
	 1	

Lab	Exercise	3	(part	A)	Introduction	to	Mininet	

Objectives:	
• Learn	the	basic	commands	in	Mininet	
• Learn	how	to	create	basic	network	topologies	in	Mininet	
• Learn	Mininet	API	

Marks:	
This	 exercise	 forms	 the	 first	 part	 of	 lab	 exercise	 3.	 The	 second	 part	 (part	 B)	 will	 be	 part	 of	 next	
week’s	 lab.	 Both	 parts	 together	 will	 comprise	 15	 marks.	 Only	 selected	 exercises	 will	 be	 marked.	
However,	students	must	submit	answers	for	all	exercises.	

Deadline:	
Before	your	scheduled	lab	next	week.	So	you	get	one	week	to	work	on	this	lab.	For	example,	if	you	
go	 to	 the	 Monday	 12	 noon	 lab,	 then	 your	 submission	 is	 due	 before	 12	 noon	 on	 the	 following	
Monday.	 You	 can	 submit	 as	many	 times	 as	 you	wish	 before	 the	 deadline.	 A	 later	 submission	will	
override	the	earlier	submission,	so	make	sure	you	submit	the	correct	file.	Do	not	leave	until	the	last	
moment	to	submit,	as	there	may	be	technical	or	communications	error	and	you	will	not	have	time	to	
rectify	it.		

Late	Penalty:	
Late	penalty	will	be	applied	as	follows:	

• 1	day	after	deadline:	20%	reduction	
• 2	days	after	deadline:	40%	reduction	
• 3	days	after	deadline:	60%	reduction	
• 4	or	more	days	late:	NOT	accepted	

Note	that	the	above	penalty	is	applied	to	your	final	mark.	For	example,	if	you	submit	your	lab	work	2	
days	late	and	your	score	on	the	lab	is	8,	then	your	final	mark	will	be	8-3.2	(40%	penalty)	=	4.8.	

Submission	Instructions:	
Submit	 a	 PDF	 document	 lab3a.pdf	 with	 answers	 to	 all	 questions	 for	 all	 exercises.	 Include	 all	
supporting	documents	such	as	topology	files	for	Questions	5	and	6(*.py).	Create	a	tar	archive	of	all	
files	 called	 lab3a.tar.	 Submit	 the	archive	using	give.	Click	on	 the	 submission	 link	at	 the	 top	of	 the	
page.	Max	file	size	for	submission	is	3MB.	

Original	Work	Only:	
You	are	strongly	encouraged	to	discuss	the	questions	with	other	students	in	your	lab.	However,	each	
student	must	submit	his	or	her	own	work.	You	may	refer	to	the	reference	material	and	also	conduct	
your	own	research	to	answer	the	questions.	



	 2	

	

Part	1:	Basic	Commands	in	Mininet	
In	the	first	step,	we	start	a	simple	network	topology	by	running	the	following	command:	

	

The	 above	 command	 creates	 the	 default	 topology	 in	 Mininet	 (known	 as	 the	minimal	 topology),	
which	includes	one	OpenFlow1	kernel	switch	connected	to	two	hosts,	plus	the	OpenFlow	reference.	
This	topology	could	also	be	mentioned	on	the	command	line	using	option	--topo=minimal	with	the	
mn	command.	Once	you	run	the	above	command,	all	four	entities	(two	hosts,	one	switch,	and	one	
controller)	are	running	in	the	VM	and	the	Mininet	CLI	comes	up.	You	can	run	the	help	command	to	
see	the	list	of	commands	in	the	CLI.	In	the	rest	of	this	section,	you	will	practice	the	basic	commands	
in	Mininet.		

Display	nodes:	

	

For	more	detailed	information	about	the	nodes	in	the	network,	use	dump.	

Display	topology:	

	

Simple	commands	within	a	node:	

If	the	first	string	typed	into	the	Mininet	CLI	 is	a	host,	switch	or	controller	name,	the	corresponding	
command	is	executed	on	that	node.	For	example,	run	the	following	command	on	host	h1	to	show	its	
network	interfaces.	

