COMP3331/9331 Computer Networks and Applications

Assignment for Session 2, 2016

Version 1.0

Due: 11:59pm Friday, 16 September 2016 (Week 8)

Updates to the assignment, including any corrections and clarifications, will be posted on the
subject website. Please make sure that you check the subject website regularly for updates.

1. Change Log

Version 1.0 released on 11™ August 2016.

2. Goal and learning objectives

For this assignment, you will be asked to implement a reliable transport protocol over the UDP
protocol. We will refer to the reliable transport protocol that you will be programming in this
assignment as Simple Transport Protocol (STP). STP will include most (but not all) of the features
that are described in Sections 3.5.4 and 3.5.6 of the text Computer Networking (6th ed.). Examples
of these features include timeout, ACK, sequence number etc. Note that these features are
commonly found in many transport protocols. Therefore, this assignment will give you an
opportunity to implement some of these basic features of a transport protocol. In addition, you may
have wondered why the designer of the TCP/IP protocol stack includes such feature-less transport
protocol as UDP. You will find in this assignment that you can design your own transport protocol
and run it over UDP. This is the case for some existing multimedia delivery services in the Internet,
where they have implemented their own proprietary transport protocol over UDP.

Note that it is mandatory that you implement STP over UDP. Do not use TCP sockets. You
will not receive any mark for this assignment if you use TCP socket.

2.1 Learning Objectives

On completing this assignment you will gain sufficient expertise in the following skills:
1. Detailed understanding of how reliable transport protocols such as TCP function.
2. Socket programming for UDP transport protocol.

3. Protocol and message design.

3. Overview

As part of this assignment, you will have to implement Simple Transport Protocol (STP), a piece of
software that consists of a sender and receiver component that allows reliable unidirectional data
transfer. STP includes some of the features of the TCP protocols that are described in sections 3.5.4
and 3.5.6 of the textbook (6th edition). You will use your STP protocol to transfer simple text

(ASCII) files (examples provided on the assignment webpage) from the sender to the receiver. You
should implement STP as two separate programs: Sender and Receiver. You only have to
implement unidirectional transfer of data from the Sender to the Receiver. As illustrated in Figure 1,
data segments will flow from Sender to Receiver while ACK segments will flow from Receiver to
Sender. Let us reiterate this, STP must be implemented on top of UDP. Do not use TCP sockets. If
you use TCP you will not receive any marks for your assignment.

You will find it useful to review sections 3.5.4 and 3.5.6 of the text. It may also be useful to review
the basic concepts of reliable data transfer from section 3.4.

Data
< e —
Sender Ack eceiver
UDP Socketl UDP Socket 2
Let OS pick the port number RECEIVER_PORT specified as argument

Figure 1: The basic setup of your assignment. A file is to be transferred from the Sender to the
Receiver. Sender will run on the sender side while Receiver will run on the receiver side. Note that data
segments will flow from the sender to receiver, while ACK segments will flow from the receiver to
sender.

4. Assignment Specifications

This section gives detailed specifications of the assignment. There are two versions of this
assignment, a standard version (with a total of 15 marks) and an extended version (with a total of
17 marks of which 2 marks are bonus marks). The specifications for the extended version can be
found in Section 5 of the specification. Note that the bonus marks may not be proportional to the
amount of extra work that you will have to do. They are there to encourage you to go beyond the
standard assignment. The bonus marks can be used to make up for lost marks in the lab exercises
and the second assignment but NOT for any of the exams (mid-session and final).

4.1 File Names

The main code for the sender and receiver should be contained in the following files: sender.c,
or Sender. java or sender.py, and receiver.c or Receiver. java or receiver.py.
You are free to create additional files such as header files or other class files and name them as you
wish.

4.2 List of features provided by the Sender and Receiver
You are required to implement the following features in the Sender and Receiver:

1. A three-way handshake (SYN, SYN+ACK, ACK) for the connection establishment. The ACK
sent by the sender to conclude the three-way handshake should not contain any payload (i.e. data).
See Section 3.5.6 for further details.

2. The four-segment connection termination (FIN, ACK, FIN, ACK). The Sender will initiate the

connection close once the entire file has been successfully transmitted. See Section 3.5.6 for further
details.

