
Lab: Programming Practices and Graph Algorithms

Week 1

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

1

COMP6131 Software Security Analysis 2025

What to Expect from Each Lab
What We Do:

• Lab demonstrations, including configuring IDEs, coding examples, and further
explanations of concepts from lectures.

• Reinforce your skills and knowledge to complete lab exercises and
assignments.

• Answer questions regarding specifications in your exercises and assignments.
• Provide time for you to work on your quizzes and coding exercises.

What We Don’t Do:
• Debug your program
• Teach programming. This course does NOT focus on teaching you C++ or

Python, but this lab provides a brief guide. Completing assessments requires
basic C++ (recommended) or Python syntax/knowledge.

• Give you code solutions or judge the correctness of your exercise/assignment.
No sharing of your solutions in the forums or public GitHub repositories.

2

COMP6131 Software Security Analysis 2025

Quiz-1 and Exercise-1
• Lab-Quiz-1:
https://webcms3.cse.unsw.edu.au/COMP6131/25T2/resources/112317

• C++ programming, software vulnerability assessment, compiler, control-flow,
data-flow, and taint tracking.

• 25 quizzes (each worth 0.2 marks) covering knowledge taught in Week 1 and
Week 2.

• Lab-Exercise-1: https://github.com/SVF-tools/
Software-Security-Analysis/wiki/Lab-Exercise-1

• Implementing the reachability method, a DFS graph traversal algorithm.
• Implementing the solveWorklist method, a constraint graph solving

algorithm for Andersen’s points-to analysis: https://github.com/SVF-tools/
Software-Security-Analysis/blob/slides/1.lab-andersen.pdf

Submit your Quiz-1 and Lab-Exercise-1 on WebCMS by 23:59 on Tuesday of
Week 3.

3

COMP6131 Software Security Analysis 2025

https://webcms3.cse.unsw.edu.au/COMP6131/25T2/resources/112317
https://github.com/SVF-tools/Software-Security-Analysis/wiki/Lab-Exercise-1
https://github.com/SVF-tools/Software-Security-Analysis/wiki/Lab-Exercise-1
https://github.com/SVF-tools/Software-Security-Analysis/blob/slides/1.lab-andersen.pdf
https://github.com/SVF-tools/Software-Security-Analysis/blob/slides/1.lab-andersen.pdf
https://github.com/SVF-tools/Software-Security-Analysis/blob/slides/1.lab-andersen.pdf

Today’s Lab: IDE Demo and Introduction/Revisit to C++/Python

• Configure your programming environment: https://github.com/SVF-tools/
Software-Security-Analysis/wiki/Configure-IDE

• Start writing the ‘hello world‘ program.
• Experiment with the code snippets in today’s slides to explore or revisit

C++/Python features.
• Quick introduction/revisit C++/Python programming

• Data types
• classes, objects, containers and collections
• Pointers and references
• Functions and inheritance

• Working on your Quiz-1 and Exercise-1

4

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/Software-Security-Analysis/wiki/Configure-IDE
https://github.com/SVF-tools/Software-Security-Analysis/wiki/Configure-IDE

A Quick Overview of C++
Week 1

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

5

COMP6131 Software Security Analysis 2025

Introduction to C++ Programming
What is C++?

• A general-purpose programming language that was developed as an
enhancement of the C language to include object-oriented paradigm.

Why learn C++?
• Language for building system software (e.g., operating systems, web

browsers, game engines, database engines, language runtimes and
cloud/distributed systems)

• Object-oriented yet high performance
• Pointer and direct memory-access
• One of the most popular languages and fastest-growing

• www.techrepublic.com/article/c-is-now-the-fastest-growing-programming-language
• www.techrepublic.com/article/

most-popular-programming-languages-c-knocks-python-out-of-top-three

6

COMP6131 Software Security Analysis 2025

www.techrepublic.com/article/c-is-now-the-fastest-growing-programming-language
www.techrepublic.com/article/most-popular-programming-languages-c-knocks-python-out-of-top-three
www.techrepublic.com/article/most-popular-programming-languages-c-knocks-python-out-of-top-three

Introduction to C++ Programming
What is C++?

• A general-purpose programming language that was developed as an
enhancement of the C language to include object-oriented paradigm.

Why learn C++?
• Language for building system software (e.g., operating systems, web

browsers, game engines, database engines, language runtimes and
cloud/distributed systems)

• Object-oriented yet high performance
• Pointer and direct memory-access
• One of the most popular languages and fastest-growing

• www.techrepublic.com/article/c-is-now-the-fastest-growing-programming-language
• www.techrepublic.com/article/

most-popular-programming-languages-c-knocks-python-out-of-top-three

6

COMP6131 Software Security Analysis 2025

www.techrepublic.com/article/c-is-now-the-fastest-growing-programming-language
www.techrepublic.com/article/most-popular-programming-languages-c-knocks-python-out-of-top-three
www.techrepublic.com/article/most-popular-programming-languages-c-knocks-python-out-of-top-three

Introduction to C++ Programming
What is C++?

• A general-purpose programming language that was developed as an
enhancement of the C language to include object-oriented paradigm.

Why learn C++?
• Language for building system software (e.g., operating systems, web

browsers, game engines, database engines, language runtimes and
cloud/distributed systems)

• Object-oriented yet high performance
• Pointer and direct memory-access

• One of the most popular languages and fastest-growing
• www.techrepublic.com/article/c-is-now-the-fastest-growing-programming-language
• www.techrepublic.com/article/

most-popular-programming-languages-c-knocks-python-out-of-top-three

6

COMP6131 Software Security Analysis 2025

www.techrepublic.com/article/c-is-now-the-fastest-growing-programming-language
www.techrepublic.com/article/most-popular-programming-languages-c-knocks-python-out-of-top-three
www.techrepublic.com/article/most-popular-programming-languages-c-knocks-python-out-of-top-three

Introduction to C++ Programming
What is C++?

