
8

A Note on Inductive Generalization
Gordon D. Plotkin
Department of Machine Intellig ence and Perception
University of

In the course of the discussion on Reynolds' (1970) paper in this volume, it
became apparent that some of our work was related to his, and we there-
fore present it here.
R.J.Popplestone originated the idea that generalizations and least

generalizations of literals existed and would be useful when looking for
methods ofinduction. We refer the reader to his paper in this volume for
an account of some of his methods (Popplestone 1970).
Generalizations of clauses can also be of interest. Consider the following

induction:
The result of heating this bit of iron to 419°Cwas that it melted.
The result of heating that bit of iran to 419°Cwas that it melted.
The result of heating any bit of iron to 419°C is that it melts:

We can formalize this as:
Bitofiron (bit I) A Heated (bit 1,419):::> Melted (bit I)
Bitofiron (bit 2) A Heated (bit 2,419):::> Melted (bit 2)

(x) Bitofiron (x) A Heated (x, 419) :::> Melted (x)
Note that both antecedents and conclusion can be expressed as clauses in

the usual first-order language with function symbols. Our aim is to find a
rule depending on the form of the antecedents which will generate the
conclusion in this and similar cases. It will turn out that the conclusion is
the least generalization of its antecedents.
We say that the literal L1 is more general than the literal 14 if £117=£2 for

some substitutionc . For clauseswe say that.the clause CI ismore general than
the clause C2if Ct subsumes C2. Although the implication relationship might
give interesting results, the weaker subsumption relationship allows a more
manageable theory. For example, we do not even know whether implication
between clauses is a decidable relationship or not .
A least generalization of some clauses or literals is a generalization which

is less general than any other such generalization. For example,P(g(x), x)
is a least generalization of {P(g(a()), a()), P(g(b()) , b())} and P(g(x) , x)

153

MECHANIZED REASONING

is a least generalization of {Q(x)v P(g(aO), aO), R(x)vP(g(bO), :bOn.
We give another, more complex example taken froma board game situation
later in the paper. OUf logical language is that ofRobinson (1965). MacLane '
and Birkhoff (1967) is a good reference for our algebraic language.

PRELIMINARIES

We will use the symbols t, tI, U, ••• for terms, L, LI, M, . . . for literals, '
D, DI, D, ... for clauses, <p for a function symbol or a predicate symbol or
the negation sign followed by a predicate symbol.
A word is a literal or a term. We will use the symbols V, Vb W, ... for

words.
We denote sequences of integers, perhaps empty, by the symbols I, J,
We say that t is in the lth place in W iff:

when l= <), t=Wor
when l= <it, , in), then W has the form <P(tl' . ", tm) and and t
is in the Ciz. , in)th place in tit. For example, x is in the <)th place in x,
the (2)th place in g(y, x) and in the <3, 2)th place in Pea, b, g(y, x».
Note that t is never in the <)th place in L. We say that t is in W, if t is in

the lth place in Wfor some I.
WI Wz (read 'WI is more general than Wz') iff W1cr=Wz for some

substitution cr. For example, P(x, x,[(g(y))) 1(3), j(g(x))).
We can take 0'= {1(3) [x, xIY}.
Cl Cz (read 'C1 is more general than Cz') iffCl<T£ Czfor some substitution

0'. CI Czmeans that Cl subsumes Czin the usual terminology. For example,
P(x)v P(fO) We can take 0'= {[Olx}.
In both cases,the relation is a quasi-ordering, We have chosen to write

rather than LI";i:;Lz as Reynolds (1970) does, because in the case of
clauses, is 'almost' s , Further, if Ll is the universal closure ofLand D is
the element of the Lindenbaum algebra corresponding to Li, then we have
L1«i; iffLl-+.£! iff

WORDS

Suppose that we can show that a property holds for variables and constants,
and that whenever it holds for lx,..., t; then it holds for <p(tt. •••, tn).
Then the property holds for all words. This method of proof is called indue-
tion on words.
We write WI'"""Wz when W2 and WI. As is a quasi-ordering,

this defines an equivalence relation. It is known that WI'"""W2 iff WI and Wz
are alphabetic variants.
Two words are compatible iffthey are both terms or have the same predicate

letter and sign.
IfK is a set of words, then W is a leastgeneralization ofK iff:

