COMP1511: Memory, Pointers,
Passing values by reference

— Session 2, 2018 —

Reminder : Practical exam next week!

e Your first practical exam for this course during your lab next
week.

e Sample exam is available now.

e Like lab exercises, simple test cases will be provided. However,
you must test your programs using your own extensive set of

test cases.

e The way you test your solutions will be slightly different to what

you do in your labs.

| COMP1511 |

Some Questions?

1. will there be autotests in the exam next week? - see the previous slide.

2. (when) will the tute/lab answers be released? - yes, lab03 sample solutions are
available, others will be available by say tomorrow.

3. are challenge exercises worth any bonus marks? : No, there are no bonus
marks for challenge exercises. However, you solve them because you love
challenges, and will learn a great deal from them!

4. there's a public holiday on monday week 10, which has the second prac exam
scheduled -- what will happen for this? : Monday tut/labs will have exam in

week-11.

| COMP1511 |

Decimal Representation

e Can interpret decimal number 4705 as:

4 x 10347 x 102 + 0 x 10 +5 x 10°
e The base or radix is 10
Digits 0 — 9

e Place values:
1000 100 10 1
103 102 10! 100

e Write number as 47051

» Note use of subscript to denote base

[COMP1511 |

Binary Representation

e In a similar way, can interpret binary number 1011 as:

1x2240x2%24+1x21+1x20
e [he base or radix is 2
Digits 0 and 1

e Place values:
8 4 2 1
28 p2 2L 90
e Write number as 10115
(= 1110)

[COMP1511 |

Hexadecimal Representation

e Can interpret hexadecimal number 3AF1 as:

3 x 163 4+ 10 x 162 + 15 x 161 + 1 x 169
e [he base or radix is 16
Digits 051,2.:3,4:5:6,75859:;4:;B;C;D,E;F

e Place values:
4096 256 16 1

163 162 16! 169
e Write number as 3AF146
(: 1508910)

[COMP1511 |

Binary to Hexadecimal

0 1 2 3 4 5 6 7
0000 | 0001 | 0010 | 0011 | 0100 | 0101 | O110 | O111
8 9 A B C D E I3
1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111

e /dea: Collect bits into groups of four starting from right to left
e “pad” out left-hand side with 0's if necessary

e Convert each group of four bits into its equivalent
hexadecimal representation (given in table above)

[COMP1511 |

Binary to Hexadecimal

e Example: Convert 1011111000101001, to Hex:

1011

1110

0010

1001,

B

E

2

O16

e Example: Convert 10111101011100, to Hex:

0010

6l s |

0101

1100

2

F

5

Ci6

| COMP1511 |

Hexadecimal to Binary

e Reverse the previous process

e Convert each hex digit into equivalent 4-bit binary
representation

e Example: Convert AD51¢ to Binary:

1010 | 1101 | 0101,

[COMP1511 |

Memory Organisation

e During execution programs variables are stored in memory.

e Memory is effectively a gigantic array of bytes.
COMP1521 will explain more

e Memory addresses are effectively an index to this array of
bytes.

e These indexes can be very large
up to 232 — 1 on a 32-bit platform
up to 2°4 — 1 on a 64-bit platform

e Memory addresses usually printed in hexadecimal (base-16).

| COMP1511 | 10

Memory Organisation

In order to fully understand how pointers are used to reference
data in memory, here's a few basics on memory organisation.

OxFFFFEFFF | High Memory
OxFEFFFFFE

0x00000001
0x00000000 | Low Memory

| COMP1511 | 11

Memory

e computer memory is a large array of bytes
e a variable will stored in 1 or more bytes

e on CSE machines a char occupies 1 byte, a an int 4 bytes, a
double 8 bytes

e The & (address-of) operator returns a reference to a variable.

e Almost all C implementations implement pointer values using
a variable's address in memory

e Hence for almost all C implementations & (address-of)
operator returns a memory address.

e |t is convenient to print memory addresses in Hexadecimal
notation.