• A general-purpose programming language that was developed as an
enhancement of the C language to include object-oriented paradigm.

Why learn C++?
• Language for building system software (e.g., operating systems, web

browsers, game engines, database engines, language runtimes and
cloud/distributed systems)

• Object-oriented yet high performance
• Pointer and direct memory-access
• One of the most popular languages and fastest-growing

• www.techrepublic.com/article/c-is-now-the-fastest-growing-programming-language
• www.techrepublic.com/article/

most-popular-programming-languages-c-knocks-python-out-of-top-three

6

COMP6131 Software Security Analysis 2025

www.techrepublic.com/article/c-is-now-the-fastest-growing-programming-language
www.techrepublic.com/article/most-popular-programming-languages-c-knocks-python-out-of-top-three
www.techrepublic.com/article/most-popular-programming-languages-c-knocks-python-out-of-top-three

Introduction to C++ Programming

• This short introduction does not aim to cover every detailed aspect of C++,
but rather the basic C++ syntax/features in order to develop algorithms to fulfil
the assignment tasks in this course.

• You are encouraged to learn and practice more advanced C++
syntax/features.

• https://www.w3schools.com/cpp/cpp_intro.asp
• https://www.youtube.com/watch?v=BClS40yzssA
• Google search ‘C++ programming‘ or ‘introduction to C++ programming‘

7

COMP6131 Software Security Analysis 2025

https://www.w3schools.com/cpp/cpp_intro.asp
https://www.youtube.com/watch?v=BClS40yzssA

Introduction to C++ Programming

• This short introduction does not aim to cover every detailed aspect of C++,
but rather the basic C++ syntax/features in order to develop algorithms to fulfil
the assignment tasks in this course.

• You are encouraged to learn and practice more advanced C++
syntax/features.

• https://www.w3schools.com/cpp/cpp_intro.asp
• https://www.youtube.com/watch?v=BClS40yzssA
• Google search ‘C++ programming‘ or ‘introduction to C++ programming‘

7

COMP6131 Software Security Analysis 2025

https://www.w3schools.com/cpp/cpp_intro.asp
https://www.youtube.com/watch?v=BClS40yzssA

Write Your First C++ Program

#include <iostream>

using namespace std;

int main() {

cout << "Hello World! \n";

return 0;

}

A Hello World example under Software-Security-Analysis:

https://github.com/SVF-tools/Software-Security-Analysis/blob/main/HelloWorld/hello.cpp

8

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/Software-Security-Analysis/blob/main/HelloWorld/hello.cpp

C++ Primitive Data Types and Variables

• ‘type variable = value; ‘
• Primitive types including int, float, double, char, bool, string.
int myNum = 5; // Integer (whole number)

float myFloatNum = 5.99; // Floating point number

double myDoubleNum = 9.98; // Floating point number

char myLetter = 'D'; // Character

bool myBoolean = true; // Boolean

char *myText = "Hello"; // String (use std::string)

9

COMP6131 Software Security Analysis 2025

C++ Classes and Objects
• C++ class: new data type compared with C for

• Abstraction: ”shows” essential attributes and ”hides” unnecessary information
• Encapsulation: ‘expose‘ only the interfaces and hide implementation details

• A C++ class is a template for objects, and an object is an instance of a class.

#include <iostream>

using namespace std;

class Graph { // the class

private: // private access specifier

int numOfNodes; // hidden attribute from outside

int numOfEdges; // hidden attribute from outside

public: // public access specifier

// interface to outside world

int getNumOfNodes(){ return numOfNodes;}

// interface to outside world

void setNumOfNodes(int n){ numOfNodes = n;}

};

int main() {

// create an object of Graph

Graph graphObj;

// Access attribute via interface

graphObj.setNumOfNodes(10);

// print out value of the attribute

cout << graphObj.getNumOfNodes();

cout << "\n";

}

10

COMP6131 Software Security Analysis 2025

C++ Classes and Objects
• C++ class: new data type compared with C for

• Abstraction: ”shows” essential attributes and ”hides” unnecessary information
• Encapsulation: ‘expose‘ only the interfaces and hide implementation details

• A C++ class is a template for objects, and an object is an instance of a class.
#include <iostream>

using namespace std;

class Graph { // the class

private: // private access specifier

int numOfNodes; // hidden attribute from outside

int numOfEdges; // hidden attribute from outside

public: // public access specifier

// interface to outside world

int getNumOfNodes(){ return numOfNodes;}

// interface to outside world

void setNumOfNodes(int n){ numOfNodes = n;}

};

int main() {

// create an object of Graph

Graph graphObj;

// Access attribute via interface

graphObj.setNumOfNodes(10);

// print out value of the attribute

cout << graphObj.getNumOfNodes();

cout << "\n";

}

10

COMP6131 Software Security Analysis 2025

C++ Classes and Objects
• C++ class: new data type compared with C for

• Abstraction: ”shows” essential attributes and ”hides” unnecessary information
• Encapsulation: ‘expose‘ only the interfaces and hide implementation details

• A C++ class is a template for objects, and an object is an instance of a class.
#include <iostream>

using namespace std;

class Graph { // the class

private: // private access specifier

int numOfNodes; // hidden attribute from outside

int numOfEdges; // hidden attribute from outside

public: // public access specifier

// interface to outside world

int getNumOfNodes(){ return numOfNodes;}

// interface to outside world

void setNumOfNodes(int n){ numOfNodes = n;}

};

int main() {

// create an object of Graph

Graph graphObj;

