
COMP3153/9153
Algorithmic Verification

Lecture 1: Course Introduction

Welcome Famous Bugs Verification Admin State-based systems

Acknowledgement of Country

I would like to acknowledge and pay my respect to the Bedegal
people who are the Traditional Custodians of the land on which
UNSW is built, and of Elders past and present.

2

Welcome Famous Bugs Verification Admin State-based systems

A quick thought experiment

Would you get in a car driven by software written by
your fellow students?

3

Welcome Famous Bugs Verification Admin State-based systems

A quick thought experiment

Would you get in a car driven by software written by
your fellow students?

3

Welcome Famous Bugs Verification Admin State-based systems

Another quick thought experiment

Can you trust code written by AI?

4

Welcome Famous Bugs Verification Admin State-based systems

Another quick thought experiment

Can you trust code written by AI?

4

Welcome Famous Bugs Verification Admin State-based systems

Who are we?

I am Dr Paul Hunter. My research is on graph theory, algorithms,
and formal verification.

Professor Ron van der Meyden will be taking lectures in the second
half of term (and in Week 3). He works on formal methods, with
applications in distributed computing and computer security; and
he developed the MCK model checking tool.

Ronald Chiang, Dao Le, and Ye Li will be taking tutorials.

Dr Liam O’Connor, Dr Rob van Glabbeek, and A/Prof. Peter
Höfner are the former lecturers for this course.

5

Welcome Famous Bugs Verification Admin State-based systems

Contacting Us

http://www.cse.unsw.edu.au/~cs3153

Forum

There is a discourse forum available on the website. Questions
about course content should typically be made there. You can ask
us private questions to avoid spoiling solutions to other students.

Administrative questions should be sent to
paul.hunter@unsw.edu.au.

6

http://www.cse.unsw.edu.au/~cs3153
paul.hunter@unsw.edu.au

Welcome Famous Bugs Verification Admin State-based systems

Hardware Bugs: 1994 FDIV Bug

4195835

3145727
=

1.33370

Missing entries in a hardware
lookup table lead to 3-5 million de-
fective floating point units.

Consequences:

Intel image badly damaged

$450 million to replace FPUs.

7

Welcome Famous Bugs Verification Admin State-based systems

Hardware Bugs: 1994 FDIV Bug

4195835

3145727
= 1.33370

Missing entries in a hardware
lookup table lead to 3-5 million de-
fective floating point units.

Consequences:

Intel image badly damaged

$450 million to replace FPUs.

7

Welcome Famous Bugs Verification Admin State-based systems

Software Bugs: Asiana 777 Crash in 2014

8

Welcome Famous Bugs Verification Admin State-based systems

Software Bugs: Therac-25 (1980s)

Radiation therapy
machine.

Two operation modes:
high and low energy.

Only supposed to use
high energy mode with a
shield.

Bug caused high energy
mode to be used without
shield.

At least five patients died
and many more exposed
to high levels of radiation.

9

Welcome Famous Bugs Verification Admin State-based systems

Software Bugs: Therac-25 (1980s)

Radiation therapy
machine.

Two operation modes:
high and low energy.

Only supposed to use
high energy mode with a
shield.

Bug caused high energy
mode to be used without
shield.

At least five patients died
and many more exposed
to high levels of radiation.

9

Welcome Famous Bugs Verification Admin State-based systems

Software Bugs: Toyota Prius (2005)

Sudden stalling at
highway speeds.

Bug triggered ”fail-safe”
mode (heh).

Consequences:

75000 cars recalled.

Cost unknown. . . but
high.

10

Welcome Famous Bugs Verification Admin State-based systems

Software Bugs: Toyota Prius (2005)

Sudden stalling at
highway speeds.

Bug triggered ”fail-safe”
mode (heh).

Consequences:

75000 cars recalled.

Cost unknown. . . but
high.

10

Welcome Famous Bugs Verification Admin State-based systems

Software Bugs: Ariane 5, Flight 501 (1996)

Reuse of software from
Ariane 4

Overflow converting from
64 bit to 16 bit unsigned
integers.

Consequences:

Rocket exploded after 37
seconds.

