
1

COMP3331/9331 Computer Networks and Applications

Assignment for Term 2, 2022

Version 1.0

11:59 am (noon) Friday, 5 August 2022 (Week 10)

1. Change Log

Version 1.0 is released on 21/06/2022.

2. Goal and learning objectives

Zoom and Microsoft Teams are widely used as a method for large groups of people to hold online

virtual meetings. A good example is the online Zoom lectures used for various courses at UNSW. In

this assignment, you will have the opportunity to implement your own version of an online video

conferencing and messaging application. Your application is based on a client-server model

consisting of one server and multiple clients communicating concurrently. The text messages should

be communicated using TCP for the reason of reliability, while the video (you will use video files

instead of capturing the live video streams from cameras and microphones) should be communicated

using UDP for the reason of low latency. Your application will support a range of functions that are

typically found on videoconferencing including authentication, broadcasting text messages to all

participants, building a separate room for part of the participants, and uploading video streams (i.e.,

files in this assignment). You will be designing custom application protocols based on TCP and UDP.

2.1 Learning Objectives

On completing this assignment, you will gain sufficient expertise in the following skills:

1. Detailed understanding of how client-server and client-client interactions work.

2. Expertise in socket programming.

3. Insights into designing and implementing an application layer protocol.

3. Assignment Specification

The base specification of the assignment is worth 20 marks. The specification is structured in two

parts. The first part covers the basic interactions between the clients and server and includes

functionality for clients to communicate with the server. The second part asks you to implement

additional functionality whereby two clients can upload/download video files to each other directly

in a peer-to-peer fashion via UDP. This first part is self-contained (Sections 3.2 – 3.3) and is worth

Updates to the assignment, including any corrections and clarifications, will be posted on the
subject website. Please make sure that you check the subject website regularly for updates.

2

15 marks. Implementing video file uploading/downloading over UDP (Section 3.4) is worth 5 marks.

CSE students are expected to implement both functionalities. Non-CSE students are only required to

implement the first part (i.e., no video file uploading/downloading over UDP). The marking guidelines

are thus different for the two groups and are indicated in Section 7.

The assignment includes 2 major modules, the server program and the client program. The server

program will be run first followed by multiple instances of the client program (Each instance supports

one client). They will be run from the terminals on the same and/or different hosts.

Non-CSE Student: The rationale for this option is that students enrolled in a program that does not

include a computer science component have had very limited exposure to programming and in

particular working on complex programming assignments. A Non-CSE Student is a student who is

not enrolled in a CSE program (single or double degree). Examples would include students enrolled

exclusively in a single degree program such as Mechatronics or Aerospace or Actuarial Studies or

Law. Students enrolled in dual degree programs that include a CSE program as one of the degrees do

not qualify. Any student who meets this criterion and wishes to avail of this option MUST email

cs3331@cse.unsw.edu.au to seek approval before 5 pm, 1 July (Friday, Week 5). We will assume

by default that all students are attempting the CSE version of the assignment unless they have sought

explicit permission. No exceptions.

3.1. Assignment Specification

In this programming assignment, you will implement the client and server programs of a video

conference application, similar in many ways to the Zoom application that we use for this course. The

difference is that your application won’t capture and display live videos; instead, it will transmit and

receive video files. The text messages must communicate over TCP to the server, while the clients

communicate video files in UDP themselves. Your application will support a range of operations

including authenticating a user, posting a message to the server, sending a private message to another

particular participant, reading messages from the server, reading active users’ information, and

uploading video files from one user to another user (CSE Students only). You will implement the

application protocol to implement these functions. The server will listen on a port specified as the

command line argument and will wait for a client to connect. The client program will initiate a TCP

connection with the server. Upon connection establishment, the user will initiate the authentication

process. The client will interact with the user through the command-line interface. Following

successful authentication, the user will initiate one of the available commands. All commands require

a simple request-response interaction between the client and server or two clients (CSE Students

only). The user may execute a series of commands (one after the other) and eventually quit. Both the

client and server MUST print meaningful messages at the command prompt that capture the specific

interactions taking place. You are free to choose the precise text that is displayed. Examples of client-

server interactions are given in Section 8.