3. Sender must maintain a single-timer for timeout operation (Section 3.5.4 of the text).

4. Sender should implement all the features mentioned in Section 3.5.4 of the text, with the
exception of doubling the timeout. The STP protocol must include the simplified TCP sender
(Figure 3.33 of the text) and fast retransmit (pages 247-248). You will need to use a number of
concepts that we have discussed in class, e.g., sequence numbers, cumulative acknowledgements,
timers, buffers, etc. for implementing your protocol.

5.Receiver should implement the features mentioned in Section 3.5.4 of the text. However, you do
not need to follow Table 3.2 for ACK generation. All packets should be immediately
acknowledged, i.e. you do not have to implement delayed ACKs.

6.STP is a byte-stream oriented protocol. You will need to include sequence number and
acknowledgement number fields in the STP header for each segment. The meaning of sequence
number and acknowledgment number are the same as TCP.

7.MSS (Maximum segment size) is the maximum number of bytes of data that your STP segment
can contain. In other words, MSS counts data ONLY and does NOT include header. Sender must be
able to deal with different values of MSS. The value of MSS will be supplied to Sender as an input
argument.

8. Another input argument for Sender is Maximum Window Size (MWS). MWS is the maximum
number of un-acknowledged bytes that the Sender can have at any time. MWS counts ONLY data.
Header length should NOT be counted as part of MWS.

Remarks: Note that TCP does not explicitly define a maximum window size. In TCP, the maximum
number of un-acknowledged bytes is limited by the smaller of receive window and the congestion
control window. Since you will not be implementing flow or congestion control, you will be limiting
the number of un-acknowledged bytes by using the MWS parameter. In other words, you will need
to ensure that during the lifetime of the connection, the following condition is satisfied.:

LastByteSent — LastByteAcked = MWS

10. Even though you will use UDP since the sender and receiver will mostly be running on
machines that are within close proximity of each other (e.g.: on the same Ethernet LAN or even on
the same physical machine), there will be no real possibility of datagrams being dropped. In order
to test the reliability of your protocol, it is imperative to introduce artificially induced packet loss
and delays. For this purpose you must also implement a Packet Loss and Delay (PLD) Module as
part of the Sender program. The details for this module are explained later in the specification.

Remarks: For the standard version of the assignment, the PLD module will only need to drop
packets while for extended version, the PLD module will need to drop and delay packets. For
simplicity, I have chosen to call both of them the PLD module, even though the PLD module for the
standard version does not delay packets.

11. You must use a constant timeout in your program. The value of the timeout will be supplied to
Sender as an input argument. Note that, this requirement applies to the standard version of the
assignment. The extended version has a different requirement.

4.3 Features excluded

There are a number of transport layer features adopted by TCP that are excluded from this
assignment:

1. You do not need to implement timeout estimation unless you want to attempt the extended
version of the assignment.

2. You do not need to double timeout interval unless you want to attempt the extended version
of the assignment.

3. You do not need to implement any flow nor congestion control.

4. STP does not have to deal with corrupted packets. Packets will very rarely be corrupted in our
test topology, if at all. In short, it is safe for you to assume that packets are only lost.

4.4 Packet header and MSS

In designing the segment header, you only need to include the fields that you think are necessary for
STP. You can draw inspiration from TCP but the exact format of the STP packet header is for you
to decide. The header portion can include as many fields as you think are necessary. Two important
fields that will be needed are the sequence number and acknowledgement number. You will also
need a number of flags for connection establishment and teardown.

The data portion must not contain more than MSS bytes of data. You must use the same STP
segment format for data transfer as well as for the acknowledgements flowing back from the
receiver to the sender. The only difference will be that the acknowledgement segments will not
contain any data. All information that is necessary for the proper functioning of your protocol must
be provided in the STP headers. You should not use any information from the header of the UDP
datagram that will encapsulate the STP packets (except for port number and IP address).

4.5 Sender

This section provides details on the Sender.

For the standard version of the assignment, the Sender should accept the following eight (8)
arguments (note that the last two arguments are used exclusively by the PLD module):
1. receiver host ip: the IP address of the host machine on which the Receiver is running.

2. receiver_ port: the port number on which Receiver is expecting to receive packets from
the sender.

3. file.txt: the name of the text file that has to be transferred from sender to receiver using
your reliable transport protocol.