// Access attribute via interface

graphObj.setNumOfNodes(10);

// print out value of the attribute

cout << graphObj.getNumOfNodes();

cout << "\n";

}

10

COMP6131 Software Security Analysis 2025

Constructor
• A constructor is a special method automatically called when an object is

created.
#include <iostream>

using namespace std;

class Graph { // the class

private: // private access specifier

int numOfNodes; // hidden attribute from outside

int numOfEdges; // hidden attribute from outside

public: // public access specifier

Graph(int n, int e){ // constructor

numOfNodes = n;

numOfEdges = e;

}

// interface to outside world

int getNumOfNodes(){ return numOfNodes;}

};

int main() {

// Create an object via its constructor

Graph graphObj(5,10);

// print out value of the attribute

cout << graphObj.getNumOfNodes();

cout << "\n";

}

11

COMP6131 Software Security Analysis 2025

Containers/Collections

A container is an object that stores a collection of elements.
• Standard container type

• Plain C array int myNum[3] = {10, 20, 30};
• C++ STL container types.

• Sequence containers (data structures accessed sequentially)
• vector: Dynamic contiguous array (class template)
• deque: Double-ended queue (class template)
• list : Doubly-linked list (class template)
• stack: Last In First Out (class template)

• Associative containers (sorted data structures that can be quickly searched)
• set: Collection of unique keys, sorted by keys (class template)
• map: Collection of key-value pairs, sorted by keys, keys are unique (class template).

12

COMP6131 Software Security Analysis 2025

Containers/Collections
#include <vector>

#include <iostream>

using namespace std;

int main ()

{

vector<int> nodeIDs;

nodeIDs.push_back(1);

nodeIDs.push_back(2);

nodeIDs.push_back(2);

// iterating elements via loop

for(auto i : nodeIDs)

cout << i << "\n";

}

#include <set>

#include <iostream>

using namespace std;

int main ()

{

set<int> nodeIDs;

nodeIDs.insert(1);

nodeIDs.insert(2);

nodeIDs.insert(2);

// iterating elements via loop

for(auto i : nodeIDs)

cout << i << "\n";

}

13

COMP6131 Software Security Analysis 2025

Containers/Collections
#include <vector>

#include <iostream>

using namespace std;

int main ()

{

vector<int> nodeIDs;

nodeIDs.push_back(1);

nodeIDs.push_back(2);

nodeIDs.push_back(2);

// iterating elements via loop

for(auto i : nodeIDs)

cout << i << "\n";

}

#include <set>

#include <iostream>

using namespace std;

int main ()

{

set<int> nodeIDs;

nodeIDs.insert(1);

nodeIDs.insert(2);

nodeIDs.insert(2);

// iterating elements via loop

for(auto i : nodeIDs)

cout << i << "\n";

}

13

COMP6131 Software Security Analysis 2025

Containers/Collections Used in a Class
#include <set>

using namespace std;

class Graph {

private:

int numOfNodes;

int numOfEdges;

set<int> nodeIDs;

public:

Graph(int n, int e) {

numOfNodes = n;

numOfEdges = e;

}

void addNode(int id){

nodeIDs.insert(id);

}

};

int main() {

// Create an object of Graph

Graph graphObj(5,10);

// Increase nodes;

graphObj.addNode(1);

graphObj.addNode(2);

}

14

COMP6131 Software Security Analysis 2025

Pointers for Primitive Types

• The memory address of a variable can be taken through the & operator.
• A pointer however, is a variable that stores the memory address as its value.

int nodeID = 5; // A nodeID variable of type int

int* ptr = &nodeID; // A pointer `ptr` storing the address of nodeID

cout << nodeID << "\n";

cout << &nodeID << "\n";

cout << ptr << "\n";

cout << *ptr << "\n";

15

COMP6131 Software Security Analysis 2025

Pointers for Primitive Types

• The memory address of a variable can be taken through the & operator.
• A pointer however, is a variable that stores the memory address as its value.

int nodeID = 5; // A nodeID variable of type int

int* ptr = &nodeID; // A pointer `ptr` storing the address of nodeID

// Output the value of NodeID (i.e., 5)

cout << nodeID << "\n";

// Output the memory address of NodeID (e.g., 0x6dfed4)

cout << &nodeID << "\n";

// Output the memory address of nodeID with the pointer (e.g., 0x6dfed4)

cout << ptr << "\n";

// Output the value of nodeID via dereferencing the pointer ptr

cout << *ptr << "\n";

16

COMP6131 Software Security Analysis 2025

References for Primitive Types

• When a variable is declared as a reference, it becomes an alternative name
for an existing variable. A variable can be declared as a reference by putting
‘&‘ in the declaration.

int nodeID = 5; // A nodeID variable of type int

int& ref = nodeID; // `ref` is a reference to nodeID.

ref = 20;

cout << "nodeID = " << nodeID << endl ;

nodeID = 30;

cout << "ref = " << ref << endl ;

17

COMP6131 Software Security Analysis 2025

References for Primitive Types

• When a variable is declared as a reference, it becomes an alternative name
for an existing variable. A variable can be declared as a reference by putting
‘&‘ in the declaration.

int nodeID = 5; // A nodeID variable of type int

int& ref = nodeID; // `ref` is a reference to nodeID.

ref = 20; // Value of nodeID is now changed to 20

cout << "nodeID = " << nodeID << endl ;

nodeID = 30; // Both nodeID and ref are now 30

cout << "ref = " << ref << endl ;

18

COMP6131 Software Security Analysis 2025

C++ const Type Qualifier
• The const keyword allows you to specify whether or not a variable is

modifiable. It can help (1) document your program more clearly and (2)
enable more compiler optimization opportunities.

