
Introduction to ROS 2
(continued)

COMP3431/COMP9434
Robot Software Architectures

ROS2 Worskspace

colcon_ws

- build  
- install  
- log  
- src (Your packages will go in here)

- my_package  
- CMAKELists.txt 
- include  
- package.xml  
- src 

- myfile.cpp

•

Creating a package

First move into the src of your work space: 
cd ~/turtlebot3_ws/src

To create a package run the code :

ros2 pkg create --build-type ament_cmake <package_name>

Example:

ros2 pkg create --build-type ament_cmake my_package

Building a workspace

Use colcon build to build the project: 
$ colcon build  

 
 
If installing natively you need to install colcon: 

$ sudo apt install python3-colcon-common-extensions

package.xml

• This is where you put the dependencies
• what packages does your package depend on?

• E.g. standard for C++

<depend>rclcpp</depend>

<depend>std_msgs</depend>
•

CMakeLists.txt

• If writing in C++, also need to edit CMakeLists.txt
• E.g. Add the packages we need to find:

find_package(rclcpp REQUIRED)
find_package(std_msgs REQUIRED)

CMakeLists.txt

• Also include the source files you will write your
programs in

• A simple publisher might have:
add_executable(talker src/publisher_member_function.cpp)  
ament_target_dependencies(talker rclcpp std_msgs)

• The executable called talker

CMakeLists.txt

 
Move the executable to a place where ROS can find and run it 
 

install(TARGETS

 talker

 DESTINATION lib/${PROJECT_NAME})

Building the workspace

• First move into the root of your work space:

cd ~/turtlebot3_ws

• Check to see if you have any missing dependencies (good practice
but not required)
rosdep install -i --from-path src --rosdistro foxy -y

• Use colcon build to build the project:
colcon build

Running the code

• Must source setup for your workspace in new
terminal

• cd to workspace directory
• To source workspace run:
	 source install/setup.bash
• To run node:

ros2 run cpp_pubsub talker

ROS2 Visualisation
● To debug the connections between nodes use:

– Visualises the node graph – and topic connections
● Rviz2 is the main visualisation tool for ROS:

– Provides plugins architecture for visualising different topics:
● Videos
● Map of environment and localised robot
● Point cloud within the map

$ rqt_graph

$ rviz2

ROS2 Visualisation

● To see if your node is punishing to a topic:
	 $ ros2 topic list

● To see what’s being published on a topic:
	 $ ros2 topic echo/<topic>

RQT

• rqt is a graphical front end to commands like list and
echo

• It let’s you generate message and listen to topic so
you can debug individual nodes

ROS 2 Bags
● Possible to save the data produced by topics for later analysis and playback:

– Creates a time stamped bag file in the current directory.
– Warning: “-a” records all topics so will generate a lot of data.

● Often useful to only record only direct sensor inputs (e.g., laser scans and timing) because the
other topics will be generated from processing sensor data.

● To replay:

● Useful if you are testing different interchangeable node (e.g., mapping with gmapping, hector
SLAM, or Cartographer).

● Note: SLAM (Simultaneous Localisation and Mapping) algorithms build a map while at the same
time localising. Very widely used in robotics.

$ ros2 bag record -a

$ ros2 bag play <bagfile>

ROS Tools – Simulator
Two standard simulators; Stage (2D) and
Gazebo (3D)
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation

The Gazebo guide - easy guide to get simulator
up and running.
$ export TURTLEBOT3_MODEL=waffle_pi

$ ros2 launch turtlebot3_gazebo turtlebot3_house.launch.py

https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation

Remapping
● mimic subscribes to turtlesim1 pose
● republishes it for turtlesim2 velocity

command topic to subscribe to.
● turtlesim2 mimics turtlesim1

movements

Launch Files
from launch import LaunchDescription
from launch_ros.actions import Node

def generate_launch_description():
 return LaunchDescription([
 Node(
 package='turtlesim',
 namespace='turtlesim1',
 executable='turtlesim_node',
 name='sim'
),
 Node(
 package='turtlesim',
 namespace='turtlesim2',
 executable='turtlesim_node',
 name='sim'
),

 Node(
 package='turtlesim',
 executable='mimic',
 name='mimic',
 remappings=[
 ('/input/pose', '/turtlesim1/turtle1/pose'),
 ('/output/cmd_vel', '/turtlesim2/turtle1/cmd_vel'),
]
)
])

Namespaces
● Create two nodes from same

executable
● Give each a separate namespace

ros2 launch <package> <launch file>

Frames of Reference
● ROS standardises the transformation model between different coordinate

frames of reference.
● Right Hand Rule, X forward (XYZ ↔ RGB)

● Tree structure:
– /map

● /base_link
– /base_footprint
– /laser

● Example: laser detected object is relative to laser frame. Need to transform
to map coordinate to know where it is on the map.

● https://docs.ros.org/en/humble/Tutorials/Tf2/Tf2-Main.html#tf2main

https://docs.ros.org/en/humble/Tutorials/Tf2/Tf2-Main.html#tf2main

Many Different Sensors
● Laser Scanner
● Camera
● IR Cameras
● Depth Cameras
● Motor
● Pressure Sensor
● Compass
● Accelerometer
● IMU (Inertial Measurement Unit) – detects linear acceleration using

accelerometer and rotation using gyroscope
● Audio
ROS provides standardised data structures for some of these sensors.

Laser Scanners
● A laser is rotated

through a plane
● Distance (& intensity)

measurements taken
periodically

● 180-270 degrees

sensor_msgs/LaserScan

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
float32 angle_min
float32 angle_max
float32 angle_increment
float32 time_increment
float32 scan_time
float32 range_min
float32 range_max
float32[] ranges
float32[] intensities

Cameras
● Stream images
● Various encodings

used (RGB, Mono,
UYVY, Bayer)

● ROS has no
conversion functions

sensor_msgs/Image

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

#include <sensor_msgs/image_encodings.h>

Depth Cameras
● Usually produce

Mono16 images
● Typically turned into

point clouds
● Depth measurements

can be radial or axial

sensor_msgs/PointCloud

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
geometry_msgs/Point32[] points
 float32 x
 float32 y
 float32 z
sensor_msgs/ChannelFloat32[] channels
 string name
 float32[] values

Motor Positions
● Many motors report

their positions
● Used to produce

transformations
between frames of
reference

sensor_msgs/JointState

std_msgs/Header header
 uint32 seq
 time stamp
 string frame_id
string[] name
float64[] position
float64[] velocity
float64[] effort

Lab Exercise
● Setup up connection to your robot
● Test that you can:

● teleoperate
● use Rviz to see state of robot
● try adding camera image
● run cartographer

● Begin working on wall follower

RoboCup

RoboCup@Home

RoboCup@Home

Project

Based on RoboCup@Home

1. Explore and map a home environment (first stage)

2. Use vision to recognise common objects in home

3. Given a goal, create and execute a plan (sequence of
actions) to achieve the goal

Robotics Laboratory

Interested in RoboCup

• Soccer:
• https://robotics.cse.unsw.edu.au/

robocupsoccer-standard-platform-league/
runswift-get-involved/

• @Home:
• Talk to any of your COMP3431/9434 tutors

https://robotics.cse.unsw.edu.au/robocupsoccer-standard-platform-league/runswift-get-involved/
https://robotics.cse.unsw.edu.au/robocupsoccer-standard-platform-league/runswift-get-involved/
https://robotics.cse.unsw.edu.au/robocupsoccer-standard-platform-league/runswift-get-involved/