	

																																																													
1	OpenFlow	is	communication	protocol	between	switches	and	controllers.	We	do	not	need	to	know	the	details	
of	the	OpenFlow	protocol	in	this	course.	

Notation:	 In	the	examples	below,	we	have	used	the	$	sign	to	represent	Linux	commands	that	
should	be	 typed	at	 the	shell	prompt,	mininet>	 to	show	Mininet	commands	that	should	be	
typed	at	Mininet’s	CLI	(command	line	interface),	and	#	to	show	Linux	commands	that	are	typed	
at	a	root	shell	prompt.	In	each	case,	you	should	only	type	the	name	of	the	command	and	then	
press	return.	The	actual	prompt	may	look	very	different	on	your	computer	(e.g.	it	may	contain	
the	computer's	hostname,	or	your	username,	or	the	current	directory	name).	The	commands	
that	you	are	supposed	to	type	are	in	this	bold	font.	

$ sudo mn	

mininet> nodes	

mininet> net	

mininet> h1 ifconfig -a	



	 3	

In	the	above	command,	you	can	replace	h1	with	s1	to	see	the	details	of	the	switch’s	interfaces.	Also,	
for	a	list	of	processes	in	a	host	you	can	run	h1	ps	–a.	

Note	that	a	switch	is	a	layer	2	packet	switch	(also	known	as	a	bridge).	We	will	examine	switches	in	
details	when	we	study	about	the	link	layer.		

Question	1:	Draw	the	Mininet	minimal	topology	and	include	the	IP	and	MAC	addresses	for	hosts	and	
the	switch.	To	which	switch	ports	are	the	hosts	and	controller	connected?		

Test	connectivity	between	hosts:	

In	order	to	ping	host	1	from	host	2,	run	the	following	command:	

	

Question	2:	Examine	the	ping	time	for	all	five	tries	in	the	above	command.	What	is	the	ping	time	for	
each	try?	

Question	3:	You	should	see	that	the	ping	time	for	the	first	try	is	 larger	than	the	next	tries.	How	do	
you	explain	this	observation?	

A	simple	way	to	test	the	connectivity	of	all	nodes	in	the	Mininet	CLI	is	to	run	the	pingall	command,	
which	does	an	all-pairs	ping.	

XTerm	display	
To	display	an	xterm	for	host	h1,	 run	the	 following	command.	This	will	be	useful	 to	run	commands	
within	a	host	or	switch.	

	

Python	Interpreter	
If	 the	 first	 part	of	 a	 command	 in	Mininet	 is	py,	 then	 the	CLI	 interprets	 the	 command	as	 a	Python	
command.	 This	 helps	 you	 to	 manipulate	 the	 network	 objects,	 such	 as	 hosts,	 switches,	 and	
controllers,	using	the	CLI.	Here	is	an	example	which	displays	the	IP	address	of	host	h1.	

	

Exit	and	clean	up	
For	exiting	 from	the	Mininet	CLI,	 run	command	exit.	 It	 is	 strongly	 recommended	 to	clean	up	after	
exiting	by	running	command	sudo	mn	–c.	

NOTE:	 PLEASE	 REMEMBER	 TO	MOUNT	 YOUR	 CSE	 HOME	 DIRECTORY	 IN	 THE	 VM	 AND	 TO	 SAVE	
YOUR	WORK	IN	YOUR	HOME	DIRECTORY	BEFORE	QUITING.	

mininet> h1 ping –c5 h2	

mininet> xterm h1	

mininet> py h1.IP()	