US$370 million cost

11

Welcome Famous Bugs Verification Admin State-based systems

Software Bugs: Ariane 5, Flight 501 (1996)

Reuse of software from
Ariane 4

Overflow converting from
64 bit to 16 bit unsigned
integers.

Consequences:

Rocket exploded after 37
seconds.

US$370 million cost

11

Welcome Famous Bugs Verification Admin State-based systems

Northeast Blackout (2003)

Alarm went unnoticed.

Bug in alarm system,
probably due to a race
condition.

Consequences:

Total power failure for 7
hours, some areas up to 2
days.

55 million people affected

More than US$6 billion
cost

12

Welcome Famous Bugs Verification Admin State-based systems

Northeast Blackout (2003)

Alarm went unnoticed.

Bug in alarm system,
probably due to a race
condition.

Consequences:

Total power failure for 7
hours, some areas up to 2
days.

55 million people affected

More than US$6 billion
cost

12

Welcome Famous Bugs Verification Admin State-based systems

Tesla Recall (Feb 2022)

Self-driving software
would roll through stop
signs.

“Feature” enabled in
certain circumstances (30
mph zone, no cars or
pedestrians detected)

Cars will drive through
stop signs at up to 6 mph

Consequences:

54,000 vehicles recalled

Cost: Have you bought a
car recently?

13

Welcome Famous Bugs Verification Admin State-based systems

Tesla Recall (Feb 2022)

Self-driving software
would roll through stop
signs.

“Feature” enabled in
certain circumstances (30
mph zone, no cars or
pedestrians detected)

Cars will drive through
stop signs at up to 6 mph

Consequences:

54,000 vehicles recalled

Cost: Have you bought a
car recently?

13

Welcome Famous Bugs Verification Admin State-based systems

Ethereum bug

What is wrong with this code:

Example

transfer(account to, account from, uint amount){
require (balances[from] > amount);

balancesFrom := balances[from] - amount;

balancesTo := balances[to] + amount;

balances[from] := balancesFrom;

balances[to] := balancesTo;

}

14

Welcome Famous Bugs Verification Admin State-based systems

CrowdStrike (July 2024)

Faulty update to security
software

BSOD and unable to
properly restart

Error was an array index
out-of-bounds reference

Consequences:

Estimated 8.5 million
systems crashed
worldwide

Fix released within hours

More than US$10 billion
cost

15

Welcome Famous Bugs Verification Admin State-based systems

CrowdStrike (July 2024)

Faulty update to security
software

BSOD and unable to
properly restart

Error was an array index
out-of-bounds reference

Consequences:

Estimated 8.5 million
systems crashed
worldwide

Fix released within hours

More than US$10 billion
cost

15

Welcome Famous Bugs Verification Admin State-based systems

Trade-offs in Software Development

Our software should be
correct, safe and secure.

Our software should be
developed cheaply and quickly.

16

Welcome Famous Bugs Verification Admin State-based systems

Producing safe, secure and correct code

Recently a lot more effort directed towards safer code:

Rust, Typescript

Introduction of functional programming principles to
imperative languages

Requirements engineering

What if one bug is too many?

Can we produce error-free code?

17

Welcome Famous Bugs Verification Admin State-based systems

Producing safe, secure and correct code

Recently a lot more effort directed towards safer code:

Rust, Typescript

Introduction of functional programming principles to
imperative languages

Requirements engineering

What if one bug is too many?

Can we produce error-free code?

17

Welcome Famous Bugs Verification Admin State-based systems

Producing safe, secure and correct code

Recently a lot more effort directed towards safer code:

Rust, Typescript

Introduction of functional programming principles to
imperative languages

Requirements engineering

What if one bug is too many?

Can we produce error-free code?

17

Welcome Famous Bugs Verification Admin State-based systems

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=Udajbv263TE

18

https://www.youtube.com/watch?v=Udajbv263TE
https://www.youtube.com/watch?v=Udajbv263TE

Welcome Famous Bugs Verification Admin State-based systems

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=Udajbv263TE

18

https://www.youtube.com/watch?v=Udajbv263TE
https://www.youtube.com/watch?v=Udajbv263TE

Welcome Famous Bugs Verification Admin State-based systems

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=Udajbv263TE

18

https://www.youtube.com/watch?v=Udajbv263TE
https://www.youtube.com/watch?v=Udajbv263TE

Welcome Famous Bugs Verification Admin State-based systems

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=Udajbv263TE

18

https://www.youtube.com/watch?v=Udajbv263TE
https://www.youtube.com/watch?v=Udajbv263TE

Welcome Famous Bugs Verification Admin State-based systems

Verification

Ensuring that software or hardware satisfies requirements.