1. For every Vin K, V.
2. If for every V in K, WI V, then WI W.

154

PLOTKIN

It follows from 2 that if WI, Wz are any two least generalizations of K,
then WI-WZ.
We can define also the least generalization as a product in the following

category. The objects are the words and a is a morphism from V to W iff
Vcr= W'and a acts as the identity, e, on variables not in V. Vis then a least
generalization of {Wi, Wz} iff it is a product of WI and Wz.We could also
have defined the dual of the least generalization. This would just be the most
general unification of Robinson (1965) and would be the coproduct in the
above category. This approach was suggested in a personal communication
by R.M. Burstall, but we have not followed it up to any degree.
Theorem 1 ,
Every non-empty, finite set of words has a least generalization iff any two
words in the set are compatible.
Let WI, Wz be any two compatible words. The following algorithm

terminates at stage 3, and the assertion made there is then correct.
1. Set Vf to Wf(i= 1,2). Set Sf to s(i= 1,2). s is the empty substitution.
2. Try to find terms th tz which have the same place in VI, V2 respectively
and such that h =l= tz and either tt and tz begin with different function letters or
else at least one of them is a variable.
3. If there are no such ti, tz then halt. VI is a least generalization of {WI, Wz}
and Vl= V2, Vf8 f = W i(i=l, 2).
4. Choose a variable x distinct from any in VI or Vz and wherever tl and tz
occur in the same place in VI and V2, replace each by x.
5. Change Sf to {t ilx }si(i = l , 2).
6. Go to 2.
Example. We will use the algorithm to find a least generalization of

{P(f(aO, g(y», x, g(y)) , P(h(aO, g(x», x, g(x))}.
Initially,

VI=P(f(aO, g(y», x, g(y»
Vz=P(h(aO, g(x», x, g(x».

We take tl=y, tz=x and z as the new variable. Then after 4,
Vl=P(f(aO, g(z», x, g(z»
Vz=P(h(aO, g(z», x, g(z»

and after 5,
SI= {Ylz}, Sz= {x]s}.

Next, we take l1=f(aO, g(z», t2=h(aO, g(z» and y as the new variable.
After 4 and 5, . .

VI=P(y, x, g(z» =Vz
Sl= {f(aO,g(z»)ly}{yjz}
= {f(aO, g(y»)[y, Ylz}

82= {h(aO, g(z»ly} {xlr}
= {h(aO, g(x»IY, x[z}.

The algorithm then halts with P(y, x, g(z») as the least generalization.
155

MECHANIZED REASONING

Proof Evidently the compatibility condition is necessary. Let {WI, ..., Wn }

be a finite compatible set of words. If n= 1, then the theorem is trivial.
Suppose that the algorithm works and that inf {V, W} is the result of
applying it to Vand W. Then it is easy to see that

inf {WI> inf {W2, ..., inf {Wn- l , Wn } ••• }}

is a least generalization of the set. Hence we need only show that the
algorithm works.
The rest of the proof proceeds as follows. In order to avoid a constant

repetition of the conditions on 11, 12 given in 2, we say that 11 and 12 are
replaceable in VI and V2 iff they fulfil the conditions of 2.
To show that the algorithm halts and that when it does VI= V2, we define

a difference function by difference (VI, V2)=number of members of the set
{Ilif 11, 12 are both in the Ith place in Vi> V2 respectively then they are replace-
ablein VIand V2 } .We also denote by V{, Vi the result of replacing tl and 12in
VI, V2 by x in the way described in 4.
Lemma 1.2 then shows that every time a pair of replaceable terms is

replaced the difference drops. Consequently by lemma 1.1 it will eventually
become zero and when it does, lemma 1.1 shows that we must have VI= V2
and the algorithm will then halt.
We still have to show that the replacements take us in the correct direction.

First of all, VI < Vi since by lemma 1.3, VI { 1iIx}=Vj. It is also immediate
from this that when the algorithm halts, VISI=Wi' Now suppose that W is
any lower bound of {Wl. W2}. Then a lower bound Vis a product of Wi,W2
if the diagram of figure 1 can always be filled in along the dotted line, so that
it becomes commutative in a unique way.

Figure!

The category is the one defined above. In it there is either one or no
morphisms between any two objects and hence it is not necessary in figure 1
to name the morphisms. Indeed, if a diagram can be filled in at all, it can be
filled in commutatively and uniquely.
We show in lemma 1.4 that the diagram on figure 2 can be filled in com-

mutatively.
156

PLOTKIN

Thus every time a replacement is made, the Vi are greater than any lower
bound of WI, Wz.Consequently when the algorithm halts, wehave a product.
We now give the statements and proofs of the lemmas.

