Uncertainty

Dr Armin Chitizadeh

Inspired by the COMP9414 lectures by
Dr Alan Blair
Associate Professor Wayne Wobcke
Corrections since the previous version

• The table on slide 19 is now corrected
• Superscripts in formulas are now compiled and demonstrated correctly in slides 44 and 45
Outline

- Uncertainty and Probability
- What shall we do when we receive new information
- What is Bayesian Networks and why do we need it
- Some examples
Uncertainty
Uncertainty

- In many situations, an AI agent has to choose an action based on incomplete information.
 - Incomplete Information: agent may not have the complete theory for the domain
 - Imperfect Information: agent may not have enough information about the domain
 - Noise: information agent does have may be unreliable
 - Non-determinism: environment itself may be stochastic
 - Multi-agent world: other agents act on their own interest
Planning under Uncertainty

Let action A_t = leave for the airport t minutes before the flight
Will A_t get me there on time? Problem:
- Partial observability, noisy sensors
- Uncertainty in action outcomes (flat tyre, etc.)
- Immense complexity of modelling and predicting traffic

Hence a purely logical approach assumes there is no uncertainty
Methods for handling Uncertainty

Probability

Probability gives a way of summarizing the uncertainty

- Given the available evidence,
 - Leaving 30 minutes in advance will get me there on time with probability 0.04
 - Leaving 90 minutes in advance will get me there on time with probability 0.75
 - Leaving 120 minutes in advance will get me there on time with probability 0.95
 - Leaving 1440 minutes in advance will get me there on time with probability 0.999

Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

Random Variables

• E.g. Weather

• Propositions are random variables that can take on several values
 \[P(\text{Weather} = \text{Sunny}) = 0.8 \]
 \[P(\text{Weather} = \text{Rain}) = 0.1 \]
 \[P(\text{Weather} = \text{Cloudy}) = 0.09 \]
 \[P(\text{Weather} = \text{Snow}) = 0.01 \]

• Every random variable \(X \) has a domain of possible values
 \(\langle x_1, x_2, ..., x_n \rangle \)

• Probabilities of all possible values \(P(\text{Weather}) = \langle 0.8, 0.1, 0.09, 0.01 \rangle \) is a probability distribution
What Do the Numbers Mean?

Statistical/Frequentist View
Long-range frequency of a set of “events” e.g. probability of the event of “heads” appearing on the toss of a coin = long-range frequency of heads that appear on coin toss.

Objective View
Probabilities are real aspects of the world — objective.

Personal/Subjective/Bayesian View
Measure of belief in proposition based on agent’s knowledge, e.g. probability of heads is a degree of belief that coin will land heads; different agents may assign a different probability — subjective.
Sample Space and Events

- Flip a coin three times
- The possible outcomes are

 TTT TTH THT THH
 HTT HTH HHT HHH

- Set of all possible outcomes

 \(S = \{TTT, TTH, THT, THH, HTT, HTH, HHT, HHH\} \)

- **Sample space** is the set of all possible outcomes
- Any subset of the sample space is known as an **event**
- Any singleton subset of the sample space is know as **sample point/possible world/atomic event/ simple event**
Sample Space and Events

Sample Space

Event

Simple Event
Prior Probability

- Probability before any new data is collected
- $P(A)$ is the **prior or unconditional probability** that an event A occurs
- For example, $P(Appendicitis = False)=0.3$
 - Other way to represent can be: $P(\neg Appendicitis)=0.3$
- In the absence of any other information, agent believes there is a probability of 0.3 (30%) that the patient suffers from appendicitis
Axioms of Probability

- $0 \leq P(A) \leq 1$
 - All probabilities are between 0 and 1

- $P(True) = 1 \quad P(False) = 0$
 - Valid propositions have probability 1
 - Unsatisfiable propositions have probability 0

- $P(A \lor B) = P(A) + P(B) - P(A \land B)$
 - Can determine probabilities of all other propositions
Axioms of Probability

- \(P(\overline{A \lor B}) = P(A) + P(B) - P(A \land B) \)
- Can determine probabilities of all other propositions

\[A \lor B = A + B - A \land B \]
Joint probability

Probability of two atomic events co-occurring

\[P(\text{Weather}, \text{Cavity}) \text{ is a } 4 \times 2 \text{ matrix of values:} \]