// a constant integer.

// modifying `nodeID` will get a compilation error.

const int nodeID = 5;

// pointer to a const variable.

// `ptr` is a pointer that can point to a const int type variable.

// modifying `nodeID` via `*ptr` will get a compilation error.

const int* ptr = &nodeID;

// const Pointer.

// `cptr` is a pointer, which is const, that points to an int.

// modifying `cptr` will get a compilation error

int anotherNodeID = 6;

int* const cptr = &anotherNodeID;

19

COMP6131 Software Security Analysis 2025

Parameter Passing using Pointers and References

• Both references and pointers can be used to change local variables of one
function inside another function.

/// parameters as values

/// (pass by value)

void swap(int n1, int n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

pass by value: caller and callee have
two independent variables with the
same value (effect not visible to caller)

/// parameters as references

/// (Pass by reference)

void swap(int& n1, int& n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

passed by reference: caller and
callee share the same variable for the
parameter (effect visible to caller)

/// parameters as pointers

/// (Pass by pointers)

void swap(int* n1, int* n2){

int tmp = *n1;

*n1 = *n2;

*n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap (&node1, &node2);

cout << node1 << " " << node2;

}

pass by pointer: caller and callee
share the same variable via pointer
dereferences (effect visible to caller)

20

COMP6131 Software Security Analysis 2025

Parameter Passing using Pointers and References

• Both references and pointers can be used to change local variables of one
function inside another function.

/// parameters as values

/// (pass by value)

void swap(int n1, int n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

pass by value: caller and callee have
two independent variables with the
same value (effect not visible to caller)

/// parameters as references

/// (Pass by reference)

void swap(int& n1, int& n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

passed by reference: caller and
callee share the same variable for the
parameter (effect visible to caller)

/// parameters as pointers

/// (Pass by pointers)

void swap(int* n1, int* n2){

int tmp = *n1;

*n1 = *n2;

*n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap (&node1, &node2);

cout << node1 << " " << node2;

}

pass by pointer: caller and callee
share the same variable via pointer
dereferences (effect visible to caller)

20

COMP6131 Software Security Analysis 2025

Parameter Passing using Pointers and References

• Both references and pointers can be used to change local variables of one
function inside another function.

/// parameters as values

/// (pass by value)

void swap(int n1, int n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

pass by value: caller and callee have
two independent variables with the
same value (effect not visible to caller)

/// parameters as references

/// (Pass by reference)

void swap(int& n1, int& n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

passed by reference: caller and
callee share the same variable for the
parameter (effect visible to caller)

/// parameters as pointers

/// (Pass by pointers)

void swap(int* n1, int* n2){

int tmp = *n1;

*n1 = *n2;

*n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap (&node1, &node2);

cout << node1 << " " << node2;

}

pass by pointer: caller and callee
share the same variable via pointer
dereferences (effect visible to caller)

20

COMP6131 Software Security Analysis 2025

Parameter Passing using Pointers and References

• Both references and pointers can be used to change local variables of one
function inside another function.

/// parameters as values

/// (pass by value)

void swap(int n1, int n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

pass by value: caller and callee have
two independent variables with the
same value (effect not visible to caller)

/// parameters as references

/// (Pass by reference)

void swap(int& n1, int& n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

passed by reference: caller and
callee share the same variable for the
parameter (effect visible to caller)

/// parameters as pointers

/// (Pass by pointers)

void swap(int* n1, int* n2){

int tmp = *n1;

*n1 = *n2;

*n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap (&node1, &node2);

cout << node1 << " " << node2;

}

pass by pointer: caller and callee
share the same variable via pointer
dereferences (effect visible to caller)

20

COMP6131 Software Security Analysis 2025

Parameter Passing using Pointers and References

• Both references and pointers can be used to change local variables of one
function inside another function.

/// parameters as values

/// (pass by value)

void swap(int n1, int n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

pass by value: caller and callee have
two independent variables with the
same value (effect not visible to caller)

/// parameters as references

/// (Pass by reference)

void swap(int& n1, int& n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

passed by reference: caller and
callee share the same variable for the
parameter (effect visible to caller)

/// parameters as pointers

/// (Pass by pointers)

void swap(int* n1, int* n2){

int tmp = *n1;

*n1 = *n2;

*n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap (&node1, &node2);

cout << node1 << " " << node2;

}

pass by pointer: caller and callee
share the same variable via pointer
dereferences (effect visible to caller)

20

COMP6131 Software Security Analysis 2025

Parameter Passing using Pointers and References

• Both references and pointers can be used to change local variables of one
function inside another function.

/// parameters as values

/// (pass by value)

void swap(int n1, int n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

pass by value: caller and callee have
two independent variables with the
same value (effect not visible to caller)

/// parameters as references

/// (Pass by reference)

void swap(int& n1, int& n2){

int tmp = n1;

n1 = n2;

n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap(node1, node2);

cout << node1 << " " << node2;

}

passed by reference: caller and
callee share the same variable for the
parameter (effect visible to caller)

/// parameters as pointers

/// (Pass by pointers)

void swap(int* n1, int* n2){

int tmp = *n1;

*n1 = *n2;

*n2 = tmp;

}

int main(){

int node1 = 2, node2 = 3;

swap (&node1, &node2);

cout << node1 << " " << node2;

}

pass by pointer: caller and callee
share the same variable via pointer
dereferences (effect visible to caller)

20

COMP6131 Software Security Analysis 2025

Parameter Passing using Pointers and References
• Both of them can also be used to save copying of big objects when passed

as arguments to functions or returned from functions, to be more efficient.
class Graph {

public:

int numOfNodes;

int numOfEdges;

};

// If we remove `*` or `&` in below functions, a new copy of the graph object is created.