4. MWS: the maximum window size used by your STP protocol in bytes.

5. MSS: Maximum Segment Size which is the maximum amount of data (in bytes) carried in
each STP segment.

6. timeout: the value of timeout in milliseconds.
The following two arguments are used exclusively by the PLD module:

7. pdrop: the probability that a STP data segment which is ready to be transmitted will be
dropped. This value must be between 0 and 1. For example if pdrop = 0.5, it means that
50% of the transmitted packets are dropped by the PLD.

8. seed: The seed for your random number generator. The use of seed will be explained in
Section 4.5.2 of the specification.

The Sender should be initiated as follows:

If you use Java:

java Sender receiver host ip receiver port file.txt MWS MSS timeout pdrop seed

If you use C:

./sender receiver_host_ip receiver port file.txt MWS MSS timeout pdrop seed

If you use Python:

python sender.py receiver host_ ip receiver port file.txt MWS MSS timeout pdrop
seed

Note that, you should first start the Receiver before initiating the Sender.

4.5.1 The PLD Module

The PLD module should be implemented as part of your Sender program. The function of the PLD
is to emulate some of the events that can occur in the Internet such as loss of packets and delays.
Even though theoretically UDP packets will get lost and delayed on their own, in our test
environment these events will occur very rarely. Further to test the reliability of your STP protocol
we would like to be able to control the percentage of packets being lost. As mentioned before, the
PLD module for the standard version of this assignment will only drop the packet.

The following describes the sequence of steps that the PLD should perform on receiving a STP
segment:

1. If the STP segment is for connection establishment or teardown, then pass the segment to
UDP, do not drop it.

Remark: In order to reduce the complexity of connection setup, the connection establishment
and teardown segments from the Sender can bypass the PLD module and will not be dropped.

2. If the STP segment is not for connection establishment or teardown, the PLD must do one of
the following:

(a) with probability pdrop drop the datagram.
(b) With probability (1-pdrop), forward the datagram.

To implement this simply generate a random number between 0 and 1. If the chosen number
is greater than pdrop transmit the packet, else the packet is dropped.

Remark: The file PingServer.java in Lab Exercise 2 contains an example of randomly
dropping packets.

Once the PLD is ready to transmit a STP segment, the Sender should encapsulate the STP segment
in a UDP datagram (i.e. create a UDP datagram with the STP segment as the payload). It should
then transmit this datagram to the Receiver through the UDP socket created earlier. (Use the
RECEIVER HOST IP and RECEIVER PORT as the destination IP address and port number
respectively). Once the entire text file has been transmitted reliably (i.e. the sender window is
empty and the final ACK is received) the Sender can close the UDP socket and terminate the
program.

Note that the ACK segments from the receiver must completely bypass the PLD modules. In other
words, ACK segments are never lost.
4.5.2 Seed for random number generators

You will be asked to run your Sender and Receiver pair to show us that they are running correctly,
see Section 8 of the specification for the experiments that you need to conduct. In order for us to

check your results, we will be asking you to initialise your random number generator with a specific
seed in Section 8 so that we can repeat your experiments.

If you have not learnt about the principles behind random number generators, you need to know that
random numbers are in fact generated by a deterministic formula by a computer program.
Therefore, strictly speaking, random number generators are called pseudo-random number
generators because the numbers are not truly random. The deterministic formula for random
number generation in Python, Java and C uses an input parameter called a seed. If the same seed is
used, then the same sequence of random numbers will be produced.

The following code fragment in Python, Java and C will generate random numbers between 0 and 1
using a supplied seed.

1. In Python, you initialise a random number generator (assuming the seed is 50) by using
random.seed(50);. After that you can generate a random floating point number between
(0,1) by using random.random() ;

2. In Java, you initalise a random number generator (assuming the seed is 50) by using Random
random = new Random(50);. After that, you can generate a random floating point
number between (0,1) by using float x = random.nextFloat();

3. In C, you initalise a random number generator (assuming the seed is 50) by using
srand(50) ;. After that, you can generate a random floating point number between (0,1) by
using float x = rand()/((float) (RAND MAX)+1l); Note that, RAND MAX is the
maximum value returned by the rand () function.

You will find that if you specify different seeds, a different sequence of pseudo-random numbers
will be produced.

4.5.3 Additional requirements for Sender

Your Sender will receive acknowledgements from the Receiver through the same socket, which the
sender uses to transmit data. The Sender must first extract the STP acknowledgement from the UDP
datagram that it receives and then process it as per the operation of your STP protocol. The format
of the acknowledgement segments should be exactly the same as the data segments except that they
should not contain any data. Note that these acknowledgements should bypass the PLD module.

