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Corrections since the previous version

• The table on slide 19 is now corrected
• Superscripts in formulas are now compiled and demonstrated correctly in slides 44 and 45 
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Uncertainty
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Uncertainty

§ In many situation, an AI agent has to choose an action based 
on incomplete information.

§ Incomplete Information: agent may not have the complete theory for the domain
§ Imperfect Information: agent may not have enough information about the domain
§ Noise: information agent does have may be unreliable
§ Non-determinism: environment itself may be stochastic
§ Multi-agent world: other agents act on their own interest



Planning under Uncertainty

Let action 𝐴𝑡 = leave for the airport 𝑡 minutes before the flight
Will 𝐴𝑡 get me there on time? Problem:
§ Partial observability, noisy sensors
§ Uncertainty in action outcomes (flat tyre, etc.)
§ Immense complexity of modelling and predicting traffic

Hence a purely logical approach assumes there is no uncertainty



Methods for handling Uncertainty

Probability
Probability gives a way of summarizing the uncertainty
• Given the available evidence,

• Leaving 30 minutes in advance will get me there on time with probability 0.04
• Leaving 90 minutes in advance will get me there on time with probability 0.75
• Leaving 120 minutes in advance will get me there on time with probability 0.95
• Leaving 1440 minutes in advance will get me there on time with probability 0.999

Mahaviracarya (9th C.), Cardamo (1565) theory of gambling
Bell DF. Pascal: Casuistry, probability, uncertainty. Journal of Medieval and Early Modern Studies. 1998;28(1):37.



Random Variables
• E.g. Weather

•Propositions are random variables that can take on several values
P(Weather = Sunny) = 0.8 
P(Weather = Rain) = 0.1
P(Weather = Cloudy) = 0.09
P(Weather = Snow) = 0.01 

• Every random variable X has a domain of possible values
⟨𝑥!, 𝑥", …, 𝑥#⟩

• Probabilities of all possible values P(Weather) = ⟨0.8,0.1,0.09,0.01⟩ is a probability distribution 



What Do the Numbers Mean?
Statistical/Frequentist View 

Long-range frequency of a set of “events” e.g. probability of the event
of “heads” appearing on the toss of a coin = long-range frequency of
heads that appear on coin toss 

Objective View 
Probabilities are real aspects of the world — objective 

Personal/Subjective/Bayesian View 
Measure of belief in proposition based on agent’s knowledge, e.g.
probability of heads is a degree of belief that coin will land heads; 
different agents may assign a different probability — subjective 
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https://www.youtube.com/watch?v=AUM59Eh6vTw

https://www.youtube.com/watch?v=AUM59Eh6vTw


Sample Space and Events
• Flip a coin three times
• The possible outcomes are

TTT TTH THT THH 
HTT HTH HHT HHH

• Set of all possible outcomes
S = {TTT,TTH,THT,THH,HTT,HTH,HHT,HHH}

• Sample space is the set of all possible outcomes
• Any subset of the sample space is known as an event
• Any singleton subset of the sample space is know as sample point/possible 

world/atomic event/ simple event



Sample Space and Events



Prior Probability
• Probability before any new data is collected
• P(A) is the prior or unconditional probability that an event A occurs 
• For example, P(Appendicitis = False)=0.3 

• Other way to represent can be:  P(¬Appendicitis)=0.3 

• In the absence of any other information, agent believes there is a probability of     
0.3 (30%) that the patient suffers from appendicitis 



Axioms of Probability
§ 0 ≤ 𝑃 𝐴 ≤ 1

• All probabilities are between 0 and 1

§ 𝑃 𝑇𝑟𝑢𝑒 = 1 𝑃 𝐹𝑎𝑙𝑠𝑒 = 0
• Valid propositions have probability 1
• Unsatisfiable propositions have probability 0

§ 𝑃 𝐴⋁𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴⋀𝐵
• Can determine probabilities of all other propositions

A B

𝐴⋀B



Axioms of Probability
§ 𝑃 𝐴⋁𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴⋀𝐵

• Can determine probabilities of all other propositions
A B

𝐴⋀B

A B A B= + - 𝐴⋀B



Joint probability

Probability of two atomic events co-occurring

P(Weather,Cavity)is a 4x2 matrix of values:

Probabilities in table come from observation

Weather = sunny rain cloudy snow
Cavity = True 0.144 0.02 0.016 0.02
Cavity =  False 0.576 0.08 0.064 0.08



Example: Tooth Decay
• 20% of people have a cavity in one of their teeth which needs 

a filling.