	 4	

Part	2:	Custom	Topologies	
Mininet	 supports	 a	 simple	 Python	 API	 to	 create	 custom	 network	 topologies.	 You	 can	 create	 your	
custom	topology	by	writing	a	few	lines	of	Python	code.	For	example,	Figure	1	shows	a	topology	with	
two	switches	and	four	hosts.	Figure	2	implements	the	topology	using	the	Mininet	Python	API.	 	The	
code	consists	of	a	class,	named	MyFirstTopo	which	extends	the	Topo	class	provided	by	the	API.	We	
suggest	 that	you	SSH	 into	your	mininet	VM	so	 that	you	can	use	a	GUI	 text	editor	 such	as	gedit	or	
emacs	 (see	 instructions	 in	 the	 Mininet	 Introduction	 document).	 Save	 the	 source	 code	 in	 a	 file,	
named	myfirsttopo.py	 in	 your	 (mounted)	CSE	home	directory.	 You	 can	download	 the	 source	 code	
from	here:	myfirsttopo.py.	Change	the	working	directory	to	your	CSE	home	directory	and	type:		

	

Question	4:	Draw	Figure	1	and	label	the	IP	and	MAC	address	for	the	hosts.	Also	label	the	interface	
names	and	MAC	address	of	the	switch	ports	that	are	connected	to	the	hosts.	

Switch	2	(s2)Switch	1	(s1)

Host	1	(h1)

Host	2	(h2)

Host	3	(h3)

Host	4	(h4) 	
Figure	1	A	sample	network	topology	(myfirsttopo.py)	

	
Figure	2	Source	code	for	the	custom	topology	presented	in	Figure	1.	

mininet> sudo mn --custom myfirsttopo.py --topo myfirsttopo	

1. from	mininet.topo	import	Topo			
2. 			
3. class	MyFirstTopo(	Topo	):			
4. 				"Simple	topology	example."			
5. 				def	__init__(	self	):			
6. 								"Create	custom	topo."			
7. 								#	Initialize	topology			
8. 								Topo.__init__(	self	)			
9. 								#	Add	hosts	and	switches			
10. 								h1	=	self.addHost(	'h1'	)			
11. 								h2	=	self.addHost(	'h2'	)			
12. 								h3	=	self.addHost(	'h3'	)			
13. 								h4	=	self.addHost(	'h4'	)			
14. 								leftSwitch	=	self.addSwitch(	's1'	)			
15. 								rightSwitch	=	self.addSwitch(	's2'	)			
16. 								#	Add	links			
17. 								self.addLink(	h1,	leftSwitch	)			
18. 								self.addLink(	h2,	leftSwitch	)			
19. 								self.addLink(	leftSwitch,	rightSwitch	)			
20. 								self.addLink(	rightSwitch,	h3	)			
21. 								self.addLink(	rightSwitch,	h4	)			
22. 	
23. topos	=	{	'myfirsttopo':	(	lambda:	MyFirstTopo()	)	}			



	 5	

If	 you	want	 to	 run	 a	 quick	 test	without	 entering	 the	 CLI,	 you	 can	 use	 option	 --test	 in	Mininet,	 as	
follow:	

	

Now	assume	that	we	want	to	accomplish	the	following:	

1. Create	the	topology	shown	in	Figure	1	
2. Start	the	network	
3. Show	the	detailed	connectivity	of	all	nodes	in	the	network	
4. Test	the	connectivity	by	pinging	all	nodes	

We	can	automate	this	sequence	of	operations	by	writing	a	Python	script.	This	helps	us	to	automate	
network	 experiments.	 To	 this	 end,	 we	 extend	 the	 previous	 source	 code,	 as	 shown	 in	 Figure	 3.	
Download	the	source	code	from	here:	myfirstexpr.py.	

	
Figure	3	Source	code	for	an	experiment	on	the	custom	topology.	