[COMP1511 |

12

Variables in Memory

it k:

int m; “(////

printf("address of k is %p\n", &k);
// prints address of k is Ozbffffb80

printf("address of m is %p\n", &m);
// prints address of k is Oxbffffb84

e k occupies the four bytes from Oxbffffb80 to Oxbffffb83
e m occupies the four bytes from Oxbffffb84 to Oxbffffb87

| COMP1511 | 13

Arrays in Memory

Elements of the array will be stored in consecutive memory a points to the start of
locations:
int a[5];

J

the array (a[0])

int i = 0;
while (i < 5) { A A A A A
printf ("address of al)d] is %p\n", i, &alil);

¥

/4 prinis:

// address of al[0] is Ozbffffb60
// address of al[1] is Ozbffffb64
// address of al[2] is Ozbffffb68
// address of al[3] is Ozbffffb6c
// address of al4] is Oxzbffffb70

[COMP1517 | 17

Size of a Pointer

Just like any other variable of a certain type, a variable that is a
pointer also occupies space in memory. The number of bytes
depends on the computer’s architecture.

e 32-bit platform: pointers likely to be 4 bytes
e.g. CSE lab machines (about to change)

e 064-bit platform: pointers likely to be 8 bytes
e.g. many student machines

e tiny embedded CPU: pointers could be 2 bytes
e.g. your microwave

[COMP1511 |

15

Pointers

A pointer is a data type whose value is a reference to another
variable

int *ip; // pointer to int

char *cp; // pointer to char

double *fp; // pointer to double

In most C implementations, pointers store the the memory address
of the variable they refer to.

Say 45 is stored at
. | p address oxbffffb64
or example, conceptua ,
4 ip | oxbffEfb64 —> 45
ip points to an int value,
cp points to a char and CP| oxal221c32 —> b
fp points to a double value.
fp | oxa4231522 —> 24

.

| COMP1511 |

16

Pointers

o The & (address-of) operator returns a reference to a variable.
e The * (dereference) operator accesses the variable refered to
by the pointer.

for example: N / \

int i = 7; Say iis at
int *ip = &i; address
printf("id\n", *ip): 7/ prints 7 oxbff£fb64
xip = *ip * 6; i|7
printf("/%d\n", i); //oprints 42 /
L = A i fE£fb64
printf ("/%d\n", *ip); // prints 24 P [oxbEffEEb
L)\ -

[COMP1517 | 17

Pointers

e Like other variables, pointers need to be initialised before they
are used .

e Like other variables, its best if novice programmers initialise
pointers as soon as they are declared.

e The value NULL can be assigned to a pointer to indicate it
does not refer to anything.

e NULL is a #define in stdio.h
e NULL and 0 interchangable (in modern C).
e Most programmers prefer NULL for readability.

[COMP1517 | 18

Pointer Arguments

We've seen that when primitive types are passed as arguments to
functions, they are passed by value and any changes made to them

void increment(int n) {

=n + 1;

This attempt fails. But how does a function like scanf manage to
update variables found in the caller? scanf takes pointers to those
variables as arguments!

void increment(int *n) {

*n = *n + 1; n

int variable at
oxbffffb64

/E

oxbffffbo64

/

| COMP1511 | 19

Pointer Arguments

We use pointers to pass variables by reference! By passing the
address rather than the value of a variable we can then change the
value and have the change reflected in the caller.
[int i = 1;

increment (&1i) ;

printf ("Ad\a*, i);

//prints 2
N

N

In a sense, pointer arguments allow a function to ‘return’ more
than one value. This greatly increases the versatility of functions.
Take scanf for example, it is able to read multiple values and it
uses its return value as error status.

[COMP1511] 20

Passing values by Reference

#include <stdio.h> ‘/,

Simple example to void fL(int a, 4nE*p) {
illust b | a=a+25;
illustrate pass by value *p = *p + 7;

}

and reference

int main(int argc, char *argv[]) {
int x = 25;
int y = 33;

printf("Before calling fl: x=%d y=%d\n", X, y);

\fl(x. &y);

printf("After calling fl: x=%d y=%d\n", X, y);
// x 1is unchanged, y changed

return 0;