Requirements are:

That it does what it’s supposed to (morally, liveness)

That it doesn’t do what it’s not supposed to (morally, safety)

We’ll get to more precise definitions later.

Talk by Moshe Vardi (70+ year history of Program Verification):
https://www.youtube.com/watch?v=Udajbv263TE

18

https://www.youtube.com/watch?v=Udajbv263TE
https://www.youtube.com/watch?v=Udajbv263TE

Welcome Famous Bugs Verification Admin State-based systems

Does a program satisfy requirements?

We could try testing, but it’s not exhaustive.

Program testing can be used to show the presence of bugs, but
never to show their absence!

Edsger W. Dijkstra (1970) ”Notes On Structured Programming” (EWD249)

We want a rigorous and exhaustive method of verification.

We also want a method which scales.

19

Welcome Famous Bugs Verification Admin State-based systems

Does a program satisfy requirements?

We could try testing, but it’s not exhaustive.

Program testing can be used to show the presence of bugs, but
never to show their absence!

Edsger W. Dijkstra (1970) ”Notes On Structured Programming” (EWD249)

We want a rigorous and exhaustive method of verification.

We also want a method which scales.

19

Welcome Famous Bugs Verification Admin State-based systems

Does a program satisfy requirements?

We could try testing, but it’s not exhaustive.

Program testing can be used to show the presence of bugs, but
never to show their absence!

Edsger W. Dijkstra (1970) ”Notes On Structured Programming” (EWD249)

We want a rigorous and exhaustive method of verification.

We also want a method which scales.

19

Welcome Famous Bugs Verification Admin State-based systems

Does a program satisfy requirements?

We could try testing, but it’s not exhaustive.

Program testing can be used to show the presence of bugs, but
never to show their absence!

Edsger W. Dijkstra (1970) ”Notes On Structured Programming” (EWD249)

We want a rigorous and exhaustive method of verification.

We also want a method which scales.

19

Welcome Famous Bugs Verification Admin State-based systems

Formal Verification

Code
· · ·
slowCarDown()

· · ·

Specification

IF brake pedal is pressed

THEN the pads will be

applied EVENTUALLY.

20

Welcome Famous Bugs Verification Admin State-based systems

Formal Verification

Code
· · ·
slowCarDown()

· · ·

Specification

IF brake pedal is pressed

THEN the pads will be

applied EVENTUALLY.

Automatic Verifier

(MCK)

20

Welcome Famous Bugs Verification Admin State-based systems

Formal Verification

Code
· · ·
slowCarDown()

· · ·

Specification

IF brake pedal is pressed

THEN the pads will be

applied EVENTUALLY.

Automatic Verifier

(MCK)

Meets specification! Have you considered ...

20

Welcome Famous Bugs Verification Admin State-based systems

Formal Verification

Code
· · ·
slowCarDown()

· · ·

Specification

IF brake pedal is pressed

THEN the pads will be

applied EVENTUALLY.

Automatic Verifier
(MCK)

Meets specification! Have you considered ...

20

Welcome Famous Bugs Verification Admin State-based systems

Formal Verification (Mathematically)

Source Code
in a PL Syntax

Requirements
in English

Formal Model

Automata

Requirements
in Logic

Formalisation

|=
mathematically

satisfies

21

Welcome Famous Bugs Verification Admin State-based systems

Formal Verification (Mathematically)

Source Code
in a PL Syntax

Requirements
in English

Formal Model

Automata

Requirements
in Logic

Formalisation

|=
mathematically

satisfies

21

Welcome Famous Bugs Verification Admin State-based systems

Formal Verification (Mathematically)

Source Code
in a PL Syntax

Requirements
in English

Formal Model

Automata

Requirements
in Logic

Formalisation

|=
mathematically

satisfies

21

Welcome Famous Bugs Verification Admin State-based systems

Formal Verification (Mathematically)