3.2 Authentication

When a client requests a connection to the server, e.g., for attending a video conference, the server

should prompt the user to input the username and password and authenticate the user. The valid

username and password combinations will be stored in a file called credentials.txt which will be in

the same directory as the server program. An example credentials.txt file is provided on the

assignment page. Usernames and passwords are case-sensitive. We may use a different file for testing

so DO NOT hardcode this information in your program. You may assume that each username and

password will be on a separate line and that there will be one white space between the two. If the

credentials are correct, the client is considered to be logged in and a welcome message is displayed.

You should make sure that write permissions are enabled for the credentials.txt file (type “chmod +w

credentials.txt” at a terminal in the current working directory of the server).

mailto:cs3331@cse.unsw.edu.au

3

On entering invalid credentials, the user is prompted to retry. After several consecutive failed

attempts, the user is blocked for 10 seconds (the number is an integer command-line argument

supplied to the server and the valid value of the number should be between 1 and 5) and cannot login

during this 10-second duration (even from another IP address). If an invalid number value (e.g., a

floating-point value, 0 or 6) is supplied to the server, the server prints out a message such as “Invalid

number of allowed failed consecutive attempt: number. The valid value of argument number is an

integer between 1 and 5”.

For non-CSE Students: After a user log in successfully, the server should record a timestamp of the

user logging in the event and the username in the active user log file (userlog.txt, you should make

sure that write permissions are enabled for userlog.txt). Active users are numbered starting at 1:

Active user sequence number; timestamp; username

1; 1 Jun 2022 21:30:04; Yoda

For CSE Students: After a user log in successfully, the client should next send the UDP port number

that it is listening to the server. The server should record a timestamp of the user logging in the event,

the username, the IP address, and port number that the client listens to in the active user log file

(userlog.txt):

Active user sequence number; timestamp; username; client IP address;

client UDP server port number

1; 1 Jun 2022 21:30:04; Yoda; 129.64.1.11; 6666

For simplicity, a user will log in once at any given time, e.g., multiple logins concurrently are not

allowed, and we won’t test this case.

3.3. Text message commands

Following a successful login, the client displays a message to the user informing them of all available

commands and prompting it to select one command. The following commands are available: BCM:

Broadcast messages to all the active users i.e., public messages, ATU: Display active users, SRS:

Separate chat room service, in which users can build a separate room for part of active users and send messages

in the separate room, RDM: Read messages, OUT: Log out, and UPD: Upload file (for CSE Students

only). All available commands should be shown to the user in the first instance after successful login.

Subsequent prompts for actions should include this same message.

If an invalid command is selected, an error message should be shown to the user, and they should be

prompted to select one of the available actions.

In the following, the implementation of each command is explained in detail. The expected usage of

each command (i.e., syntax) is included. Note that, all commands should be upper-case (BCM,

RDM, etc.). All arguments (if any) are separated by a single white space and will be one word long
(except messages which can contain white spaces and timestamps that have a fixed format of dd mm

yyyy hh:mm:ss such as 1 Jun 2022 16:01:20). You may assume that the message text may

contain uppercase characters (A-Z), lowercase characters (a-z) and digits (0-9) and the

following limited set of special characters (!@#$%.?,). If the user does not follow the expected usage

of any of the operations listed below, i.e., missing (e.g., not specifying the body of a message when posting the
message) or incorrect number of arguments (e.g., the inclusion of additional or fewer arguments than required),

an error message should be shown to

4

the user and they should be prompted to select one of the available commands. Section 8 illustrates

sample interactions between the client and server.

There are 6 commands for Non-CSE Students and 7 commands for CSE Students respectively,

which users can execute. The execution of each command is described below.

BCM: Broadcast Message

BCM message

The message body should be included as the argument. Note that, the message may contain white

spaces (e.g., “Hi Wei, how are you”). The client should send the command (i.e., BCM), the message,

and the username to the server. In our tests, we will only use short messages (a few words long). The

server should append the message, the username, and a timestamp at the end of the message log file

(file (messagelog.txt, you should make sure that write permissions are enabled for messagelog.txt) in

the format, along with the number of the messages (messages are numbered starting at 1):

messageNumber; timestamp; username; message

1; 1 Jun 2022 21:39:04; yoda; do or do not, there is no try

After the message is successfully received at a server, a confirmation message with message type (i.e.,

broadcast message), message number, and the timestamp should be sent from the server to the client

and displayed to the user. If there is no argument after the BCM command. The client should display

an error message before prompting the user to select one of the available commands.