𝑃(𝑐𝑎𝑣𝑖𝑡𝑦) = 0.2
• Dentist catches a hole in a teeth of 34% of the people

𝑃(catch) = 0.34

• 20% of people have toothache. 
𝑃(tootache) = 0.20
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Joint Probability Distribution
Assume some underlying joint probably distribution over three random 
variables:
• Toothache, Cavity and Catch:

Note that the sum of the entries in the table is 1.0.

For any proposition, sum of simple events where it is true:

toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity .108 .012 .072 .008
¬ cavity .016 0.064 .144 .576



Inference by Enumeration
Start with the joint distribution

For any proposition , sum of atomic events where it is true:
𝑃 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity .108 .012 .072 .008
¬ cavity .016 0.064 .144 .576



Inference by Enumeration
Start with the joint distribution

𝑃 𝑐𝑎𝑣𝑖𝑡𝑦 ∨ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 = ?

toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity .108 .012 .072 .008
¬ cavity .016 0.064 .144 .576



Inference by Enumeration
Start with the joint distribution

For any proposition , sum of atomic events where it is true:

𝑃 𝑐𝑎𝑣𝑖𝑡𝑦 ∨ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒 = 0.108 + 0.012 + 0.016 + 0.064 = 0.28

toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity .108 .012 .072 .008
¬ cavity .016 0.064 .144 .576
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Conditional Probability
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Example: Tooth Decay

• Feeling a toothache, you think you have a cavity, perhaps as 
high as 60%.

• The conditional probability of cavity, given toothache, is 0.6, 
written as:

𝑃(cavity|toothache) = 0.6

• Dentist’s check will increase probability of a cavity, catch. Photo by Dan Freeman 
on Unsplash



Conditional Probability
•Need to update probabilities based on new information 
• Use conditional or posterior probability 
•𝑃(𝐴|𝐵) is the probability of A given we know B

e.g. 𝑃 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑐𝑖𝑡𝑖𝑠 𝐴𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑎𝑖𝑛) = 0.75



Conditional Probability
•Need to update probabilities based on new information 
• Use conditional or posterior probability 
•𝑃(𝐴|𝐵) is the probability of A given we know B

e.g. 𝑃 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑐𝑖𝑡𝑖𝑠 𝐴𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑎𝑖𝑛) = 0.75

• Definition: 𝑃(𝐴|𝐵) = !(#∧%)
!(%) . provided P(B) > 0

• Product Rule: 𝑃 𝐴 ∧ 𝐵 = 𝑃(𝐴|𝐵)𝑃(𝐵)

BA



Conditional Probability
𝑃(𝐴|𝐵) = !(#∧%)

!(%)
. provided P(B) > 0

BA

B
P(A|B) = 2/3

P(A ∧ B) = 2/6 BP(B) = 3/6

𝑃(𝐴 ∧ 𝐵)
𝑃(𝐵) =

2/6
3/6 = 2/3



Conditional Probability by Enumeration

𝑃 ¬𝑐𝑎𝑣𝑖𝑡𝑦 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒) =
𝑃(¬𝑐𝑎𝑣𝑖𝑡𝑦 ⋀ 𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

𝑃(𝑡𝑜𝑜𝑡ℎ𝑎𝑐ℎ𝑒)

=
0.016 + 0.0064

0.108 + 0.012 + 0.016 + 0.064 = 0.4

toothache ¬ toothache

catch ¬ catch catch ¬ catch

cavity .108 .012 .072 .008
¬ cavity .016 0.064 .144 .576



Conditional Probability
Consider two random variable 𝑎 and 𝑏, with 𝑃 𝑏 ≠ 0
• the conditional probability of 𝑎 given 𝑏 is

𝑃 𝑎 𝑏 = !(#∧%)
!(%)