<table>
<thead>
<tr>
<th>Weather =</th>
<th>sunny</th>
<th>rain</th>
<th>cloudy</th>
<th>snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity = True</td>
<td>0.144</td>
<td>0.02</td>
<td>0.016</td>
<td>0.02</td>
</tr>
<tr>
<td>Cavity = False</td>
<td>0.576</td>
<td>0.08</td>
<td>0.064</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Probabilities in table come from observation
Example: Tooth Decay

• 20% of people have a cavity in one of their teeth which needs a filling.

\[P(\text{cavity}) = 0.2 \]

• Dentist catches a hole in a teeth of 34% of the people

\[P(\text{catch}) = 0.34 \]

• 20% of people have toothache.

\[P(\text{toothache}) = 0.20 \]
Joint Probability Distribution

Assume some underlying joint probably distribution over three random variables:

- Toothache, Cavity and Catch:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>catch</td>
<td>¬ catch</td>
</tr>
<tr>
<td>cavity</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.016</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Note that the sum of the entries in the table is 1.0.

For any proposition, sum of simple events where it is true:
Inference by Enumeration

Start with the joint distribution

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>cavity</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.016</td>
<td>.064</td>
</tr>
</tbody>
</table>

For any proposition , sum of atomic events where it is true:

\[P(\text{toothache}) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 \]
Inference by Enumeration

Start with the joint distribution

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>0.012</td>
<td>0.072</td>
</tr>
<tr>
<td>cavity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¬ cavity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[P(\text{cavity} \lor \text{toothache}) = ? \]
Inference by Enumeration

Start with the joint distribution

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>catch</td>
<td>¬ catch</td>
</tr>
<tr>
<td>cavity</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.016</td>
<td>0.064</td>
</tr>
</tbody>
</table>

For any proposition, sum of atomic events where it is true:

\[P(\text{cavity} \lor \text{toothache}) = 0.108 + 0.012 + 0.016 + 0.064 = 0.28 \]
Outline

- Uncertainty and Probability
- What shall we do when we receive new information
- What is Bayesian Networks and why do we need it
- Some examples
Conditional Probability
Example: Tooth Decay

- Feeling a toothache, you think you have a cavity, perhaps as high as 60%.
- The conditional probability of cavity, given toothache, is 0.6, written as:

$$P(\text{cavity} | \text{toothache}) = 0.6$$

- Dentist’s check will increase probability of a cavity, catch.
Conditional Probability

• Need to **update** probabilities based on new information
• Use **conditional** or **posterior** probability

\[P(A|B) \] is the probability of \(A \) given we know \(B \)

e.g. \(P(Appendicitis \mid AbdominalPain) = 0.75 \)
Conditional Probability

• Need to update probabilities based on new information
• Use conditional or posterior probability
• \(P(A|B) \) is the probability of \(A \) given we know \(B \)

 e.g. \(P(Appendicitis \mid AbdominalPain) = 0.75 \)

• Definition: \(P(A|B) = \frac{P(A \land B)}{P(B)} \). provided \(P(B) > 0 \)

• Product Rule: \(P(A \land B) = P(A|B)P(B) \)
Conditional Probability

\[P(A|B) = \frac{P(A \land B)}{P(B)} \text{ provided } P(B) > 0 \]

\[P(A \land B) = \frac{2}{6} \]

\[P(B) = \frac{3}{6} \]

\[\frac{P(A \land B)}{P(B)} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3} \]
Conditional Probability by Enumeration

\[
P(\neg \text{cavity} | \text{toothache}) = \frac{P(\neg \text{cavity} \land \text{toothache})}{P(\text{toothache})} = \frac{0.016 + 0.0064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
\]
Conditional Probability

Consider two random variable \(a \) and \(b \), with \(P(b) \neq 0 \)

- the conditional probability of \(a \) given \(b \) is

\[
P(a|b) = \frac{P(a \land b)}{P(b)}
\]

Alternative formulation:

\[
P(a \land b) = P(a|b)P(b) = P(b|a)P(a)
\]