ATU: Download Active Users

ATU

There should be no arguments for this command. The server should check if there are any other active
users apart from the client that sends the ATU command. If so, the server should send the usernames,

and timestamp since the users are active, (and their IP addresses and Port Numbers, CSE Students

only) in the active user log file to the client (the server should exclude the information of the client,
who sends ATU command to the server.). The client should display all the information of all received

users at the terminal to the user. If there is no other active user exists, a notification message of “no

other active user” should be sent to the client and displayed at the prompt to the user. The client
should next prompt the user to select one of the available commands.

SRS: Separate Room Service

This function is composed of two commands: SRB: Separate room building and SRM: Separate room

message. See below details for SRB and SRM.

SRB username1 username2 …

The client needs to practice the SRB command to request the server to build a separate chat room.

Arguments are usernames that the current client wants to include in the separate chat room. If there

is no argument after the SRB command, the client should display an error message before prompting

the user with one of the available commands. The server is expected to check if the provided

usernames exist or not, and the server also should check if the corresponding users are active or not.

If any username does not exist or the corresponding user is offline, the server should not create a

separate room and reply to the client which username does not exist, or user is offline. If all the

5

provided usernames exist and all the corresponding users are online, the server should create a

separate room for them, and the server is expected to generate a separate room ID which should be

represented by integers e.g., 1, 2, 3. The server also needs to create a corresponding log file (e.g.,

SR_ID_messagelog.txt) to record the messages in a separate chat room. Finally, the server should

reply to the client to confirm that the separate room has been successfully created, for example,

“Separate chat room has been created, room ID: 1, users in this room: username1, username2 …”.

Noted that, if a separate room already created for this group of users no matter which user in the

group created, the server should not create another separate room, instead the server should inform

the client with a message of “a separate room (ID: 1) already created for these users”. In addition, a

user cannot build a separate room with himself/herself.

SRM roomID message

The separate room ID and message body should be included in the argument. The room ID as the

first argument indicates which separate room the client wants to send a message (assume the client

may be in multiple separate chat rooms). The server should first check if the room with provided

room ID exists. If the room with that room ID does not exist, the server should reply to the client with

a message of “The separate room does not exist”. And the server also needs to check if the client (the

client sends the SRM commands) is a member of the separate room, if the client is not in this separate

room the server should reply to the client with a message of “You are not in this separate room chat”.

If everything is good, the server should append the message, the username, and a timestamp at the

end of the message log file (file (SR_ID_messageLog.txt, you should make sure that write permissions

are enabled for SR_ID_messageLog.txt) in the format, along with the number of the messages

(messages are numbered starting at 1 for each new created separate room chat):

messageNumber; timestamp; username; message

1; 1 Jun 2022 21:39:04; Yoda; do or do not, there is no try

After the message is successfully received at a server, a confirmation message with message type (i.e.,

separate room message), message number, and the timestamp should be sent from the server to the

client and displayed to the user. If there is no argument after the SRM command. The client should

display an error message before prompting the user to select one of the available commands.

RDM: Read Messages

RDM messageType timestamp

The messagType, which groups the messages to be read. On the server side, there are broadcast

messages and separate room messages. The lower letters b and s are used to represent broadcast

messages and separate room messages, respectively. The timestamp, after which the messages are to

be read, should be included as an argument. The client should send the command (RDM), message

type (i.e., b or s), and a timestamp to the server. The server should check if there are any new messages

(i.e., the timestamps of the messages that are larger/later than the timestamp specified in the RDM

message) in the message log files. If so, the server should send these new messages to the client. The

client should display all received messages at the terminal to the user. Noted that, if the message

group is specified as “s” and the client is in multiple separate rooms, the server should check all

separate rooms’ message log files and send new messages in these separate rooms to the client. If

there is no new message exists, a notification message of “no new message” should be sent to the

client and displayed at the prompt to the user. The client should next prompt the user to select one of

the available commands.

6

OUT: Log out

OUT

There should be no arguments for this command. The client should close the TCP connection, (UDP

peer-peer, CSE Students only) and exit with a goodbye message displayed at the terminal to the user.

The server should update its state information about currently logged-on users and the active user log

file. Namely, based on the message (with the username information) from the client, the server

should delete the user, which entails deleting the line containing this user in the active user log file (all

subsequent users in the file should be moved up by one line and their active user sequence numbers

should be updated appropriately) and confirmation should be sent to the client and displayed at the

prompt to the user. Note that any messages uploaded by the user must not be deleted. For simplicity,

we won’t test the cases where a user forgets to log out or log out is unsuccessful.