// `const` used to avoid accidentally updates `g` as the purpose is to print `g` only.

void print(const Graph *g){

cout << g->numOfNodes << " " << g->numOfEdges << " ";

}

void print(const Graph &g){

cout << g.numOfNodes << " " << g.numOfEdges << " ";

}

21

COMP6131 Software Security Analysis 2025

Using Pointers in Classes
#include <iostream>

using namespace std;

class Node { // The class

private:

int nodeID; // Node ID

public: // Access specifier

Node(int i){ nodeID = i; } // constructor

int getNodeID() { return nodeID;}

};

class Edge { // The class

private: // Access specifier

Node* src; // source node of an edge

Node* dst; // target node of an edge

public:

Edge(Node* s, Node* d){ // constructor

src = s; dst = d;

}

Node* getSrc() { return src;}

Node* getDst() { return dst;}

};

int main () {

Node* srcNode = new Node(1);

Node* dstNode = new Node(2);

// Assess public member functions or attributes

// through field access `->` operator

// similar to pointer dereferences

cout << srcNode->getNodeID() << " ";

cout << dstNode->getNodeID() << "\n";

Edge* edge = new Edge(srcNode,dstNode);

cout << edge->getSrc()->getNodeID() << " ";

cout << edge->getDst()->getNodeID() << "\n";

}

22

COMP6131 Software Security Analysis 2025

Using Pointers in Classes
#include <iostream>

using namespace std;

class Node { // The class

private:

int nodeID; // Node ID

public: // Access specifier

Node(int i){ nodeID = i; } // constructor

int getNodeID() { return nodeID;}

};

class Edge { // The class

private: // Access specifier

Node* src; // source node of an edge

Node* dst; // target node of an edge

public:

Edge(Node* s, Node* d){ // constructor

src = s; dst = d;

}

Node* getSrc() { return src;}

Node* getDst() { return dst;}

};

int main () {

Node* srcNode = new Node(1);

Node* dstNode = new Node(2);

// Assess public member functions or attributes

// through field access `->` operator

// similar to pointer dereferences

cout << srcNode->getNodeID() << " ";

cout << dstNode->getNodeID() << "\n";

Edge* edge = new Edge(srcNode,dstNode);

cout << edge->getSrc()->getNodeID() << " ";

cout << edge->getDst()->getNodeID() << "\n";

}

22

COMP6131 Software Security Analysis 2025

Putting All the Above Classes Together to Build a Graph
#include <set>

using namespace std; class Edge;

class Node {

private:

int nodeID;

set<Edge*> outEdges; // outgoing edges

public:

Node(int i){ nodeID = i; }

int getNodeID() { return nodeID;}

set<Edge*>& getOutEdges(){ return outEdges;}

};

class Edge {

private:

Node* src;

Node* dst;

public:

Edge(Node* s,Node* d){ src = s; dst = d; }

Node* getSrc() { return src;}

Node* getDst() { return dst;}

};

class Graph { // The class

private: // Access specifier

set<Node*> nodes; // a set of nodes

public:

Graph() { } // constructor

set<Node*>& getNodes(){ return nodes;}

};

;

23

COMP6131 Software Security Analysis 2025

Putting All the Above Classes Together to Build a Graph
#include <set>

using namespace std; class Edge;

class Node {

private:

int nodeID;

set<Edge*> outEdges; // outgoing edges

public:

Node(int i){ nodeID = i; }

int getNodeID() { return nodeID;}

set<Edge*>& getOutEdges(){ return outEdges;}

};

class Edge {

private:

Node* src;

Node* dst;

public:

Edge(Node* s,Node* d){ src = s; dst = d; }

Node* getSrc() { return src;}

Node* getDst() { return dst;}

};

class Graph {

private:

set<Node*> nodes; // a set of nodes

public:

Graph() { }

set<Node*>& getNodes(){ return nodes;}

};

int main () {

Node* src = new Node(1);

Node* dst = new Node(2);

Edge* edge = new Edge(src, dst);

// add src's outgoing edge

src->getOutEdges().insert(edge);

// create a graph object

Graph* graph = new Graph();

// add two nodes into the graph

graph->getNodes().insert(src);

graph->getNodes().insert(dst);

}

24

COMP6131 Software Security Analysis 2025

C++ Inheritance
Allow a child class to inherit attributes and methods from its parent class.

class GraphBuilder{

public:

GraphBuilder(){}

void build(){

cout << "parent's way to build..\n";

Node* src = new Node(1);

Node* dst = new Node(2);

Edge* edge = new Edge(src, dst);

// add src's outgoing edge

src->addOutEdge(edge);

// create a graph object

Graph* graph = new Graph();

// add two nodes into the graph

graph->addNode(src);

graph->addNode(dst);

}

};

// SubGraphBuilder is a child (derived) class

// of GraphBuilder

class SubGraphBuilder : public GraphBuilder{

public:

SubGraphBuilder(){}

};

int main () {

SubGraphBuilder* builder = new SubGraphBuilder();

// reuse the build method in GraphBuilder

builder->build();

}

25

COMP6131 Software Security Analysis 2025

C++ Inheritance
Allow a child class to inherit attributes and methods from its parent class.
class GraphBuilder{

public:

GraphBuilder(){}

void build(){

cout << "parent's way to build..\n";