When an agent considers a sequence of random variable at successive time steps, they can be chained together using this formula:

\[
P(X_n, \ldots, X_1) = P(X_n|X_{n-1}, \ldots, X_1)P(X_{n-1}, \ldots, X_1)
\]

\[
= P(X_n|X_{n-1}, \ldots, X_1)P(X_{n-1}|X_{n-2}, \ldots, X_1)
\]

\[
= \ldots = \prod_{i=1}^{n} P(X_i|X_{i-1}, \ldots, X_1)
\]

Bayes’ Rule

\[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \]

• Deriving Bayes’ Rule:
 \[P(A \land B) = P(A|B)P(B) \text{ (Definition)} \]
 \[P(B \land A) = P(B|A)P(A) \text{ (Definition)} \]
 So \[P(A|B)P(B) = P(B|A)P(A) \text{ since } P(A \land B) = P(B \land A) \]
 Hence: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \text{ if } P(A) \neq 0 \]
 \[P(\overline{A}) \]

Note: If \(P(A) = 0, P(B|A) \) is undefined
Using Bayes’ Rule

• Suppose there are two conditional probabilities for appendicitis
 \[P(\text{Appendicitis}|\text{Abdominal Pain}) = 0.8 \]
 \[P(\text{Appendicitis}|\text{Nausea}) = 0.1 \]

• \[P(\text{Appendicitis}|\text{Abdominal Pain} \land \text{Nausea}) \]
 \[= \frac{P(\text{Abdominal Pain} \land \text{Nausea}|\text{Appendicitis}).P(\text{Appendicitis})}{P(\text{Abdominal Pain} \land \text{Nausea})} \]

• Need to know \(P(\text{Abdominal Pain} \land \text{Nausea}|\text{Appendicitis}) \)
• With many symptoms that is a daunting task ...
Outline

- Uncertainty and Probability
- What shall we do when we receive new information
- What is Bayesian Networks and why do we need it
- Some examples
Why shall we use Bayesian Networks

With many symptoms that is a daunting task ...
Conditional Independence

- Appendicitis
- Abdominal pain
- Nausea
Conditional Independence

• Appendicitis is direct cause of both abdominal pain and nausea

• If we know a patient is suffering from appendicitis, the probability of nausea should not depend on the presence of abdominal pain; likewise probability of abdominal pain should not depend on nausea

• Nausea and abdominal pain are conditionally independent given appendicitis

• An event X is independent of event Y, conditional on background knowledge K, if knowing Y does not affect the conditional probability of X given K

$$P(X|K) = P(X|Y, K)$$
Bayesian Networks

- Example (Pearl, 1988)

Probabilities summarize potentially infinite set of possible circumstances
Bayesian Networks

- A Bayesian network (also Bayesian Belief Network, probabilistic network, causal network, knowledge map) is a directed acyclic graph (DAG) where
 - Each node corresponds to a random variable
 - Directed links connect pairs of nodes – a directed link from node X to node Y means that X has a direct influence on Y
 - Each node has a conditional probability table quantifying effect of parents on node

- Independence assumption of Bayesian networks
 - Each random variable is (conditionally) independent of its non descendants given its parents
Bayesian Networks

Example (Pearl, 1988)

You have a new burglar alarm at home that is quite reliable at detecting burglars but may also respond at times to an earthquake. You also have two neighbours, John and Mary, who promise to call you at work when they hear the alarm. John always calls when he hears the alarm but sometimes confuses the telephone ringing with the alarm and calls then, also Mary likes loud music and sometimes misses the alarm. Given the evidence of who has or has not called, we would like to estimate the probability of a burglary.
Bayesian Networks

- Example (Pearl, 1988)

Probabilities summarize potentially infinite set of possible circumstances
Conditional Probability Table

Row contains conditional probability of each node value for a **conditioning case** (possible combination of values for parent node)

<table>
<thead>
<tr>
<th>Burglary</th>
<th>Earthquake</th>
<th>$P(\text{Alarm} \mid \text{Burglary} \land \text{Earthquake})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>0.950</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>0.940</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>0.290</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Bayesian network provides a complete description of the domain.