7

3.4 Peer to Peer Communication (Video file upload, CSE Students only)

The P2P part of the assignment enables one client to upload video files to another client using UDP.

Each client is in one of two states, Presenter or Audience. The Presenter client sends video files to

the Audience client. Here, the presenter client is the UDP client, while the Audience client is the UDP

server. After receiving the video files, the Audience client saves the files and the username of the

Presenter. Note that a client can behave in either Presenter or Audience state.

To implement this functionality your client should support the following command.

UPD: Upload file

UPD username filename

The Audience user and the name of the file should be included as arguments. You may assume that

the file included in the argument will be available in the current working directory of the client with

the correct access permissions set (read). You should not assume that the file will be in a particular

format, i.e., just assume that it is a binary file. The Presenter client (e.g., Yoda) should check if the

Audience user (indicated by the username argument, e.g., Obi-wan) is active (e.g., by issuing

command ATU). If Obi-wan is not active, the Presenter client should display an appropriate error

message (e.g., Obi-wan is offline) at the prompt to Yoda. If Obi-wan is active, Yoda should obtain the

Obi-wan’s address and UDP server port number (e.g., by issuing command ATU) before transferring

the contents of the file to Obi-wan via UDP. Here, Yoda is the UDP client and Obi-Wan is the UDP

server. The file should be stored in the current working directory of Obi-wan with the file name

presenterusername_filename (DO NOT add an extension to the name. If the filename has an extension

mp4, e.g., test.mp4 should be stored as yoda_test.mp4 in our example). File names are case sensitive

and one word long. After the file transmission, the terminal of Yoda should next prompt the user to

select one of the available commands. The terminal of Obi-wan should display an appropriate

message, e.g., a file (test.mp4) has been received from Yoda, before prompting the user to select one

of the available commands. Two example video files are available in Webcms.

TESTING NOTES: 1) When you are testing your assignment, you may run the server and multiple

clients on the same machine on separate terminals. In this case, use 127.0.0.1 (local host) as the

destination (e.g., Obi-wan’s in our example above) IP address. 2) For simplicity, we will run different

clients at different directories, and won’t test the scenario that a file is received when a user is

typing/issuing a command.

3.5 File Names & Execution

The main code for the server and client should be contained in the following files: server.c, or

Server.java or server.py, and client.c or Client.java or client.py. You are free

to create additional files such as header files or other class files and name them as you wish.

The server should accept the following two arguments:

• server_port: this is the port number that the server will use to communicate with the

clients. Recall that a TCP socket is NOT uniquely identified by the server port number. So, it

is possible for multiple TCP connections to use the same server-side port number.

8

• number_of_consecutive_failed_attempts: this is the number of consecutive

unsuccessful authentication attempts before a user should be blocked for 10 seconds. It should

be an integer between 1 and 5.

The server should be executed before any of the clients. It should be initiated as follows:

If you use Java:

java Server server_port number_of_consecutive_failed_attempts

If you use C:

./server server_port number_of_consecutive_failed_attempts

If you use Python:

python server.py server_port number_of_consecutive_failed_attempts

The client should accept the following three arguments:

• server_IP: this is the IP address of the machine on which the server is running.

• server_port: this is the port number being used by the server. This argument should be the

same as the first argument of the server.

• client_udp_port: this is the port number which the client will listen to/wait for the UDP

traffic from the other clients.

Note that, you do not have to specify the TCP port to be used by the client. You should allow the OS

to pick a random available port. Similarly, you should allow the OS to pick a randomly available UDP

source port for the UDP client. Each client should be initiated in a separate terminal as follows:

For non-CSE Students:

If you use Java:

java Client server_IP server_port

If you use C:

./client server_IP server_port

If you use Python:

python client.py server_IP server_port

For CSE Students:

If you use Java:

java Client server_IP server_port client_udp_server_port

If you use C:

./client server_IP server_port client_udp_server_port

If you use Python:

python client.py server_IP server_port client_udp_server_port

Note: 1) The additional argument of client_udp_server_port for CSE Students for the P2P UDP

communication is described in Section 3.4. In UDP P2P communication, one client program (i.e.,

Audience) acts as UDP server and the other client program (i.e., Presenter) acts as UDP client. 2)

When you are testing your assignment, you can run the server and multiple clients on the same

9

machine on separate terminals. In this case, use 127.0.0.1 (local host) as the server IP address.