Node* src = new Node(1);

Node* dst = new Node(2);

Edge* edge = new Edge(src, dst);

// add src's outgoing edge

src->addOutEdge(edge);

// create a graph object

Graph* graph = new Graph();

// add two nodes into the graph

graph->addNode(src);

graph->addNode(dst);

}

};

// SubGraphBuilder is a child (derived) class

// of GraphBuilder

class SubGraphBuilder : public GraphBuilder{

public:

SubGraphBuilder(){}

};

int main () {

SubGraphBuilder* builder = new SubGraphBuilder();

// reuse the build method in GraphBuilder

builder->build();

}

25

COMP6131 Software Security Analysis 2025

C++ Inheritance
Allow a child class to inherit attributes and methods from its parent class.
class GraphBuilder{

public:

GraphBuilder(){}

void build(){

cout << "parent's way to build..\n";

Node* src = new Node(1);

Node* dst = new Node(2);

Edge* edge = new Edge(src, dst);

// add src's outgoing edge

src->addOutEdge(edge);

// create a graph object

Graph* graph = new Graph();

// add two nodes into the graph

graph->addNode(src);

graph->addNode(dst);

}

};

// SubGraphBuilder is a child (derived) class

// of GraphBuilder

class SubGraphBuilder : public GraphBuilder{

public:

SubGraphBuilder(){}

};

int main () {

SubGraphBuilder* builder = new SubGraphBuilder();

// reuse the build method in GraphBuilder

builder->build();

}

25

COMP6131 Software Security Analysis 2025

C++ Function Overriding
Allow a child class to override a function (with same signature) in its parent class.

class GraphBuilder{

public:

GraphBuilder(){}

void build(){

cout << "parent's way to build..\n";

Node* src = new Node(1);

Node* dst = new Node(2);

Edge* edge = new Edge(src, dst);

// add src's outgoing edge

src->addOutEdge(edge);

// create a graph object

Graph* graph = new Graph();

// add two nodes into the graph

graph->addNode(src);

graph->addNode(dst);

}

};

class SubGraphBuilder : public GraphBuilder{

public:

SubGraphBuilder(){}

// override `build` method in GraphBuilder

void build(){

cout << "child's way to build..\n";

}

};

int main () {

SubGraphBuilder* builder1 = new SubGraphBuilder();

// Which `build` method will be called?

builder1->build();

GraphBuilder* builder2 = new SubGraphBuilder();

// Which `build` method will be called?

builder2->build();

}

26

COMP6131 Software Security Analysis 2025

C++ Function Overriding
Allow a child class to override a function (with same signature) in its parent class.
class GraphBuilder{

public:

GraphBuilder(){}

void build(){

cout << "parent's way to build..\n";

Node* src = new Node(1);

Node* dst = new Node(2);

Edge* edge = new Edge(src, dst);

// add src's outgoing edge

src->addOutEdge(edge);

// create a graph object

Graph* graph = new Graph();

// add two nodes into the graph

graph->addNode(src);

graph->addNode(dst);

}

};

class SubGraphBuilder : public GraphBuilder{

public:

SubGraphBuilder(){}

// override `build` method in GraphBuilder

void build(){

cout << "child's way to build..\n";

}

};

int main () {

SubGraphBuilder* builder1 = new SubGraphBuilder();

// Which `build` method will be called?

builder1->build();

GraphBuilder* builder2 = new SubGraphBuilder();

// Which `build` method will be called?

builder2->build();

}

26

COMP6131 Software Security Analysis 2025

C++ Virtual Function and Polymorphism
A function declared with a ‘virtual‘ keyword in a parent class can be overridden by
a child class. When you refer to a child class object using a pointer/reference
to the parent class, it will call child class’s version of this virtual function.

class GraphBuilder{

public:

GraphBuilder(){}

virtual void build(){

cout << "parent's way to build..\n";

Node* src = new Node(1);

Node* dst = new Node(2);

Edge* edge = new Edge(src, dst);

// add src's outgoing edge

src->addOutEdge(edge);

// create a graph object

Graph* graph = new Graph();

// add two nodes into the graph

graph->addNode(src);

graph->addNode(dst);

}

};

class SubGraphBuilder : public GraphBuilder{

public:

SubGraphBuilder(){}

void build(){ // override `build` in GraphBuilder

cout << "child's way to build..\n";

}

};

int main () {

SubGraphBuilder* builder1 = new SubGraphBuilder();

builder1->build(); // Which `build` will be called?

GraphBuilder* builder2 = new SubGraphBuilder();

builder2->build(); // Which `build` will be called?

GraphBuilder* builder3 = new GraphBuilder();

builder3->build(); // Which `build` will be called?

}

27

COMP6131 Software Security Analysis 2025

C++ Virtual Function and Polymorphism
A function declared with a ‘virtual‘ keyword in a parent class can be overridden by
a child class. When you refer to a child class object using a pointer/reference
to the parent class, it will call child class’s version of this virtual function.
class GraphBuilder{

public:

GraphBuilder(){}

virtual void build(){

cout << "parent's way to build..\n";

Node* src = new Node(1);

Node* dst = new Node(2);

Edge* edge = new Edge(src, dst);

// add src's outgoing edge

src->addOutEdge(edge);

// create a graph object

Graph* graph = new Graph();

// add two nodes into the graph

graph->addNode(src);

graph->addNode(dst);

}

};

class SubGraphBuilder : public GraphBuilder{

public:

SubGraphBuilder(){}

void build(){ // override `build` in GraphBuilder

cout << "child's way to build..\n";

}

};

int main () {

SubGraphBuilder* builder1 = new SubGraphBuilder();

builder1->build(); // Which `build` will be called?