Joint probability distribution can be determined from the network:
\[P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i|\text{Parents}(X_i)) \]

For example,
\[P(J \land M \land A \land \neg B \land \neg E) = P(J|A)P(M|A)P(A|\neg B \land \neg E)P(\neg B)P(\neg E) \]
\[= 0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.000628 \]

Bayesian network is a complete and non-redundant representation domain (and can be far more compact than joint probability distribution).
Semantics of Bayesian Networks

• Factorization of joint probability distribution

• **Chain Rule:** Use conditional probabilities to decompose conjunctions

\[
P(X_1 \land X_2 \land \cdots \land X_n) = P(X_1) \cdot P(X_2 | X_1) \cdot P(X_3 | X_1 \land X_2) \cdots P(X_n | X_1 \land X_2 \land \cdots \land X_{n-1})
\]

• Now, order the variables \(X_1, X_2, \cdots, X_2\) in a Bayesian network so that a variable comes after its parents – let \(\pi_{X_i}\) be the tuple of parents of variable \(X_i\) (this is a complex random variable)

• Using the chain rule,

\[
P(X_1 \land X_2 \land \cdots \land X_n) = P(X_1) \cdot P(X_2 | X_1) \cdot P(X_3 | X_1 \land X_2) \cdots P(X_n | X_1 \land X_2 \land \cdots \land X_{n-1})
\]
Semantics of Bayesian Networks

let π_{X_i} be the tuple of parents of variable X_i

Each $P(X_i | X_1 \land X_2 \land \cdots \land X_{i-1})$ has the property that it is not conditioned on a descendant of X_i (given ordering of variables in Bayesian network)

Therefore, by conditional independence

$P(X_i | X_1 \land X_2 \land \cdots \land X_{i-1}) = P(X_i | \pi_{X_i})$

Rewriting gives the chain rule

$P(X_1, X_2, \cdots, X_n) = \prod_{i=1}^{b} P(X_i | \pi_{X_i})$
Calculation using Bayesian Networks

Fact 1: Consider random variable X with parents Y_1, Y_2, \ldots, Y_n

$$P(X|Y_1 \land \cdots \land Y_n \land Z) = P(X|Y_1 \land \cdots \land Y_n)$$

if Z doesn’t involve a descendant of X (including X itself)

Fact 2: If Y_1, \ldots, Y_n are pairwise disjoint and exhaust all possibilities

$$P(X) = \sum P(X \land Y_i) = \sum P(X|Y_i).P(Y_i)$$

$$P(X|Z) = \sum P(X \land Y_i|Z)$$

> e.g. Type equation here. $P(J|B) = \frac{P(J \land B)}{P(B)} = \frac{\sum P(J \land B \land e \land a \land m)}{\sum P(J \land B \land e \land a \land m)} = \text{where } j \text{ ranges over } J, J, e \text{ over } E, \neg E, a \text{ over } A, \neg A \text{ and } m \text{ over } M, \neg M$
Calculating using Bayesian Networks

\[P(J \land B \land E \land A \land M) = P(J \mid A) \cdot P(B) \cdot P(E) \cdot P(A \mid B \land E) \cdot P(M \mid A) = \]
\[0.90 \times 0.001 \times 0.002 \times 0.95 \times 0.70 = 0.00000197 \]

\[P(J \land B \land \neg E \land A \land M) = 0.00591016 \]
\[P(J \land B \land E \land \neg A \land M) = 5 \times 10^{-11} \]
\[P(J \land B \land \neg E \land \neg A \land M) = 2.99 \times 10^{-8} \]
\[P(J \land B \land E \land A \land \neg M) = 0.000000513 \]
\[P(J \land B \land \neg E \land A \land \neg M) = 0.000253292 \]
\[P(J \land B \land E \land \neg A \land \neg M) = 4.95 \times 10^{-9} \]
\[P(J \land B \land \neg E \land \neg A \land \neg M) = 2.96406 \times 10^{-6} \]
Calculation using Bayesian Networks

- $P(\neg J \land B \land E \land A \land M) = 0.000000133$
- $P(\neg J \land B \land \neg E \land A \land M) = 6.56684 \times 10^{-5}$
- $P(\neg J \land B \land E \land \neg A \land M) = 9.5 \times 10^{-10}$
- $P(\neg J \land B \land \neg E \land \neg A \land M) = 5.6886 \times 10^{-7}$
- $P(\neg J \land B \land E \land A \land \neg M) = 0.000000057$
- $P(\neg J \land B \land \neg E \land A \land \neg M) = 2.81436 \times 10^{-5}$
- $P(\neg J \land B \land E \land \neg A \land \neg M) = 9.405 \times 10^{-8}$
- $P(\neg J \land B \land \neg E \land \neg A \land \neg M) = 5.63171 \times 10^{-5}$
Calculation using Bayesian Networks