Alternative formulation:
𝑃 𝑎 ∧ 𝑏 = 𝑃 𝑎 𝑏 𝑃 𝑏 = 𝑃 𝑏 𝑎 𝑃 𝑎

When an agent considers a sequence of random variable at successive time steps, 
they can be chained together using this formula:



Bayes’ Rule

𝑃(𝐵|𝐴) = :(<|>):(>)
:(<)

• Deriving Bayes’ Rule:
𝑃(𝐴 ∧ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) (Definition)
𝑃(𝐵 ∧ 𝐴) = 𝑃(𝐵|𝐴)𝑃(𝐴) (Definition)
So 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) since 𝑃 𝐴 ∧ 𝐵 = 𝑃 𝐵 ∧ 𝐴
Hense:	 𝑃(𝐵|𝐴) = !(#|%)!(%)

!(#)
if 𝑃(𝐴) ≠ 0

P(A) 
Note: If 𝑃(𝐴) = 0, 𝑃(𝐵|𝐴) is undefined



Using Bayes’ Rule
• Suppose there are two conditional probabilities for appendicitis

𝑃 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑐𝑖𝑡𝑖𝑠 𝐴𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑎𝑖𝑛 = 0.8
𝑃(𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑐𝑖𝑡𝑖𝑠|𝑁𝑎𝑢𝑠𝑒𝑎) = 0.1

• 𝑃 𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑐𝑖𝑡𝑖𝑠 𝐴𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑎𝑖𝑛 ∧ 𝑁𝑎𝑢𝑠𝑒𝑎
= !(#ABCDEFGH!GEF∧IGJKLG|#MMLFBENEOEK).!(#MMLFBENEOEK)

!(#ABCDEFGH!GEF∧IGJKLG)

• Need to know 𝑃(𝐴𝑏𝑑𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑎𝑖𝑛 ∧ 𝑁𝑎𝑢𝑠𝑒𝑎|𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑐𝑖𝑡𝑖𝑠)
• With many symptoms that is a daunting task … 
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Why shall we use Bayesian Networks

With many symptoms that is a daunting task … 

Photo by Pixabay on Pexels



Conditional Independence

Appendicitis

Abdominal 
pain Nausea



Conditional Independence
• Appendicitis is direct cause of both abdominal pain and nausea 
• If we know a patient is suffering from appendicitis, the probability

of nausea should not depend on the presence of abdominal pain;
likewise probability of abdominal pain should not depend on nausea 

• Nausea and abdominal pain are conditionally independent given appendicitis 
• An event X is independent of event Y , conditional on background

knowledge K, if knowing Y does not affect the conditional probability
of X given K 

𝑃(𝑋|𝐾) = 𝑃(𝑋|𝑌, 𝐾)



Bayesian Networks
• Example (Pearl, 1988)

Probabilities summarize potentially infinite set of possible circumstances



Bayesian Networks

• A Bayesian network (also Bayesian Belief Network, probabilistic
network, causal network, knowledge map) is a directed acyclic graph
(DAG) where 
• Each node corresponds to a random variable 
• Directed links connect pairs of nodes – a directed link from node X to node Y means that X has 

a direct influence on Y 
• Each node has a conditional probability table quantifying effect of parents on node 

• Independence assumption of Bayesian networks 
• Each random variable is (conditionally) independent of its non descendants given its parents 



Bayesian Networks
Example (Pearl, 1988) 
You have a new burglar alarm at home that is quite reliable at detecting burglars 
but may also respond at times to an earthquake. You also have two neighbours, 
John and Mary, who promise to call you at work when they hear the alarm. John 
always calls when he hears the alarm but sometimes confuses the telephone 
ringing with the alarm and calls then, also Mary likes loud music and sometimes 
misses the alarm. Given the evidence of who has or has not called, we would like to 
estimate the probability of a burglary



Bayesian Networks
• Example (Pearl, 1988)

Probabilities summarize potentially infinite set of possible circumstances



Conditional Probability Table
Row contains conditional probability of each node value for a conditioning case (possible combination of 
values for parent node) 

𝑃 𝐴𝑙𝑎𝑟𝑚 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 ∧ 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒)
Burglary Earthquake True

True True 0.950
True False 0.940
False True 0.290
False False 0.001



Semantics of Bayesian Networks
•Bayesian network provides a complete description of the domain 

• Joint probability distribution can be determined from the network 
> 𝑃(𝑋!, 𝑋",···, 𝑋#) = ∏$%!