3.6 Program Design Considerations

Client Design

The client program should be fairly straightforward. The client needs to interact with the user through

the command-line interface and print meaningful messages. Section 8 provides some examples. You

do not have to use the exact same text as shown in the samples. Upon initiation, the client should

establish a TCP connection with the server and execute the user authentication process. Following

authentication, the user should be prompted to enter one of the available commands. Almost all

commands require simple request/response interactions between the client with the server. Note that,

the client does not need to maintain any state about the videoconferencing.

For CSE Students, the client program also involves P2P communication using UDP. Similar to the

above, the user should be prompted to enter the available P2P communication command: UPD. This

function should be implemented using a new thread since the user may want to interact with the client

program when the file is uploading. The thread will end when the upload finishes. Similarly, the

client UDP server should be implemented with another thread. However, this thread should be run

until the client logs off since it is a UDP server thread. You should be particularly careful about how

multiple threads will interact with the various data structures. Code snippets for multi-threading in all

supported languages are available on the course webpage.

Server Design

When the server starts up, the videoconference is empty – i.e., there exist no users. The server should

wait for a client to connect, perform authentication, and service each command issued by the client

sequentially. Note that, you will need to define several data structures for managing the current state

of the videoconference (e.g., active users and posts) and the server must be able to interact with

multiple clients simultaneously. A robust way to achieve this is to use multithreading. In this approach,

you will need the main thread to listen for new connections. This can be done using the socket accept

function within a while loop. This main thread is your main program. For each connected client, you

will need to create a new thread. When interacting with one particular client, the server should receive

a request for a particular operation, take necessary action and respond accordingly to the client and

wait for the next request. You may assume that each interaction with a client is atomic. Consider that

client A initiates an interaction (i.e., a command) with the server. While the server is processing this

interaction, it cannot be interrupted by a command from another client B. Client B’s command will

be acted upon after the command from client A is processed. Once a client exits, the corresponding

thread should also be terminated. You should be particularly careful about how multiple threads will

interact with the various data structures. Code snippets for multi-threading in all supported languages

are available on the course webpage.

4. Additional Notes

• This is NOT a group assignment. You are expected to work on this individually.

• Tips on getting started: The best way to tackle a complex implementation task is to do it in

stages. A good place to start would be to implement the functionality to allow a single user to log

in with the server. Next, add the blocking functionality for several unsuccessful attempts. Then

extend this to handle multiple clients. Once your server can support multiple clients,

10

implement the functions for broadcasting message, reading message, and separate room service.

Finally, implement the features of downloading active users and logging off. Note that, this may

require changing the implementation of some of the functionalities that you have already

implemented. Once the communication with the server is working perfectly, you can move on to

peer-to-peer communication (CSE Students only). It is imperative that you rigorously test your

code to ensure that all possible (and logical) interactions can be correctly executed. Test, test, and

test.

• Application Layer Protocol: Remember that you are implementing an application layer protocol

for videoconferencing software. We are only considered the end result, i.e., the functionalities

outlined above. You may wish to revisit some of the application layer protocols that we have

studied (HTTP, SMTP, etc.) to see examples of the message format, actions are taken, etc.

• Transport Layer Protocol: You should use TCP for the communication between each client and

server, (and UDP for P2P communication between two clients CSE Students only). The TCP

connection should be set up by the client during the login phase and should remain active until the

user logs off, while there is no such requirement for UDP. The server port of the server is specified

as a command-line argument. (Similarly, the server port number of UDP is specified as a

command parameter of the client CSE Students only). The client ports for both TCP and UDP

do not need to be specified. Your client program should let the OS pick up random available TCP

or UDP ports.

• Backup and Versioning: We strongly recommend you back up your programs frequently. CSE

backups all user accounts nightly. If you are developing code on your personal machine, it is

strongly recommended that you undertake daily backups. We also recommend using a good

versioning system such as Github or bitbucket so that you can roll back and recover from any

inadvertent changes. There are many services available for which are easy to use. We will NOT

entertain any requests for special consideration due to issues related to computer failure, lost files,

etc.

• Language and Platform: You are free to use C, JAVA, or Python to implement this assignment.