mininet> sudo mn --custom myfirsttopo.py --topo myfirsttopo --test pingall	

1. #!/usr/bin/python			
2. 			
3. from	mininet.topo	import	Topo			
4. from	mininet.net	import	Mininet			
5. from	mininet.util	import	dumpNodeConnections			
6. from	mininet.log	import	setLogLevel			
7. 			
8. class	MyFirstTopo(	Topo	):			
9. 				"Simple	topology	example."			
10. 				def	__init__(	self	):			
11. 								"Create	custom	topo."			
12. 								#	Initialize	topology			
13. 								Topo.__init__(	self	)			
14. 								#	Add	hosts	and	switches			
15. 								h1	=	self.addHost(	'h1'	)			
16. 								h2	=	self.addHost(	'h2'	)			
17. 								h3	=	self.addHost(	'h3'	)			
18. 								h4	=	self.addHost(	'h4'	)			
19. 								leftSwitch	=	self.addSwitch(	's1'	)			
20. 								rightSwitch	=	self.addSwitch(	's2'	)			
21. 								#	Add	links			
22. 								self.addLink(	h1,	leftSwitch	)			
23. 								self.addLink(	h2,	leftSwitch	)			
24. 								self.addLink(	leftSwitch,	rightSwitch	)			
25. 								self.addLink(	rightSwitch,	h3	)			
26. 								self.addLink(	rightSwitch,	h4	)			
27. 			
28. def	runExperiment():			
29. 				"Create	and	test	a	simple	experiment"			
30. 				topo	=	MyFirstTopo(	)			
31. 				net	=	Mininet(topo)			
32. 				net.start()			
33. 				print	"Dumping	host	connections"			
34. 				dumpNodeConnections(net.hosts)			
35. 				print	"Testing	network	connectivity"			
36. 				net.pingAll()			
37. 				net.stop()			
38. 			
39. if	__name__	==	'__main__':			
40. 				#	Tell	mininet	to	print	useful	information			
41. 				setLogLevel('info')			
42. 				runExperiment()	



	 6	

Now	 download	 the	 source	 code	 and	 save	 it	 in	 a	 file	 named	myfirstexpr.py	 and	 run	 the	 following	
command:	

	

Remember	to	clean	up	(sudo	mn	–c)	and	also	to	save	your	work	in	your	CSE	home	directory	before	
moving	forward.	

Part	3:	Mininet	Python	Classes	
The	Mininet	Python	API	consists	of	a	number	of	Python	classes,	such	as	Topo,	Mininet,	Host,	Switch,	
Link	 and	 their	 subclasses.	 The	 API	 is	 built	 at	 three	 primary	 levels	which	 provide	 different	 level	 of	
abstractions	for	customising	the	network	topologies.	Here	is	a	brief	description	of	the	levels:	

• Low-level	API:	This	API	includes	the	base	node	and	link	classes	such	as	Host,	Switch	and	Link.	
You	can	directly	instantiate	some	objects	from	these	classes	to	create	a	network.	

• Mid-level	API:	This	API	consists	of	 the	Mininet	class	which	provides	a	number	of	methods,	
such	as	addHost(),	addSwitch(),	and	addLink(),	for	creating	a	network.	

• High-level	 API:	 This	 API	 consists	 of	 the	 Topo	 class,	 which	 provides	 the	 ability	 to	 create	
reusable,	 parameterised	 topology	 templates.	 These	 templates	 can	 be	 passed	 to	 the	mn	
command	(via	the	--custom	option	as	in	Part	2	above)	and	used	from	the	command	line.	

Figure	2	and	Figure	3	are	two	examples	that	show	how	to	use	the	high-level	API.	As	you	can	see,	the	
high-level	API	provides	an	object-oriented	framework	by	presenting	the	Topo	class.	Figure	4	shows	
how	to	use	the	low-level	API	for	creating	the	custom	topology	presented	in	Figure	1.	Download	the	
source	code	from	here:	myfirsttopo_lowlevel.py.	Observe	that,	with	the	low-level	API	we	create	all	
the	objects	and	connect	the	topology	manually.	You	can	test	this	code	by	typing	the	following:	

	

You	 can	 find	 the	 detailed	 documentation	 of	 all	 classes	 provided	 in	 the	 Mininet	 Python	 API	 in	
http://mininet.org/api/annotated.html.	

mininet> sudo python myfirstexpr.py	

mininet> sudo python myfirsttopo_lowlevel.py	



	 7	

	
Figure	4	Source	code	for	the	topology	presented	in	Figure	1	using	low-level	API.	

Remember	to	clean	up	(sudo	mn	–c)	and	also	to	save	your	work	in	your	CSE	home	directory	before	
moving	forward.	