Source Code
in a PL Syntax

Requirements
in English

Formal Model

Automata

Requirements
in Logic

Formalisation

|=
mathematically

satisfies

21

Welcome Famous Bugs Verification Admin State-based systems

Learning outcomes

Develop formal models of software systems, amenable to
automatic verification

Formulate formal requirements for software systems, amenable
to automatic verification

Compare and contrast different algorithms used in automatic
verification

Assess the viability of a number of verification tools for a
variety of automatic verification tasks

Integrate modelling, specification, and verification algorithms
to build a formally verified system

Compare and contrast models, logics, and algorithms used in
the verification of timed systems

22

Welcome Famous Bugs Verification Admin State-based systems

Course schedule

A (very) tentative course schedule, subject to change:
Week 1 Background, State-based models

Week 2 Automata, Kripke structures, Verification games

Week 3 Tool: MCK

Week 4 Properties, Temporal logics

Week 5 Other logics

Week 6 Flexibility week

Week 7 CTL (Symbolic) Model Checking algorithms

Week 8 LTL Model Checking

Week 9 CEGAR, Bounded Model Checking

Week 10 Epistemic logics, models and verification

23

Welcome Famous Bugs Verification Admin State-based systems

What do we expect?

Maths

This course uses a significant amount of discrete mathematics.
You will need to be reasonably comfortable with logic, set theory
and induction. MATH1081 ought to be sufficient for aptitude in
these skills, but experience has shown this is not always true.

Programming

We expect you to be familiar with imperative programming
languages like C. Course assignments may require some
programming in modelling languages. Some self-study may be
needed for these tools.

24

Welcome Famous Bugs Verification Admin State-based systems

What do we expect?

Maths

This course uses a significant amount of discrete mathematics.
You will need to be reasonably comfortable with logic, set theory
and induction. MATH1081 ought to be sufficient for aptitude in
these skills, but experience has shown this is not always true.

Programming

We expect you to be familiar with imperative programming
languages like C. Course assignments may require some
programming in modelling languages. Some self-study may be
needed for these tools.

24

Welcome Famous Bugs Verification Admin State-based systems

Assessment

Assessment in this course consists of:

weekly formative assessment tasks (presented in the formatif
system); and

a final in-person exam;

with equal weighting between both assessment types.

25

https://formatif.cse.unsw.edu.au

Welcome Famous Bugs Verification Admin State-based systems

Formative assessments

Students select the level of work to be attempted (can be
changed)

Tasks are to be completed to satisfactory level (according to
target grade)

Feedback from teaching staff to achieve task completion

Final grade determined by portfolio of tasks completed

26

Welcome Famous Bugs Verification Admin State-based systems

Formatif system

15–30 Tasks in two streams:
Stream A: Build a formally verified system

Weekly tasks, generally due on Mondays
Using tutorials and peer review to refine each component

Stream B: Questions addressing abstract concepts

Four sets (one per topic)
Tailored to target grade

Submission on Mondays (AOE)

Feedback/discussion in tutorials

Must be completed following tutorials

27

Welcome Famous Bugs Verification Admin State-based systems

Resources

Lecture Recordings

In previous years, no recordings were made available for this
course. I will endeavour make them available this year, however
their quality and availability is not guaranteed.

Lectures are intended to be an interactive experience – I will be
delivering them in real-time.

The only way to ensure you have the best lecture experience for
this course is to attend the lectures!

Textbooks

This course follows more than one textbook. Each week’s slides
will include a bibliography. A list of books is given in the course
outline, all of the books listed are available from the library.

28

Welcome Famous Bugs Verification Admin State-based systems

Resources

Lecture Recordings

In previous years, no recordings were made available for this
course. I will endeavour make them available this year, however
their quality and availability is not guaranteed.

Lectures are intended to be an interactive experience – I will be
delivering them in real-time.

The only way to ensure you have the best lecture experience for
this course is to attend the lectures!

Textbooks

This course follows more than one textbook. Each week’s slides
will include a bibliography. A list of books is given in the course
outline, all of the books listed are available from the library.

28

Welcome Famous Bugs Verification Admin State-based systems

Tutorial preparation

Given jugs of 3L and 5L, measure out exactly 4L.

29

	Welcome
	

	Famous Bugs
	Verification
	Admin
	State-based systems