Please choose a language that you are comfortable with. The programs will be tested on CSE

Linux machines. So please make sure that your entire application runs correctly on these machines

(i.e., CSE lab computers) or using VLAB. This is especially important if you plan to develop and

test the programs on your personal computers (which may possibly use a different OS or version

or IDE). Note that CSE machines support the following: gcc version 8.2, Java 11, Python 2.7 or

3.7. If you are using Python, please clearly mention in your report which version of Python

we should use to test your code. You may only use the basic socket programming APIs provided

in your programming language of choice. You may not use any special ready-to-use libraries or

APIs that implement certain functions of the spec for you.

• There is no requirement that you must use the same text for the various messages displayed to

the user on the terminal as illustrated in the examples in Section 8. However, please make sure

that the text is unambiguous.

• You are encouraged to use the forums on ED to ask questions and to discuss different approaches

to solve the problem. However, you should not post your solution or any code fragments on the

forums.

• We will arrange for additional consultation hours in Weeks 7 - 10 to assist you with assignment-

related questions if needed.

5. Submission

Please ensure that you use the mandated file name. You may of course have additional header files

and/or helper files. If you are using C, then you MUST submit a makefile/script along with your code

11

(not necessary with Java or Python). This is because we need to know how to resolve the

dependencies among all the files that you have provided. After running your makefile we should have
the following executable files: server and client. In addition, you should submit a small report,

report.pdf (no more than 3 pages) describing the program design, the application layer message

format, and a brief description of how your system works. Also, discuss any design tradeoffs

considered and made. Describe possible improvements and extensions to your program and indicate
how you could realise them. If your program does not work under any particular circumstances, please

report this here. Also, indicate any segments of code that you have borrowed from the Web or other
books.

You are required to submit your source code and report.pdf. You can submit your assignment

using the give command in a terminal from any CSE machine (or using VLAB or connecting via SSH
to the CSE login servers). Make sure you are in the same directory as your code and report, and then
do the following:

1. Type tar -cvf assign.tar filenames

e.g. tar -cvf assign.tar *.java report.pdf

2. When you are ready to submit, at the bash prompt type 3331

3. Next, type: give cs3331 assign assign.tar (You should receive a message stating the

result of your submission). Note that, COMP9331 students should also use this command.

Alternatively, you can also submit the tar file via the WebCMS3 interface on the assignment page.

Important notes

• The system will only accept assign.tar submission name. All other names will be rejected.

• Ensure that your program/s are tested in CSE Linux machine (or VLAB) before submission.

In the past, there were cases where tutors were unable to compile and run students’

programs while marking. To avoid any disruption, please ensure that you test your program

in CSE Linux-based machine (or VLAB) before submitting the assignment. Note that, we

will be unable to award any significant marks if the submitted code does not run during

marking.

• You may submit as many times as possible before the deadline. A later submission will override

the earlier submission, so make sure you submit the correct file. Do not leave until the last moment
to submit, as there may be technical, or network errors and you will not have time to rectify it.

Late Submission Penalty: Late penalty will be applied as follows:

• 1 day after deadline: 5% reduction

• 2 days after deadline: 10% reduction

• 3 days after deadline: 15% reduction

• 4 days after deadline: 20% reduction

• 5 or more days late: NOT accepted

NOTE: The above penalty is applied to your final total. For example, if you submit your assignment

1 day late and your score on the assignment is 10, then your final mark will be 10 – 0.5 (10% penalty)
= 9.5.

12

6. Plagiarism

You are to write all of the code for this assignment yourself. All source codes are subject to strict

checks for plagiarism, via highly sophisticated plagiarism detection software. These checks may

include comparison with available code from Internet sites and assignments from previous semesters.

In addition, each submission will be checked against all other submissions of the current semester.

Do not post this assignment on forums where you can pay programmers to write code for you. We

will be monitoring such forums. Please note that we take this matter quite seriously. The LIC will

decide on the appropriate penalty for detected cases of plagiarism. The most likely penalty would be

to reduce the assignment mark to ZERO. We are aware that a lot of learning takes place in student

conversations, and don’t wish to discourage those. However, it is important, for both those helping

others and those being helped, not to provide/accept any programming language code in writing, as

this is apt to be used exactly as-is, and lead to plagiarism penalties for both the supplier and the copier

of the codes. Write something on a piece of paper, by all means, but tear it up/take it away when the

discussion is over. It is OK to borrow bits and pieces of code from sample socket code out on the

Web and in books. You MUST however acknowledge the source of any borrowed code. This means

providing a reference to a book or a URL when the code appears (as comments). Also, indicate in

your report the portions of your code that were borrowed. Explain any modifications you have made

(if any) to the borrowed code.