GraphBuilder* builder2 = new SubGraphBuilder();

builder2->build(); // Which `build` will be called?

GraphBuilder* builder3 = new GraphBuilder();

builder3->build(); // Which `build` will be called?

}
27

COMP6131 Software Security Analysis 2025

Debugging Your C++ Programs

• VSCode (https://code.visualstudio.com/docs/cpp/cpp-debug)
• GDB (https://cs.baylor.edu/~donahoo/tools/gdb/tutorial.html)
• LLDB (https://lldb.llvm.org/use/tutorial.html)
• Eclipse CDT (https://wiki.eclipse.org/CDT/StandaloneDebugger)
• Other tactics, such as printing your results

(https://www.learncpp.com/cpp-tutorial/basic-debugging-tactics/)

28

COMP6131 Software Security Analysis 2025

https://code.visualstudio.com/docs/cpp/cpp-debug
https://cs.baylor.edu/~donahoo/tools/gdb/tutorial.html
https://lldb.llvm.org/use/tutorial.html
https://wiki.eclipse.org/CDT/StandaloneDebugger
https://www.learncpp.com/cpp-tutorial/basic-debugging-tactics/

A Quick Overview of Python

Week 1

Yulei Sui
School of Computer Science and Engineering

University of New South Wales, Australia

29

COMP6131 Software Security Analysis 2025

Introduction to Python Programming

What is Python?
• Python is a high-level, interpreted general-purpose multi-paradigm

programming language.

Why learn Python?
• Language for web development, data analysis, machine learning, and

scripting.
• User-friendly syntax which can quickly write programs and easily interface

with high-performance libraries
• Provides rich library support for many applications
• A popular and extensively used language

30

COMP6131 Software Security Analysis 2025

Introduction to Python Programming

What is Python?
• Python is a high-level, interpreted general-purpose multi-paradigm

programming language.
Why learn Python?

• Language for web development, data analysis, machine learning, and
scripting.

• User-friendly syntax which can quickly write programs and easily interface
with high-performance libraries

• Provides rich library support for many applications
• A popular and extensively used language

30

COMP6131 Software Security Analysis 2025

Introduction to Python Programming

What is Python?
• Python is a high-level, interpreted general-purpose multi-paradigm

programming language.
Why learn Python?

• Language for web development, data analysis, machine learning, and
scripting.

• User-friendly syntax which can quickly write programs and easily interface
with high-performance libraries

• Provides rich library support for many applications

• A popular and extensively used language

30

COMP6131 Software Security Analysis 2025

Introduction to Python Programming

What is Python?
• Python is a high-level, interpreted general-purpose multi-paradigm

programming language.
Why learn Python?

• Language for web development, data analysis, machine learning, and
scripting.

• User-friendly syntax which can quickly write programs and easily interface
with high-performance libraries

• Provides rich library support for many applications
• A popular and extensively used language

30

COMP6131 Software Security Analysis 2025

Python

• This short introduction does not aim to cover every detailed aspect of Python,
but rather the basic Python syntax/features in order to develop algorithms to
fulfil the assignment tasks in this course.

• You are encouraged to learn and practice more advanced Python
syntax/features.

• https://docs.python.org/3/tutorial/
• https://www.w3schools.com/python/
• https://cgi.cse.unsw.edu.au/~cs2041/25T1/topic/python_intro/slides
• Google search ‘Python programming‘ or ‘Introduction to Python programming‘

31

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/
https://www.w3schools.com/python/
https://cgi.cse.unsw.edu.au/~cs2041/25T1/topic/python_intro/slides

Python

• This short introduction does not aim to cover every detailed aspect of Python,
but rather the basic Python syntax/features in order to develop algorithms to
fulfil the assignment tasks in this course.

• You are encouraged to learn and practice more advanced Python
syntax/features.

• https://docs.python.org/3/tutorial/
• https://www.w3schools.com/python/
• https://cgi.cse.unsw.edu.au/~cs2041/25T1/topic/python_intro/slides
• Google search ‘Python programming‘ or ‘Introduction to Python programming‘

31

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/
https://www.w3schools.com/python/
https://cgi.cse.unsw.edu.au/~cs2041/25T1/topic/python_intro/slides

Write Your First Python Program

print("Welcome to software security analysis course!")

A Hello World example under Software-Security-Analysis:

https://github.com/SVF-tools/Software-Security-Analysis/blob/main/HelloWorld/hello.py

32

COMP6131 Software Security Analysis 2025

https://github.com/SVF-tools/Software-Security-Analysis/blob/main/HelloWorld/hello.py

If Statements in Python
x = int(input("Please enter an integer: "))

Please enter an integer: 42

if x < 0:

x = 0

print('Negative changed to zero')

elif x == 0:

print('Zero')

elif x == 1:

print("Single")

else:

print('More')

An if statement example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#if-statements

33

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#if-statements

For Loops in Python

words = ['cat', 'window', 'defenestrate']

for i in range(len(words)):

print(words[i], len(words[i]))

for w in words:

print(w, len(w))

A for loop example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#for-statementss

34

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#for-statementss

For Loops in Python

words = ['cat', 'window', 'defenestrate']

for i in range(len(words)):

print(words[i], len(words[i]))

for w in words:

print(w, len(w))

A for loop example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#for-statementss

34

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#for-statementss

Containers/Collections

#Python lists

node_ids = []

node_ids.append(1)

node_ids.append(2)

node_ids.append(2)

for i in node_ids:

print(i)

#Python sets

node_ids = set()

node_ids.add(1)

node_ids.add(2)

node_ids.add(2)

for i in node_ids:

print(i)

35

COMP6131 Software Security Analysis 2025

Containers/Collections

#Python lists

node_ids = []

node_ids.append(1)

node_ids.append(2)

node_ids.append(2)

for i in node_ids:

print(i)

#Python sets

node_ids = set()

node_ids.add(1)

node_ids.add(2)

node_ids.add(2)

for i in node_ids:

print(i)

35

COMP6131 Software Security Analysis 2025

Functions in Python
def fib(n): # write Fibonacci series less than n

"""Return a Fibonacci series less than n."""

series = []

a, b = 0, 1

while a < n:

series.append(a)

a, b = b, a+b

print(fib(2000))

An alternative function definition with the typing library

from typing import List

def fib(n: int) -> List[int]:

...