# 𝑃(𝑋$|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋$ )
• For example,

𝑃 𝐽 ∧ 𝑀 ∧ 𝐴 ∧ ¬𝐵 ∧ ¬𝐸 = 𝑃(𝐽|𝐴)𝑃(𝑀|𝐴)𝑃(𝐴|¬𝐵 ∧ ¬𝐸)𝑃(¬𝐵)𝑃(¬𝐸)
= 0.90×0.70×0.001×0.999×0.998 = 0.000628

• Bayesian network is a complete and non-redundant representation domain (and can be far more 
compact than joint probability distribution) 



Semantics of Bayesian Networks
• Factorization of joint probability distribution 

• Chain Rule: Use conditional probabilities to decompose conjunctions

𝑃 𝑋! ∧ 𝑋" ∧···∧ 𝑋# = 𝑃 𝑋! . 𝑃 𝑋" 𝑋! . 𝑃 𝑋$ 𝑋! ∧ 𝑋" . ··· . 𝑃 𝑋# 𝑋! ∧ 𝑋" ∧···∧ 𝑋#%!

• Now, order the variables 𝑋! , 𝑋",···, 𝑋"in a Bayesian network so that a variable comes after its parents – let 
𝜋&! be the tuple of parents of variable Xi (this is a complex random variable) 

• Using the chain rule,

𝑃(𝑋1 ∧ 𝑋2 ∧ ··· ∧ 𝑋𝑛) = 𝑃(𝑋1). 𝑃(𝑋2|𝑋1). 𝑃(𝑋3|𝑋1 ∧ 𝑋2).··· . 𝑃(𝑋𝑛|𝑋1 ∧ 𝑋2 ∧···∧ 𝑋𝑛 − 1)



Semantics of Bayesian Networks
let πXi be the tuple of parents of variable Xi

Each 𝑃(𝑋𝑖 |𝑋1 ∧ 𝑋2 ∧ · · · ∧ 𝑋𝑖 − 1 ) has the property that it is not conditioned on a 
descendant of 𝑋𝑖 (given ordering of variables in Bayesian network) 

Therefore, by conditional independence
> 𝑃(𝑋𝑖|𝑋1 ∧ 𝑋2 ∧···∧ 𝑋𝑖 − 1) = 𝑃(𝑋𝑖|𝜋𝑋𝑖)

Rewriting gives the chain rule
> 𝑃(𝑋1, 𝑋2,···, 𝑋𝑛) = ∏E]^

A 𝑃(𝑋𝑖|𝜋𝑋𝑖)



Calculation using Bayesian Networks
Fact 1: Consider random variable 𝑋 with parents 𝑌1, 𝑌2,···, 𝑌𝑛

𝑃(𝑋|𝑌1 ∧···∧ 𝑌𝑛 ∧ 𝑍) = 𝑃(𝑋|𝑌1 ∧···∧ 𝑌𝑛)
if 𝑍 doesn’t involve a descendant of 𝑋 (including 𝑋 itself)

Fact 2: If 𝑌1,···, 𝑌𝑛 are pairwise disjoint and exhaust all possibilities 

𝑃(𝑋) = Σ𝑃(𝑋 ∧ 𝑌𝑖) = Σ𝑃(𝑋|𝑌𝑖). 𝑃(𝑌𝑖)
𝑃(𝑋|𝑍) = Σ𝑃(𝑋 ∧ 𝑌𝑖|𝑍)

> e.g. Type equation here. 𝑃 𝐽 𝐵 = P(J∧B)
' (

= ΣP(J∧B∧e∧a∧m)
ΣP( j∧B∧e∧a∧m) = where j ranges over J,¬J, e over E, ,¬E, a 

over A, ¬A and m over M, ¬M



Calculating using Bayesian Networks
•𝑃(𝐽 ∧ 𝐵 ∧ 𝐸 ∧ 𝐴 ∧ 𝑀) = 𝑃(𝐽|𝐴). 𝑃(𝐵). 𝑃(𝐸). 𝑃(𝐴|𝐵 ∧ 𝐸). 𝑃(𝑀|𝐴) =

0.90 × 0.001 × 0.002 × 0.95 × 0.70 = 0.00000197
• 𝑃(𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ 𝐴 ∧ 𝑀) = 0.00591016
• 𝑃(𝐽 ∧ 𝐵 ∧ 𝐸 ∧ ¬𝐴 ∧ 𝑀) = 5×10%!!