7. Marking Policy

You should test your program rigorously before submitting your code. Your code will be marked
using the following criteria:

The following table outlines the marking rubric for both CSE and non-CSE students:

Functionality Marks

(CSE)

Marks

(non-

CSE)

Successful log in and log out for single client 0.5 0.5

Blocking the user for 10 seconds after the specified number of unsuccessful

attempts (even from different IP)

1.5 1.5

Successful log in for multiple clients (from multiple terminals) 4 4

Correct Implementation of BCM: Broadcast message 1 2

Correct Implementation of ATU: Display active users 1 2

Correct Implementation of SRB: Separate room building 1 2

Correct Implementation of SRM: Separate room message 2 3

Correct Implementation of RDM: Read message 2 3

Properly documented report 1 1

Code quality and comments 1 1

Peer to peer communications including Correct Implementation of UPD:

Upload file

5 N/A

NOTE: While marking, we will be testing for typical usage scenarios for the above functionality

and some straightforward error conditions. A typical marking session will last for about 15

minutes during which we will initiate at most 5 clients. However, please do not hard code any

specific limits in your programs. We won’t be testing your code under very complex scenarios

and extreme edge cases.

13

8. Sample Interaction

Note that the following list is not exhaustive but should be useful to get a sense of what is expected.

We are assuming Java as the implementation language.

Case 1: Successful Login (underline denotes user input)

Terminal 1

>java Server 4000 3

Terminal 2

For Non-CSE Students:

>java Client 10.11.0.3 4000 (assume that server is executing on 10.11.0.3)

> Username: Yoda

> Password: comp9331

> Welcome to TOOM!

> Enter one of the following commands (BCM, ATU, SRB, SRM, RDM, OUT):

>

For CSE Students:

>java Client 10.11.0.3 4000 8000 (assume that server is executing on 10.11.0.3)

> Username: Yoda

> Password: comp9331

> Welcome to TOOM! (the client should upload the UDP port number 8000, i.e., the
second argument, to the server in the background after a user is log in).

> Enter one of the following commands (BCM, ATU, SRB, SRM, RDM, OUT, UPD):

>

Case 2: Unsuccessful Login (assume server is running on Terminal 1 as in Case 1, underline denotes

user input)

The unsuccessful login examples below are for Non-CSE Students. For CSE Students, the client

program should have an additional argument client_udp_server_port (see the example above with

UDP port number 8000).

Terminal 2

>java Client 10.11.0.3 4000 (assume that server is executing on 10.11.0.3)

14

> Username: Yoda

> Password: comp3331

> Invalid Password. Please try again

> Password: comp8331

> Invalid Password. Please try again

> Password: comp7331

> Invalid Password. Your account has been blocked. Please try again later

The user should now be blocked for 10 seconds since the specified number of unsuccessful login

attempts is 3. The terminal should shut down at this point.

Terminal 2 (reopened before 10 seconds are over)

>java Client 10.11.0.3 4000 8000 (assume that server is executing on 10.11.0.3)

> Username: Yoda

> Password: comp9331

> Your account is blocked due to multiple login failures. Please try again later

Terminal 2 (reopened after 10 seconds are over)

>java Client 10.11.0.3 4000 8000 (assume that server is executing on 10.11.0.3)

> Username: Yoda

> Password: comp9331

> Welcome to Toom!

> Enter one of the following commands (BCM, ATU, SRB, SRM, RDM, OUT):

>

Example Interactions (underline denotes user input)

Example Interactions 1 and 2 below are for Non-CSE Students. For CSE Students, the client

command prompt has one more command UPD, and ATU command returns extra active users’

information including IP addresses and UDP port numbers. Please see Example Interaction 3 (P2P

communication via UDP).

Consider a scenario where users Yoda and Obi-wan are currently logged in. In the following we will

illustrate the text displayed at the terminals for all users and the server as the users execute various

commands.

1. Yoda executes BCM command followed by a command that is not supported. Obi-wan executes

ATU. Yoda and Obi-wan execute log out.