A function example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

36

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Functions in Python
def fib(n): # write Fibonacci series less than n

"""Return a Fibonacci series less than n."""

series = []

a, b = 0, 1

while a < n:

series.append(a)

a, b = b, a+b

print(fib(2000))

An alternative function definition with the typing library

from typing import List

def fib(n: int) -> List[int]:

...

A function example from the Python docs:

https://docs.python.org/3/tutorial/controlflow.html#defining-functions
36

COMP6131 Software Security Analysis 2025

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

Python Classes and Objects
• Python objects: everything in Python is an object, there are no primitive types.
• A Python class is a template for objects, and an object is an instance of a

class.
• All methods are public by default, a prefixed in the function name is used for

protected methods or for private methods.

class Graph:

def __init__(self, n: int, e: int):

self.num_of_nodes: int = n

self.num_of_edges: int = e

def get_num_of_nodes(self) -> int:

return self.num_of_nodes

def set_num_of_nodes(self, n: int):

return self.nodes

def get_paths(self) -> Set[str]:

return self.paths

graph_obj = Graph(5, 10)

print(graph_obj.get_num_of_nodes)

37

COMP6131 Software Security Analysis 2025

Python Classes and Objects
• Python objects: everything in Python is an object, there are no primitive types.
• A Python class is a template for objects, and an object is an instance of a

class.
• All methods are public by default, a prefixed in the function name is used for

protected methods or for private methods.
class Graph:

def __init__(self, n: int, e: int):

self.num_of_nodes: int = n

self.num_of_edges: int = e

def get_num_of_nodes(self) -> int:

return self.num_of_nodes

def set_num_of_nodes(self, n: int):

return self.nodes

def get_paths(self) -> Set[str]:

return self.paths

graph_obj = Graph(5, 10)

print(graph_obj.get_num_of_nodes)

37

COMP6131 Software Security Analysis 2025

Python Classes and Objects
• Python objects: everything in Python is an object, there are no primitive types.
• A Python class is a template for objects, and an object is an instance of a

class.
• All methods are public by default, a prefixed in the function name is used for

protected methods or for private methods.
class Graph:

def __init__(self, n: int, e: int):

self.num_of_nodes: int = n

self.num_of_edges: int = e

def get_num_of_nodes(self) -> int:

return self.num_of_nodes

def set_num_of_nodes(self, n: int):

return self.nodes

def get_paths(self) -> Set[str]:

return self.paths

graph_obj = Graph(5, 10)

print(graph_obj.get_num_of_nodes)

37

COMP6131 Software Security Analysis 2025

Building a Graph with more Functionality

class Node:

def __init__(self, i: int):

self.node_id = i

self.out_edges = set()

def get_node_id(self) -> int:

return self.node_id

def get_out_edges(self) -> Set[Edge]:

return self.out_edges

class Edge:

def __init__(self, s: Node, d: Node):

self.src = s

self.dst = d

def get_src(self) -> Node:

return self.src

def get_dst(self) -> Node:

return self.dst

class Graph:

def __init__(self):

self.nodes: Set[Node] = set()

def get_nodes(self) -> Set[Node]:

return self.nodes

src = Node(1)

dst = Node(2)

edge = Edge(src, dst)

add src's outgoing edge

src.get_out_edges().add(edge)

create a graph object

graph = Graph()

add two nodes into the graph

graph.get_nodes().add(src)

graph.get_nodes().add(dst)

38

COMP6131 Software Security Analysis 2025

Building a Graph with more Functionality

class Node:

def __init__(self, i: int):

self.node_id = i

self.out_edges = set()

def get_node_id(self) -> int:

return self.node_id

def get_out_edges(self) -> Set[Edge]:

return self.out_edges

class Edge:

def __init__(self, s: Node, d: Node):

self.src = s

self.dst = d

def get_src(self) -> Node:

return self.src

def get_dst(self) -> Node:

return self.dst

class Graph:

def __init__(self):

self.nodes: Set[Node] = set()

def get_nodes(self) -> Set[Node]:

return self.nodes

src = Node(1)

dst = Node(2)

edge = Edge(src, dst)

add src's outgoing edge

src.get_out_edges().add(edge)

create a graph object

graph = Graph()

add two nodes into the graph

graph.get_nodes().add(src)

graph.get_nodes().add(dst)

38

COMP6131 Software Security Analysis 2025

Debugging Your Python Programs

• VSCode (https://code.visualstudio.com/docs/python/debugging)
• PDB (https://docs.python.org/3/library/pdb.html)
• Other tactics, such as printing your results

(https://adamj.eu/tech/2021/10/08/tips-for-debugging-with-print/)

39

COMP6131 Software Security Analysis 2025

https://code.visualstudio.com/docs/python/debugging
https://docs.python.org/3/library/pdb.html
https://adamj.eu/tech/2021/10/08/tips-for-debugging-with-print/

