
COMP2511

Course	Review
Exam	Structure

Prepared	by
Dr.	Ashesh Mahidadia



Course	Review

2COMP2511: Course Review and Exam Structure



Object	Oriented	Programming	in	Java:		Introduction

• Abstraction
• Encapsulation
• Inheritance	(single	vs	multiple)
• Polymorphism
• Objects,	Classes,	Interfaces
• Method	Forwarding
• Method	Overriding
• Generics
• Exceptions

• Domain	Modeling

COMP2511:	Course	Review	and	Exam	Structure 3



Object	Oriented	Design	:		Principles

• Encapsulate what	varies
• Favour composition	over	inheritance

• Program	to	an	interface,	not	an	implementation

• Principle	of	least	knowledge	(Law	of	Demeter)

• Liskov’s Substitution	Principle
• Classes	should	be	(OCP) open	for	extension	and	closed	for	modification	

• Avoid	multiple/diverse	responsibilities	for	a	class

• Strive	for	loosely	coupled	designs	between	objects	that	interact

COMP2511:	Course	Review	and	Exam	Structure 4



Code	Smells	and	Refactoring

v Smells:	design	aspects	that	violate	fundamental	design	principles	and	impact	software	
quality

v Design	Smells	vs	Code	Smells	

v Code	smells	are	usually	not bugs;		they	are	not	technically	incorrect	and	do	not	prevent	
the	program	from	functioning.	

v They	indicate	weaknesses in	design	that	may	slow	down	development	or	increase	the	
risk	of	bugs	or	failures	in	the	future.

v Regardless	of	the	granularity,	smells	in	general	indicate	violation	of	software	design	
principles,	and	eventually	lead	to	code	that	is	rigid,	fragile	and	require	“refactoring”

v Code	refactoring	is	the	process	of	restructuring existing	computer	code	without	
changing its	external	behavior.

COMP2511:	Course	Review	and	Exam	Structure 5



Design	Patterns

vCreational	Patterns
v Abstract	Factory
v Factory	Method
v Builder
v Singleton

vStructural	Patterns
v Adapter
v Composite
v Decorator

COMP2511:	Course	Review	and	Exam	Structure 6

vBehavioral	Patterns
v Iterator
v Observer
v State
v Strategy
v Template
v Visitor



Design	Patterns:	Creational	Patterns

Creational	design	patterns	deal	with	object	creation	mechanisms,	trying	to	create	objects	
in	a	manner	suitable	to	the	situation.	

Four	well-known	creational	design	patterns:

v Factory	method	pattern: allows	a	class	to	defer	instantiation	to	subclasses.

v Abstract	factory	pattern: provides	an	interface	for	creating	related	or	dependent	
objects	without	specifying	the	objects'	concrete	classes.

v Builder	pattern: separates	the	construction	of	a	complex	object	from	its	
representation	so	that	the	same	construction	process	can	create	different	
representations.

v Singleton	pattern: ensures	that	a	class	only	has	one	instance,	and	provides	a	global	
point	of	access	to	it.

COMP2511:	Course	Review	and	Exam	Structure 7

from	the	corresponding	wikipedia page.	



Design	Patterns:	Structural	Patterns

Structural	design	patterns are	design	patterns	that	ease	the	design	by	identifying	a	simple	
way	to	realize	relationships	among	entities.	

Three	well-known	structural	design	patterns:

v Adapter	pattern: 'adapts'	one	interface	for	a	class	into	one	that	a	client	expects

v Composite	pattern:	a	tree	structure	of	objects	where	every	object	has	the	same	
interface (leaf		and	composite	nodes)

v Decorator	pattern:	add	additional	functionality	to	a	class	at	runtime where	sub-
classing	would	result	in	an	exponential	rise	of	new	classes.

COMP2511:	Course	Review	and	Exam	Structure 8

from	the	corresponding	wikipedia page.	



Design	Patterns:	Behavioral	Patterns
Behavioral	design	patterns are	design	patterns	that	identify	common	communication	patterns	
among	objects	and	realize	these	patterns.	By	doing	so,	these	patterns	increase	flexibility	in	
carrying	out	this	communication.

Six	well-known	structural	design	patterns:
v Iterator	pattern:	Iterators	are	used	to	access	the	elements	of	an	aggregate	object	

sequentially	without	exposing	its	underlying	representation.
v Observer	pattern:	Objects	register	to	observe	an	event	that	may	be	raised	by	another	

object.	Also	known	as	Publish/Subscribe	or	Event	Listener.	
v Strategy	pattern: Algorithms	can	be	selected	at	runtime,	using	composition.
v State	pattern: A	clean	way	for	an	object	to	partially	change	its	type	at	runtime.
v Template	method	pattern: Describes	the program	skeleton of	a	program;	algorithms	

can	be	selected	at	runtime,	using	inheritance.
v Visitor	pattern: A	way	to	separate	an	algorithm	from	an	object.

COMP2511:	Course	Review	and	Exam	Structure 9

from	the	corresponding	wikipedia page.	



Exam	Structure

10COMP2511: Course Review and Exam Structure



Final	Exam	:	Structure

v Online exam	(like	practical	exams	in	the	previous	courses)

v Three parts	

v Part-1:	Multiple	Choice	Questions	(20	marks),	

-make	sure	to	save	and	importantly	to	submit (by	clicking	on	the	button)

v Part-2:	Short	Answer	Questions	(30	marks)	– answer	in	a	text	box	provided,	brief	and	to	

the	point,	only	few	lines!	

-make	sure	to	save	and	importantly	to	submit (by	clicking	on	the	button)

v Part-3:	Programming (50	marks)	– four	questions	(see	the	sample	exam),	

- follow	the	instructions	in	a	question	to	submit.
COMP2511:	Course	Review	and	Exam	Structure 11



Sample	Final	Exam

• Go	to	:		
https://www.cse.unsw.edu.au/~cs2511/19T2/lectures/SampleExam/SampleExam.html

COMP2511:	Course	Review	and	Exam	Structure 12



Evaluation

v CATEI	Evaluation	available	via	myUNSW.
v Tell	us	what	you	like/dislike	about	the	course,	we	do	take	your	input	

seriously.
v Thanks	...

COMP2511:	Course	Review	and	Exam	Structure 13



And	Finally	...	…

COMP2511:	Course	Review	and	Exam	Structure 14



End	

COMP2511:	Course	Review	and	Exam	Structure 15