• 𝑃(𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ ¬𝐴 ∧ 𝑀) = 2.99×10%)

• 𝑃(𝐽 ∧ 𝐵 ∧ 𝐸 ∧ 𝐴 ∧ ¬𝑀) = 0.000000513
• 𝑃(𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ 𝐴 ∧ ¬𝑀) = 0.000253292
• 𝑃(𝐽 ∧ 𝐵 ∧ 𝐸 ∧ ¬𝐴 ∧ ¬𝑀) = 4.95×10%*

• 𝑃(𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ ¬𝐴 ∧ ¬𝑀) = 2.96406×10%+



Calculation using Bayesian Networks       
•𝑃(¬𝐽 ∧ 𝐵 ∧ 𝐸 ∧ 𝐴 ∧ 𝑀) = 0.000000133
• 𝑃 ¬𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ 𝐴 ∧ 𝑀 = 6.56684×10 − 5

• 𝑃(¬𝐽 ∧ 𝐵 ∧ 𝐸 ∧ ¬𝐴 ∧𝑀) = 9.5×10u^v

• 𝑃(¬𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ ¬𝐴 ∧𝑀) = 5.6886×10uw

• 𝑃(¬𝐽 ∧ 𝐵 ∧ 𝐸 ∧ 𝐴 ∧ ¬𝑀) = 0.000000057
• 𝑃(¬𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ 𝐴 ∧ ¬𝑀) = 2.81436×10ux

• 𝑃(¬𝐽 ∧ 𝐵 ∧ 𝐸 ∧ ¬𝐴 ∧ ¬𝑀) = 9.405×10uy

• 𝑃(¬𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ ¬𝐴 ∧ ¬𝑀) = 5.63171×10ux



Calculation using Bayesian Networks
• Therefore	𝑃(𝐽|𝐵) = '(-∧()

P(B) = 0'(-∧(∧1∧2∧3)
ΣP( j∧B∧e∧a∧m) =

4.44)6*4!7
0.001

• 𝑃(𝐽|𝐵) = 0.849017

• Can often simplify calculation without using full joint probabilities – but not always

𝑃(𝐽 ∧ 𝐵 ∧ ¬𝐸 ∧ 𝐴 ∧ 𝑀)



Inference in Bayesian Networks
Diagnostic Inference From effects to causes

𝑃(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦|𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠) = 0.016
Causal Inference From causes to effects

𝑃(𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠|𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦) = 0.85; 𝑃(𝑀𝑎𝑟𝑦𝐶𝑎𝑙𝑙𝑠|𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦) = 0.67
Intercausal Inference Explaining away

𝑃(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦|𝐴𝑙𝑎𝑟𝑚) = 0.3736 but adding evidence, 𝑃(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦|𝐴𝑙𝑎𝑟𝑚 ∧
𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒) = 0.003; despite the fact that burglaries and earthquakes are independent, the 
presence of one makes the other much less likely 
Mixed Inference Combinations of the patterns above

Diagnostic + Causal: 𝑃(𝐴𝑙𝑎𝑟𝑚|𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠 ∧ ¬𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒)
Intercausal + Diagnostic: 𝑃(𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦|𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠 ∧ ¬𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒)



Inference in Bayesian Networks

𝑄 = query; 𝐸 = evidence
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Example – Causal Inference
• 𝑃(𝐽𝑜ℎ𝑛𝐶𝑎𝑙𝑙𝑠|𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦)
• 𝑃(𝐽|𝐵) = 𝑃(𝐽|𝐴 ∧ 𝐵). 𝑃(𝐴|𝐵) + 𝑃(𝐽|¬𝐴 ∧ 𝐵). 𝑃(¬𝐴|𝐵)