- Therefore $P(J|B) = P(J \land B) \over P(B) = \frac{\sum P(J \land B \land e \land a \land m)}{\Sigma P(j \land B \land e \land a \land m)} = \frac{0.00849017}{0.001}$

- $P(J|B) = 0.849017$

- Can often simplify calculation without using full joint probabilities – but not always
Inference in Bayesian Networks

Diagnostic Inference From effects to causes

\[P(\text{Burglary}|\text{JohnCalls}) = 0.016 \]

Causal Inference From causes to effects

\[P(\text{JohnCalls}|\text{Burglary}) = 0.85; P(\text{MaryCalls}|\text{Burglary}) = 0.67 \]

Intercausal Inference Explaining away

\[P(\text{Burglary}|\text{Alarm}) = 0.3736 \] but adding evidence, \[P(\text{Burglary}|\text{Alarm} \land \text{Earthquake}) = 0.003 \]; despite the fact that burglaries and earthquakes are independent, the presence of one makes the other much less likely.

Mixed Inference Combinations of the patterns above

- Diagnostic + Causal: \(P(\text{Alarm}|\text{JohnCalls} \land \neg\text{Earthquake}) \)
- Intercausal + Diagnostic: \(P(\text{Burglary}|\text{JohnCalls} \land \neg\text{Earthquake}) \)
Inference in Bayesian Networks

\(Q \) = query; \(E \) = evidence
Outline

- Uncertainty and Probability
- What shall we do when we receive new information
- What is Bayesian Networks and why do we need it
- Some examples
Example – Causal Inference

• $P(\text{JohnCalls}|\text{Burglary})$

• $P(J|B) = P(J|A \land B) \cdot P(A|B) + P(J|\neg A \land B) \cdot P(\neg A|B)$

 $= P(J|A) \cdot P(A|B) + P(J|\neg A) \cdot P(\neg A|B)$

 $= P(J|A) \cdot P(A|B) + P(J|\neg A). (1 - P(A|B))$

• Now $P(A|B) = P(A|B \land E) \cdot P(E|B) + P(A|B \land \neg E) \cdot P(\neg E|B)$

 $= P(A|B \land E) \cdot P(E) + P(A|B \land \neg E) \cdot P(\neg E)$

 $= 0.95 \times 0.002 + 0.94 \times 0.998 = 0.94002$

• Therefore $P(J|B) = 0.90 \times 0.94002 + 0.05 \times 0.05998 = 0.849017$

• Fact 3: $P(X|Z) = P(X|Y \land Z) \cdot P(Y|Z) + P(X|\neg Y \land Z) \cdot P(\neg Y|Z)$, since

• $X \land Z \equiv (X \land Y \land Z) \lor (X \land \neg Y \land Z)$ (conditional version of Fact 2)
Example – Diagnostic Inference

- \(P(\text{Earthquake}|\text{Alarm}) \)
- \(P(E|A) = \frac{P(A|E).P(E)}{P(A)} \)
- \(= \frac{0.95 \times 0.001 \times 0.002 + 0.29 \times 0.999 \times 0.002}{P(A)} = 5.8132 \times 10^{-4} \)

And \(P(A|B \land \neg E).P(B).P(\neg E) + P(A|\neg B \land \neg E).P(\neg B).P(\neg E) = 0.94 \times 0.001 \times 0.998 + 0.001 \times 0.999 \times 0.998 = 0.001935122 \)
So \(P(A) = 5.8132 \times 10^{-4} + 0.001935122 = 0.002516442 \)

Therefore \(P(E|A) = \frac{5.8132 \times 10^{-4}}{0.002516442} = 0.2310087 \)

- Fact 4: \(P(X \land Y) = P(X).P(Y) \) if \(X, Y \) are conditionally independent
Conclusion

• Due to noise or uncertainty it is useful to reason with probabilities

• Calculating with joint probability distribution difficult due to the large number of values

• Use of Bayes’ Rule and independence assumptions simplifies reasoning

• Bayesian networks allow compact representation of probabilities and efficient reasoning with probabilities

• Elegant recursive algorithms can be given to automate the process of inference in Bayesian networks