Part	4:	Simple	Tree	Topology	
Many	data	centres	use	a	tree-like	network	topology.	End-hosts	(i.e.	servers)	connect	to	top-of-rack	
switches,	called	edge	switches	and	form	the	leaves	of	the	tree;	one	or	more	core	switches	form	the	
root	of	the	tree;	and	one	or	more	aggregation	switches	form	the	intermediate	nodes	of	the	tree.	In	
a	 simple	 tree	 topology,	 there	 is	 only	 one	 core	 switch	 connected	 to	𝑛	 aggregation	 switches;	 each	
aggregation	 switch	 is	 connected	 to	𝑛	 edge	 switches;	 each	edges	 switches	 is	 connected	 to	𝑛	 hosts	
(servers).	Figure	5	shows	a	simple	tree	topology	where	n	=2.	

1. #!/usr/bin/python			
2. 			
3. from	mininet.node	import	Host,OVSSwitch,Controller			
4. from	mininet.link	import	Link			
5. 			
6. h1	=	Host(	'h1'	)			
7. h2	=	Host(	'h2'	)			
8. h3	=	Host(	'h3'	)			
9. h4	=	Host(	'h4'	)			
10. s1	=	OVSSwitch(	's1',	inNamespace=False	)			
11. s2	=	OVSSwitch(	's2',	inNamespace=False	)			
12. c0	=	Controller(	'c0',	inNamespace=False	)			
13. Link(	h1,	s1	)			
14. Link(	h2,	s1	)			
15. Link(	h3,	s2	)			
16. Link(	h4,	s2	)			
17. Link(	s1,	s2	)			
18. h1.setIP(	'10.0.0.1/24'	)			
19. h2.setIP(	'10.0.0.2/24'	)			
20. h3.setIP(	'10.0.0.3/24'	)			
21. h4.setIP(	'10.0.0.4/24'	)			
22. c0.start()			
23. s1.start(	[	c0	]	)			
24. s2.start(	[	c0	]	)			
25. print	h1.IP			
26. print	h2.IP			
27. print	h3.IP			
28. print	h4.IP			
29. print	'Pinging	...'			
30. print	h1.cmd(	'ping	-c3	',	h2.IP()	)			
31. print	h1.cmd(	'ping	-c3	',	h3.IP()	)			
32. s1.stop()			
33. s2.stop()			
34. c0.stop()			



	 8	

	
Figure	5	Simple-tree	topology	with	𝑛 = 2.	

Question	5:	Write	a	Python	program	to	use	the	high-level	API	and	create	a	simple-tree	data	centre	
topology.	You	must	follow	the	naming	system	as	shown	in	Figure	6.	The	program	gets	the	value	of	𝑛	
as	 an	 input.	 You	 must	 organise	 all	 the	 source	 code	 in	 a	 single	 source	 file,	 name	 it	
simpletree_highlevel.py,	and	include	this	file	in	the	submission	archive.	

Question	6:	Repeat	the	previous	question	but	now	use	the	low-level	API.	You	must	organise	all	the	
source	 code	 in	 a	 single	 source	 file,	 name	 it	 simpletree_lowlevel.py,	 and	 include	 this	 file	 in	 the	
submission	archive.	

Question	7:	Use	your	program	(either	high-level	or	low-level)	to	create	a	simple-tree	with	𝑛 = 2,	as	
shown	in	Figure	5.	Check	the	connectivity	of	all	nodes	in	the	network	and	write	your	observations.	
Now	 stop	 the	 core	 switch	 using	 command	 switch	 c1	 stop,	 check	 the	 connectivity	 of	 all	 hosts	 and	
report	your	observations.	How	do	you	explain	your	findings?	Write	up	your	answer	in	the	report.	

Part	5:	Useful	Resources	
• Introduction	to	Mininet:	https://github.com/mininet/mininet/wiki/Introduction-to-Mininet	
• Mininet	Walkthrough:	http://mininet.org/walkthrough/	
• Mininet	Python	API	Reference	Manual:	http://mininet.org/api/annotated.html	

	

	

	

salil
Cross-Out

salil
Replacement Text
5