The sender should maintain a log file titled Sender log.txt where it records the information
about each segment that it sends and receives. Information about dropped segments (and delayed
segments in case of the extended assignment) packets should also be included. Start each entry on a
new line. The format should be as follows:

<snd/rcv/drop> <time> <type of packet> <seg-number> <number-of-
bytes> <ack-number>

where <type of packet> could be S (SYN), A (ACK), F (FIN) and D (Data)

So for example, the following shows the log file for a Sender that transmits 112 bytes of data. The
MSS used here is 56 bytes and the timeout interval is 100msec. Notice that the second data packet
is dropped and is hence retransmitted after a timeout interval of 100msec.

snd 34.335 S 121 0 O

rcv 34.4 SA 154 0 122
snd 34.54 A 122 0 155
snd 34.57 D 122 56 155

drop 34.67 D 178 56 155
rcv 36.56 A 155 0 178
snd 134.67 D 178 56 155
rcv 137.65 A 155 0 234
snd 138.76 F 234 0 155
rcv 140.23 FA 156 0 235
snd 141.11 A 235 0 157

Once the entire file has been transmitted reliably the Sender should initiate the connection closure
process by sending a FIN segment (refer to Section 3.5.6 of the text). The Sender should also print
the following statistics at the end of the log file (i.e. Sender_ log.txt):

* Amount of (original) Data Transferred (in bytes)

* Number of Data Segments Sent (excluding retransmissions)

* Number of (all) Packets Dropped (by the PLD module)

* Number of (all) Packets Delayed (for the extended assignment only)
* Number of Retransmitted Segments

* Number of Duplicate Acknowledgements received

4.6 Receiver

The Receiver should accept the following two arguments:

1. receiver port: the port number on which the Receiver will open a UDP socket for
receiving datagrams from the Sender.

2. file.txt: the name of the text file into which the text sent by the sender should be stored
(this is the file that is being transferred from sender to receiver).

The Receiver should be initiated as follows:

If you use Java:

java Receiver receiver_port file.txt

If you use C:

./receiver receiver port file.txt

If you use Python:

python receiver.py receiver port file.txt

Note that, you should first start the Receiver before initiating the Server.

The Receiver should generate an ACK immediately after receiving a data segment. This is the only
ACK generation rule you need. You do not need to follow Table 3.2 of the text. In other words, you
do no have to implement delayed ACKs. The format of the acknowledgement segment must be
exactly similar to the STP data segment. It should however not contain any payload.

The receiver is expected to buffer out-of-order arrival packets.

The receiver should first open a UDP listening socket on receiver port and then wait for
segments to arrive from the Sender. The first segment to be sent by the Sender is a SYN segment
and the receiver is expected to reply a SYNACK segment.

After the completion of the three-way handshake, the receiver should create a new text file called
file.txt. All incoming data should be stored in this file. The Receiver should first extract the
STP packet from the arriving UDP datagrams and then extract the data (i.e. payload) from the STP
packet. Note that, the Receiver is allowed to examine the header of the UDP datagram that
encapsulates the STP Packet to determine the UDP port and IP address that the Sender is using.

The data should be written into file.txt. At the end of the transfer, the Receiver should have a
duplicate of the text file sent by the Sender. You can verify this by using the diff command on a
Linux machine (diff filel.txt file2.txt).

The Receiver should also maintain a log file titled Receiver log.txt where it records the
information about each segment that it sends and receives. The format should be exactly similar to
the sender log file as outlined in the Sender specification.

The Receiver should terminate after the connection closure procedure initiated by the sender
concludes. The Receiver should also print the following statistics at the end of the log file (i.e.
Receiver log.txt):

* Amount of (original) Data Received (in bytes) — do not include retransmitted data
* Number of (original) Data Segments Received
* Number of duplicate segments received (if any)

4.7 Overall structure

The overall structure of your protocol will be similar to that shown in Figure 2. Note in particular
that the PLD module is only required at the Sender.

file.tit
T file.txt
read file and create A
STP segment Write text into file

« [STP segment Start/Stpp/Check
N\ timer | 5 X e

STP protocol
Timeout STP protocol
PLD module ACK packet ransmit ACK packet
redeive UDP datagra

reafe and transmt

JDP|datagram O

UDP socket T
UDP socket
Sender Receiver

Figure 2: The overall structure of your assignment

5. Extended Version

The extended version of the assignment differs from the standard version in the following aspects:
1. You are required to implement round-trip-time estimation in Section 3.5.3 of the text.
2. The timeout is not a constant value but is given by the formula on page 239 of the text.

