2025

Control Flow Graph

a [(00,9 N 0f,(a)) +[1,1]

32

Narrowing: The Loop Example

Abstract | nit After 1M loopiter | 2" loopiter | 37 loop iter 41 |oop iter 57 loop iter After
trace analyzing | agter After After Aiter After After After After After After | analyzing
44 £ l3 2 3 £ {3 L2 l3 L2 £3 Ly

o (@) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0]
op(a) | L 1 [0,0] | [0,0] | [0,00]] [0,00]| [0,00]| [0,00]| [0,10]] [0, 10]] [0, 10]] [0, 10]
0@73(3) 1 1 1 (1,11 | 1,11 | [1,10]] [1,10]] [1,10] [1,10] [1,10]| [1,10]| [1,10]
0,(a) | L T T I I T I I T I I T

> on | a [[0,0) |

_ 5 4 A U 4
r o, [a [oh(@) Aoy (@) Udh (@)
5
>y [([m00,9] Mo, (@) +[1,1] = [1,10] |

Control Flow Graph

32
COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract | nit After 1M loopiter | 2" loopiter | 37 loop iter 41 |oop iter 57 loop iter After
race analyzing | Ater After After Adfter After After After After After After | fjanalyzing
44 2 3 I l3 12 03 2 3 Lo L3 Ly
op(a) | L [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0]}| [O,0]
op(a) | L 1 [0,0] | [0,0] | [0,00]| [0,00]] [0,00]] [0,00]| [0,10]] [0,10]] [0,1Q§] [0,10]
ou,(a) 1 1 1 (1,11 | 1,11 | [1,10]] [1,10]] [1,10] [1,10] [1,10]| [1,104] [1,10]
70,(a) | L T I T I T T I T I I T
> O [0,0] Fixpoint is reached!
: = ? (Abstract trace after loop round 4 =
Abstract trace after loop round 5)
5 4 1
>0y | a ‘Jé(a)A(aé(a) Uat(a)
5 5
>0y, | a [(00,91 M0y, (a) + [1,1]
Control Flow Graph
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract | nit After 1M loopiter | 2" loopiter | 37 loop iter 41 |oop iter 57 loop iter After
trace analyzing | agter After After Aiter After After After After After After | analyzing
44 £ l3 2 3 £ {3 L2 l3 L2 £3 Ly
o (@) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0] [0,0]
op(a) | L 1 [0,0] | [0,0] | [0,00]| [0,00]| [0,00]| [0,00]| [0,10]| [0,10]] [0,10]| [0,10]| [0, 10]
Uﬁ(a) 1 1 1 (1,11 | 1,11 | [1,10]| [1,10]| [1,10]| [1,10] [1,10]| [1,10]| [1,10]] [1,10]
oo, (@ | L T T I I T I I T I I T | [10,10]
> on | a [[0,0) |
_ 5 4 A U 4
r o, [a [oh(@) Aoy (@) Udh (@)
5
>0y, | a [(00,91 M0y, (a) + [1,1] |
RREE 5
Control Flow Graph >0 a ‘ 10, 00] Moy, (a) = [10, 10] ‘

32
COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract | nit After 1M loopiter | 2" loopiter | 37 loop iter 41 |oop iter 57 loop iter After
trace analyzing | agter After After Aiter After After After After After After | analyzing
44 £ l3 2 3 £ {3 L2 l3 L2 £3 Ly
o (@) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0] [0,0]
op(a) | L 1 [0,0] | [0,0] | [0,00]| [0,00]| [0,00]| [0,00]| [0,10]| [0,10]] [0,10]| [0,10]| [0, 10]
oﬁ(a) 1 1 1 (1,11 | 1,11 | [1,10]| [1,10]| [1,10]| [1,10] [1,10]| [1,10]| [1,10]] [1,10]
0,(a) | L T T I I T I I T I I T | [10,10]
»ou| = |00
»oul s 010
>0t | a |[1,10]
> 01| a 10,10
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract | nit After | | 17 loop iter | 27 loop iter | 37 loop iter 47 |oop iter 5 loop iter || After
trace analeyzing After After After Aiter After After After After After After analeyzing
1 2 3 I l3 12 03 2 3 Lo L3 4
o (@) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0] [0,0]
op(a) | L L[] 10,01 | [0,0] | [0,00]] [0,00]] [0,00]] [0,0c]] [0,10]] [0,10]] [0,10]} [0, 10][[[0,10]
0@73(3) 1 1 1 11,17 1 [1,1] [[1,10] [1,10]] [1,10]] [1,10][[1,10][[1,10]] [1,10]| [1,10]
oo, (@ | L T T I I T I I T I I T | [10,10]
o
>ou | a | 0,0 [0, 0] [0, 00]=>[0, 00} [0, 10]::>[0, 10]
AN J
Y
> 0n H [0, 10] 5 iterations while
analyzing the loop
o | 2 [0
<> o1, | 2 [[10,10]
32

COMP6131 Software Security Analysis 2025

Narrowing: The Loop Example

Abstract | nit After | | 17 loop iter | 27 loop iter | 37 loop iter 47 |oop iter 5 loop iter || After
race analyzing | Ater After After Aiter After After After After After After | analyzing
44 2 3 I l3 12 03 2 3 Lo L3 Ly
o (@) | L [0,0] [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [0,0] | [O,0] [0,0]
op(a) | L L[] 10,01 | [0,0] | [0,00]] [0,00]] [0,00]] [0,0c]] [0,10]] [0,10]] [0,10]} [0, 10][[[0,10]
0@73(3) 1 1 1 11,17 1 [1,1] [[1,10] [1,10]] [1,10]] [1,10][[1,10][[1,10]] [1,10]| [1,10]
oo, (@ | L T T I I T I I T I I T | [10,10]
>0
ala]00 [0, 0]=>[0, 00]=>[0, 00]=>[0, 10]=>[0, 10]
AN J
Y
> 0n H [0,10] 5 iterations while
analyzing the loop
oy [
‘ Faster! l ‘ Precise!l
<> o1, | 2 [[10,10]
32

COMP6131 Software Security Analysis 2025