Yoda’s Terminal Obi-wan’s Terminal server’s Terminal

> Enter one of the
following commands (BCM,

ATU, SRB, SRM, RDM

OUT): BCM Hello

 > Yoda broadcasted BCM
#1 “Hello” at 1 Jun

2022

15:00:01.

> Broadcast message,
#1 broadcast at 1 Jun

2022 15:00:01.

> Enter one of the
following commands (BCM,

15

ATU, SRB, SRM, RDM,

OUT): whatsyourname

> Error. Invalid
command!

> Enter one of the
following commands (BCM,

ATU, SRB, SRM, RDM,

OUT):

 > Enter one of the > Obi-Wan issued ATU
following commands (BCM, command

ATU, SRB, SRM, RDM,

OUT): ATU
> Return messages:

 Yoda, active since 1 Jun

2022 15:00:00.

> Yoda, active since 1 Jun
2022 15:00:00.

> Enter one of the

following commands (BCM,

ATU, SRB, SRM, RDM

OUT):

> Enter one of the
following commands (BCM,

ATU, SRB, SRM, RDM,

OUT): OUT

> Bye, Yoda!

 > Yoda logout

 > Enter one of the
following commands (BCM,

ATU, SRB, SRM, RDM,

OUT): OUT

> Bye, Obi-wan!

> Obi-wan logout

2. Obi-wan executes a series of valid commands followed by a SRB, SRM and RDM commands and
interacts with Yoda.

Yoda’s Terminal Obi-wan’s Terminal server’s Terminal

>Enter one of the

following commands (BCM,

ATU, SRB, SRM, RDM, OUT):

SRB Obi-wan

16

> Separate chat room has

been created, room ID: 1,

users in this room: Yoda,

Obi-wan

> Enter one of the

following commands (BCM,

ATU, SRB, SRM, RDM, OUT):

SRM 1 hello there

> Enter one of the

following commands (BCM,

ATU, SRB, SRM, RDM,

OUT): RDM s 1 Jun 2022

16:00:00

> Yoda issued SRB
command

> Return message:

Separate chat room has

been created, room ID:

1, users in this room:

Yoda, Obi-wan

> Yoda issued a message

in separate room 1:

#1; 1 Jun 2022 16:05:00;

Yoda; hello there

> RDM command issued

from Obj-wan

> Return message

room-1: #1; 1 Jun 2022

16:05:00; Yoda; hello

there

17

> Messages in separate

rooms since 1 Jun 2022

16:00:00:

room-1:

#1; Yoda: hello there at

1 Jun 2022 16:05:00.

3. P2P communication via UDP CSE-students only. Before Yoda uploads a video file lecture1.mp4

to Obi-wan, Yoda issues the ATU command to find out the IP address and UDP server port

number of Obi-wan.

Yoda’s Terminal Obi-wan’s Terminal server’s Terminal

> Enter one of the

following commands (BCM,

ATU, SRB, SRM, RDM, OUT,

UPD): ATU

> Enter one of the

following commands (BCM,

ATU, SRB, SRM, RDM, OUT,

UPD):

> Yoda issued ATU command
ATU.

> Return active user

list:

Obi-wan; 129.129.2.1;

8001; active

since 1 Jun 2022

16:00:01. (assume that

the IP address and UDP

server port number of

Obi-wan are 129.129.2.1

and 8001 respectively.)

Hans; 129.128.2.1; 9000;

active since 1 Jun 2022

16:00:10 (assume that

Hans is active with this

details).

(note that the server is

not aware of the P2P UDP

communication between

Yoda and Obi-wan)

> Obi-wan, 129.129.2.1,
8001, active since 1 Jun

2022 16:00:01.

Han, 129.128.2.1, 9000,

active since 1 Jun 2022

16:00:10

18

> Enter one of the
following commands (BCM,

ATU, SRB, SRM, RDM, OUT,

UPD):

UPD Obi-wan lecture1.mp4

> lecture1.mp4 has been

uploaded

> Enter one of the

following commands (BCM,

ATU, SRB, SRM, RDM, OUT,

UPD):

> Received lecture1.mp4

from Yoda

> Enter one of the

following commands (BCM,

ATU, SRB, SRM, RDM, OUT,

UPD):

 (For simplicity, we won’t

test the scenario that a

file is received, when a

user is typing/issuing a

command.)