3. The PLD module will need to delay packets in addition to dropping packets. Specifically, the
PLD module will take in two addition parameters pdelay and MaxDelay, in addition to
pdrop. The PLD module will work as follows:

(a) For each packet passing through the PLD module (with the exception of connection setup
packets), the packet is dropped with probability pdrop, or is not dropped with
probability 1-pdrop.

(b) For those packets that are not dropped, there is a probability of pdelay that the packet
will be delayed by anywhere between 0 to MaxDelay seconds. In other words, out of all
the packets that are not dropped, a portion of them (specified by pdelay) will be delayed
and the amount of the delay that is experienced by the packet is in the interval [0,
MaxDelay] with auniform distribution.

5.1 Extended Version of Sender

For the extended version of the assignment, the Sender should accept the following ten (10)
arguments (note that the last four arguments are used exclusively by the PLD module):

1.
2.

6.

receiver host_ip: the IP address of the host machine on which the Receiver is running.

receiver port: the port number on which Receiver is expecting to receive packets from
the sender.

file.txt: the name of the text file that has to be transferred from sender to receiver using
your reliable transport protocol.

MWS: the maximum window size used by your STP protocol in bytes.

MSS: Maximum Segment Size which is the maximum amount of data (in bytes) carried in
each STP segment.

gamma: See Section 8 of the specification for the meaning of this parameter.

The following four arguments are used exclusively by the PLD module:

7. pdrop: the probability that a data segment which is ready to be transmitted will be dropped.
This value must be between 0 and 1. For example if pdrop = 0.5, it means that 50% of the
transmitted packets are dropped by the PLD.

8. pdelay: the probability that a data segment which is not dropped will be delayed. This value
must also be between 0 and 1.

9. MaxDelay: The maximum delay (in milliseconds) experienced by those data segments that
are delayed.

10. seed: The seed for your random number generator. The use of seed was explained in Section
4.5.2 of the specification.

6. Additional Notes

This is NOT group assignment. You are expected to work on this individually.

Tips on getting started: The best way to tackle a complex implementation task is to do it in
stages. A good starting point is to implement the file transfer using the simpler alternating-bit
(stop-and-wait) protocol (version rdt3.0 from the textbook). First, make sure that your program
works without implementing the PLD module. Next, implement the packet drop functionality of
the PLD and test your protocol. Once you can verify that this works, extend your code to handle
transmission of a window of packets (i.e., MWS). Send a window of packets and wait for all
acknowledgements to come back before sending another window worth of data. As before, test
the no loss case first. Then, extend your program to handle packet losses. Once you have the

complete STP protocol implemented run comprehensive tests to ensure that your program
works correctly.

* Language and Platform: You are free to use C, JAVA or Python to implement this
assignment. Please choose a language that you are comfortable with. The programs will be
tested on CSE Linux machines. So please make sure that your entire application runs correctly
on these machines (i.e. your lab computers). This is especially important if you plan to develop
and test the programs on your personal computers (which may possibly use a different OS or
version or IDE). Note that CSE machines support the following: gee version 4.9.2, Java 1.7,
Python 2.7, 2.8 and 3. If you are using Python, please clearly mention in your report which
version of Python we should use to test your code. You may only use the basic socket
programming APIs providing in your programming language of choice. You may not use any
special ready-to-use libraries or APIs that implement certain functions of the spec for you.

* You are free to design your own format and data structure for the messages. Just make sure your
program handles these messages appropriately.

* You are encouraged to use the course discussion forum to ask questions and to discuss different
approaches to solve the problem. However, you should not post your solution or any code
fragments on the forum.