= 𝑃(𝐽|𝐴). 𝑃(𝐴|𝐵) + 𝑃(𝐽|¬𝐴). 𝑃(¬𝐴|𝐵)
= 𝑃(𝐽|𝐴). 𝑃(𝐴|𝐵) + 𝑃(𝐽|¬𝐴). (1 − 𝑃(𝐴|𝐵))

• 𝑁𝑜𝑤 𝑃(𝐴|𝐵) = 𝑃(𝐴|𝐵 ∧ 𝐸 ). 𝑃(𝐸 |𝐵) + 𝑃(𝐴|𝐵 ∧ ¬𝐸 ). 𝑃(¬𝐸 |𝐵)
= 𝑃(𝐴|𝐵 ∧ 𝐸). 𝑃(𝐸) + 𝑃(𝐴|𝐵 ∧ ¬𝐸). 𝑃(¬𝐸)
= 0.95 × 0.002 + 0.94 × 0.998 = 0.94002

• 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑃(𝐽|𝐵) = 0.90×0.94002 + 0.05×0.05998 = 0.849017
• 𝐹𝑎𝑐𝑡 3: 𝑃(𝑋|𝑍) = 𝑃(𝑋|𝑌 ∧ 𝑍). 𝑃(𝑌|𝑍) + 𝑃(𝑋|¬𝑌 ∧ 𝑍). 𝑃(¬𝑌|𝑍), 𝑠𝑖𝑛𝑐𝑒
•𝑋 ∧ 𝑍 ≡ (𝑋 ∧ 𝑌 ∧ 𝑍) ∨ (𝑋 ∧ ¬𝑌 ∧ 𝑍) (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝐹𝑎𝑐𝑡 2)
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Example – Diagnostic Inference
• 𝑃(𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒|𝐴𝑙𝑎𝑟𝑚)

• 𝑃(𝐸|𝐴) = 1(2|4).1(4)
1(2)

• = $(&|(∧*).$(().$(*)-$(&|¬(∧*).$(¬().$(*)
$(&)

• = 6 7.89×7.77;×7.77<=7.<8×7.888×7.77<
1(2)

= 9.>;?<×;7!"

1(2)

• 𝑁𝑜𝑤 𝑃(𝐴) = 𝑃(𝐴|𝐵 ∧ 𝐸). 𝑃(𝐵). 𝑃(𝐸) + 𝑃(𝐴|¬𝐵 ∧ 𝐸). 𝑃(¬𝐵). 𝑃(𝐸) +
𝑃(𝐴|𝐵 ∧ ¬𝐸 ). 𝑃(𝐵). 𝑃(¬𝐸 ) + 𝑃(𝐴|¬𝐵 ∧ ¬𝐸 ). 𝑃(¬𝐵). 𝑃(¬𝐸 )

• 𝐴𝑛𝑑 𝑃(𝐴|𝐵 ∧ ¬𝐸). 𝑃(𝐵). 𝑃(¬𝐸) + 𝑃(𝐴|¬𝐵 ∧ ¬𝐸). 𝑃(¬𝐵). 𝑃(¬𝐸)
= 0.94 × 0.001 × 0.998 + 0.001 × 0.999 × 0.998 = 0.001935122
𝑆𝑜 𝑃(𝐴) = 5.8132 × 10 − 4 + 0.001935122 = 0.002516442

• 𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑃(𝐸 |𝐴) = 9.>;?<×;7!"

7.77<9;@AA<
= 0.2310087

• 𝐹𝑎𝑐𝑡 4: 𝑃(𝑋 ∧ 𝑌 ) = 𝑃(𝑋 ). 𝑃(𝑌 ) 𝑖𝑓 𝑋 , 𝑌 𝑎𝑟𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
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Conclusion
•Due to noise or uncertainty it is useful to reason with probabilities 

• Calculating with joint probability distribution difficult due to the large number of values 

• Use of Bayes’ Rule and independence assumptions simplifies reasoning 

• Bayesian networks allow compact representation of probabilities and efficient reasoning 
with probabilities 

• Elegant recursive algorithms can be given to automate the process of inference in 
Bayesian networks 