[COMP1511 | 21

Array Reference

void addGST(double a[], int size) {
0;

int i =
while(i<size){
alki] = 23X #* alils
i++;
}

}

Simple example to illustrate
how to modify an array

passed as an argument to a

void printArray(double a[], int size)({

int i = 0;

while(i<size)({
printf("s%10.21f ", a[il);
1++;

}
printf("\n");

- }
function.
int main(int argc, char *argv[]) {
double values[] = { 25.0, 32.5, 12.25, 52.50} ;
printf("Before calling addGST: ");
--.\~\\\\~ printArray(values, 4);
RN addGST(values , 4);
printf("After calling addGST: ");
printArray(values, 4);
return 0;
}
[COMP151T | 22

Pointer Arguments

Classic Example
Write a function that swaps the values of its two integer
arguments.

Before we knew about pointer arguments this would have been
impossible, but now it is straightforward.
=

void swap(int *n, int *m) {

int tmp;
tmp = *n;
*n = *m;
*m = tmp,

//%tvaﬁabb

5

|

N3

intvaﬁab;;\

8

|

4

| COMP1511 |

23

Pointer Return Value

You should not find it surprising that functions can return pointers.
However, you have to be extremely careful when returning pointers.
Returning a pointer to a local variable is illegal - that variable is
destroyed when the function returns.

But you can return a pointer that was given as an argument:

P

int *increment(int *n) {
*n = *n + 1;
return n;

}

3 .
Nested calling is now possible: increment (increment (&1i)) ;

[COMP1511 |

24

Array Representation

A C array has a very simple underlying representation, it is stored

in a contiguous (unbroken) memory block and a pointer is kept to

;he beginning of the block.

char s[] = "Hil";

printf("s: %p #*s: %c\n\n", s, *8);
printf("&s[0]: 4p 8[0]: Ac\n", &=[0], s[0]);
printf("&s(1]: %p slll: %e\n", &slil, =[11);
printf("&s[2]: Yp s[2]: %c\n", &s[2], s[2]);
printf("&s([3]: Zp 8[3]: XAc\n", &s[3], s8[3]1);
7/ prints

// s: OTTfff4bT741060 *s: H

// 6s[0]: OxVfff4b741060 s[0]: H

// Es[1]: Ox7fff4b741061 s[1]: %

// Es[2]: O0x7fff4b741062 s[2]: !

// ©s[3]: OzTfff4b741063 s[3]:

~

Array variables act as pointers to the beginning of the arrays!

S points to the start of
the array (s[0])

Hii ! [\

| COMP1511 |

25

Array Representation

Since array variables are pointers, it now should become clear why
we pass arrays to scanf without the need for address-of (&) and
why arrays are passed to functions by reference!

We can even use another pointer to act as the array name!
4 N

int nums[] = {1, 2, 3, 4, 5};
int *p = nums;

printf ("/d\n", nums[2]);
printf(Y%d\n", pl21);
77 both print: 3

- £
Since nums acts as a pointer we can directly assign its value to the
pointer p!

[COMP1511] 26

Array Representation

We can even make a pointer point to the middle of an array:
int nums[] = {1, 2, 3, 4, 5};
int *p = &nums[2];
printf ("%d %d\n", *p, pl[0]);

So is there a difference between an array variable and a pointer?
int 1 = 5;
p = &i; // this is OK
nums = &i; // this is an error

Unlike a regular pointer, an array variable is defined to point to the
beginning of the array, it is constant and may not be modified.

| COMP1511 | 27

Pointer Comparison

Pointers can be tested for equality or relative order.
-

double ff[] = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6};
double *fpl = ff;

double *fp2 = &ff[0];

double *fp3 = &ff[4];

printf ("%d %d\n", (fp1 > £p3), (fpl == £p2));
// prints: 0 1

AL J
Note that we are comparing the values of the pointers, i.e.,
memory addresses, not the values the pointers are pointing to!

[COMP1511] 28

Pointer Summary

Pointers:

are a compound type

usually implemented with memory addresses

are manipulated using address-of(&) and dereference()
should be initialised when declared

can be initialised to NULL

should not be dereferenced if invalid

are used to pass arguments by reference

are used to represent arrays

should not be returned from functions if they point to local
variables

[COMP1511 |

29