7. Assignment Submission

Please ensure that you use the mandated file name. You may of course have additional header files
and/or helper files. If you are using C, then you MUST submit a makefile/script along with your
code (not necessary with Java or Python). This is because we need to know how to resolve the
dependencies among all the files that you have provided. After running your makefile we should
have the following executable files: sender and receiver. In addition you should submit a
small report, report.pdf (no more than 5 pages) describing the program design, a brief
description of how your system works and your message design. Also discuss any design tradeoffs
considered and made. Describe possible improvements and extensions to your program and indicate
how you could realise them. If your program does not work under any particular circumstances
please report this here. Also indicate any segments of code that you have borrowed from the Web or
other books. Further details about what should be included in the report are provided in Section 8.

You are required to submit your source code and report.pd£f. You can submit your assignment
using the give command in an xterm from any CSE machine. Make sure you are in the same

directory as your code and report, and then do the following:

1. Type tar -cvf assign.tar filenames
e.g. tar -cvf assign.tar *.java report.pdf

2. When you are ready to submit, at the bash prompt type 3331

3. Next, type: give ¢s3331 assignl assign.tar (You should receive a message stating
the result of your submission).

Alternately, you may submit the tar archive via the submission link at the top of the assignment
webpage in WebCMS3.

Important notes

* The system will only accept assign.tar submission name. All other names will be rejected.

10

* Ensure that your program/s are tested in CSE Linux machine before submission. In the
past, there were cases where tutors were unable to compile and run students’ programs
while marking. To avoid any disruption, please ensure that you test your program in CSE
Linux-based machine before submitting the assignment. Note that, we will be unable to
award any significant marks if the submitted code does not run during marking.

* You can submit as many times before the deadline. A later submission will override the earlier
submission, so make sure you submit the correct file. Do not leave until the last moment to
submit, as there may be technical or communications error and you will not have time to rectify
it.

Late Submission Penalty: Late penalty will be applied as follows:

* 1 day after deadline: 10% reduction
* 2 days after deadline: 20% reduction
* 3 days after deadline: 30% reduction
* 4 days after deadline: 40% reduction
* 5 or more days late: NOT accepted

NOTE: The above penalty is applied to your final total. For example, if you submit your assignment
1 day late and your score on the assignment is 10, then your final mark will be 10 — 1 (10% penalty)
=0.

8. Report

In addition you should submit a small report, report.pdf (no more than 5 pages), plus appendix
section (appendix need not be counted in the 5 page limit). Your report must contain the following:

1. A brief discussion of how you have implemented the STP protocol. Provide a list of features
that you have successfully implemented. In case you have not been able to get certain features
of STP working, you should also mention that in your report.

2. A detailed diagram of your STP header and a quick explanation of all fields (similar to the
diagrams that we have used in the lectures to understand TCP/UDP headers).

3. For the standard version of the assignment, answer the following questions:

(a) Use the following parameter setting: pdrop = 0.1, MWS = 500 bytes, MSS = 50 bytes,
seed = 300. Explain how you determine a suitable value for timeout. Note that you may
need to experiment with different timeout values to answer this question. Justify your
answer.

With the timeout value that you have selected, run an experiment with your STP programs
transferring the file testl.txt (available on the assignment webpage). Show the sequence of
STP packets that are observed at the receiver. It is sufficient to just indicate the sequence
numbers of the STP packets that have arrived. You do not have to indicate the payload
contained in the STP packets (i.e. the text). Run an additional experiment with pdrop =
0.3, transferring the same file (testl.txt). In your report, discuss the resulting packet
sequences of both experiments indicating where dropping occurred. Also, in the appendix
section show the packet sequences of all the experiments.

(b) Let Tcurrent represent the timeout value that you have chosen in part (a). Set pdrop =
0.1, MWS = 500 bytes, MSS = 50 bytes, seed = 300 and run three experiments with the
following different timeout values:

11

i. Tcurrent
ii. 4 x Tcurrent
iii. Tcurrent/4

and transfer the file test2.txt (available on the assignment webpage) using STP. Show a
table that indicates how many STP packets were transmitted (this should include
retransmissions) in total and how long the overall transfer took. Discuss the results.

4. For the extended version of the assignment, answer the following questions:

(a) Run your protocol using pdrop = 0.1, MWS = 500 bytes, MSS = 50 bytes, seed = 100,
pdelay = 0, MaxDelay = 800 (note: since pdelay = 0, the value of MaxDelay is not
important), gamma = 4, and transfer the file testl.txt (available on the assignment
webpage). Show the sequence of STP packets that are observed at the receiver. It is
sufficient to just indicate the sequence numbers of the STP packets hat have arrived. You
do not have to indicate the payload contained in the STP packets (i.e. the text). Run an
additional experiment with pdrop = 0.3, transferring the same file (testl.txt). In your
report, discuss the resulting packet sequences of both experiments indicating where
dropping occurred. Also, in the appendix section show the packet sequences of all the
experiments.

(b) The timeout for TCP is given by the following formula:

TimeoutInterval = EstimatedRTT + 4 DevRTT

Instead of using a fixed multiplier of 4, you will use a parameter gamma to study the effect
of this multiplier on the performance. In the extended version, the timeout is given by:

TimeoutInterval = EstimatedRTT + gamma DevRTT
where gamma will be supplied to the program as an input argument, see Section 5.1.

Set pdrop = 0.5, MWS = 500 bytes, MSS = 50 bytes, seed = 300, pdelay = 0.2,
MaxDelay = 1000 and run three experiments with the following different gamma values:

1. gamma = 2
il. gamma = 4
iil. gamma = 9

and transfer the file test2.txt using STP. Show a table that indicates how many STP packets were
transmitted (this should include retransmissions) in total and how long the overall transfer took.
Discuss the results.

9. Plagiarism

You are to write all of the code for this assignment yourself. All source codes are subject to strict
checks for plagiarism, via highly sophisticated plagiarism detection software. These checks may
include comparison with available code from Internet sites and assignments from previous
semesters. In addition, each submission will be checked against all other submissions of the current
semester. Do not post this assignment on forums where you can pay programmers to write code for
you. We will be monitoring such forums. Please note that we take this matter quite seriously. The
LIC will decide on appropriate penalty for detected cases of plagiarism. The most likely penalty
would be to reduce the assignment mark to ZERO. We are aware that a lot of learning takes place
in student conversations, and don’t wish to discourage those. However, it is important, for both

12

those helping others and those being helped, not to provide/accept any programming language code
in writing, as this is apt to be used exactly as is, and lead to plagiarism penalties for both the
supplier and the copier of the codes. Write something on a piece of paper, by all means, but tear it
up/take it away when the discussion is over. It is OK to borrow bits and pieces of code from sample
socket code out on the Web and in books. You MUST however acknowledge the source of any
borrowed code. This means providing a reference to a book or a URL when the code appears (as
comments). Also indicate in your report the portions of your code that were borrowed. Explain any
modifications you have made (if any) to the borrowed code.

10. Marking Policy

You should test your program rigorously before submitting your code. Your code will be marked
using the following criteria:

1. We will first run STP with the drop probability set to zero and the window size set to 1 MSS.
This should result in a simple stop-and-wait protocol. We will transfer a sample text file (similar
to those on the assignment webpage) using STP. We will then test if the stop-and-wait version
can tolerate packet loss, by varying the drop probability. In all tests we will also check your log
files to verify the functioning of the PLD module and the reliability of STP. (4 marks)

2. Successful operation of the STP protocol. This will involve a number of tests as indicated
below: (8 marks)

(a) Initially we will set the drop probability (pdrop) for the PLD to zero, and transfer a file
using STP.

(b) We will then test how reliable your protocol is by gradually increasing the drop
probability (pdrop). Your protocol should be able to deal with lost packets
successfully.

(c) In the above tests we will also check the log files created by your Sender, Receiver to
verify the functioning of your programs.

(d) We will thoroughly test the operation for a wide range of parameters: MWS, pdrop,
timeout, etc.

3. Your report, which includes a description of how you implemented the programs and the
answers to the prescribed questions (as described in Section 8 of the specification): 3 marks.

Note that, we will verify that the description in your report confirms with the actual
implementations in the programs. We will also verify the experiments that you have run for
answering the questions. If we find that your report does not conform to the programs that you have
submitted you will NOT receive any marks for your report.

For the extended version, we will conduct additional tests to see how your program can cope with
different pdelay and MaxDelay. Note that it is possible that packets are re-ordered for the
extended version of the assignment. We will see how your program deals with the re-ordering of
packets. We will also verify your timeout estimation by using various values of pdelay and
MaxDelay. The maximum bonus mark that you can get for the extended assignment is 2 marks.

The bonus marks can be used to make up for lost marks in the lab exercises and the second
assignment but NOT for any of the exams (mid-session and final). I may reconsider this at a later
stage in the course.

13