W
""""

r,
Figure 2

Lemma 1.1
If VI and Vz are distinct compatible words, then there are tl, tz which are
replaceable in them.
Proof. By induction on words on VI. If one of VI, Vz is a constant or a
variable, or if they begin with different function symbols, then VI, Vz will
do for tl, tz respectively.
If VI is <p(t}, .. ., tD and Vz is <p(tr,..., then for some i, t},l:tr and

by the induction hypothesis, applied to tl, there are Uj, Uzwhich are replace-
able in r], tr and as tf, tr have the same place in VI, V2 respectively, they are
also replaceable in VI, V2. .
Lemma 1.2
If VI, V2 are distinct compatiblewords, then Difference (V{, V£) < Difference
(VI, Vz).
Proof. By induction on words on VI. If one of VI or V2 is a variable or a
constant then tl= VI, tz= Vzand V{= V5.=x,so 0=Difference (VI' V2) < 1=
Difference (Vl> Vz).
If VI is/(vj, ..., vn) and Vz is g(ul, ..., u",) where/i=g, then if t,= V,(i=

1, 2), 0=Dijference (V{, V2) <Difference (Vj , V2) , by lemma l .1; otherwise,
Dijference(V;, = 1+ I Dijference(vi, u;)

1= l ,m in(m.n)

<1+ I Differencei u, u;)
i= l,min(m.n)

(by induction hypothesis, sincem, n;60)
=Dijference (Vl, V2) . In the remaining case

where VI and Vz both have the form fP(tl, . . ., tn), a similar but less com-
plicated argument applies.
Lemma 1.3

Vl{tdx } = Vi(i=l, 2) .
Proof. Since Vi is obtained from Vi by replacing some occurrences of t , in
Vi by x, and since x does not occur in Vi' substituting t i for x in Vi will
produce VI' (i= 1,2).

157

MECHANIZED REASONING

Lemma 1.4
If VI, V2are distinct compatible words and VO'I=VI(i= 1,2), then there are
0'{,0'5. so that VO'i=VHi=1,2).
Proof. It is convenient to denote by l i(U!> U2, t1. t2) the result of applying
the operation of 4 to Ul, U2 on ui(i=1, 2).
Let 0',={ufl Yt> ..., ui"IYm} (i = 1, 2) ;

vi = /;(u{, t1, t2)(i=1, 2;j= 1, m);
0';= {vf iYl"'" vf' /y",} (i=l, 2).

By lemma 1.3, 2) . We show by induction on V, that:
if V, VI, V2are such that VO'l=Vi(i= 1,2), then VO';=V\(i= 1,2).
Suppose that V is a constant, then V= VI=V2 and the result is trivial.

Suppose that Vis a variable, y. IfY¢Yl for i=l ,m then y= V= Vl= V2and
the result is again trivial. If Y=YI say, then VO'f=/,(VI, V2,;t1. t2)=Vi.
Suppose Vis cp(u}, .. ., un) then if V/= cp(w{, . , 0' .

VU[=cp(U1U[, .. " UnO';) =cp(wi" 0" w,:) (by the induction hypothesis)
= Vi·

This concludes the proof.
The next lemma is used in the proof of the existence of least generalizations

of clauses.
Lemma 2
Let K= {W;I i = 1, n} be a set of words with a least generalization W and
substitutions Il ,(i= 1, n) so that Wil l=WI(i= 1, n) .
1. If t is in W then t is a least generalization of {til.! i=1, n}.
2. If x, y are variables in Wand X/li=Y/l l(i= 1,n) then x =y.
Proof. 1. Evidently, t is a generalization of {til;! i= 1, n }. Suppose u is any
other and that UA.i=t/l,(i= 1,n) . Let U7: be an alphabetic variant of u such
that U7:, W have no common variables. Let W' be W, but with t replaced by
U7:wherever t occurs in W. Then C I A i U Il , is defined- this follows from the
construction of 7: - and W' (t-1AIUIl I) =WI(i= 1, n). Hence there is a v so
that W' v= W, as W is a least generalization of {Wd i = 1,n}. Hence U (rv) =
(U7:) V= t . Hence, t is a least generalization of {til ,Ii=1,n}.
2. Suppose that y ¢ x. Let W'= W{Ylx} . Then W', Ware not alphabetic

variants, but W::;;; W'. Let W= W[x,Y,Y3 , ' . ., Ym], where x, Y,Y3,· .., Ym
are the distinct variables of W. We have,

W,=Wll i= W[Xll j, Y/l" Y3/li' .. " Ym/l;]
= W[Y/l I' YIl l> Y31lb .. " Ymlli] (by hypothesis)
= Wry,Y,Y3, .. " Ym]/l,
= W Il I(by construction). (i= 1,n) .

This contradicts the fact that W is a least generalization of {W;! i= 1,n}.
Hencey= x.
This completes the proof.

158

PLOTKIN

CLAUSES

Just as we did with words, we write C",D, when C:;;,D and D:;;,C. This
defines an equivalence relation. We also say that C is a least generalization
of a set of clauses, S, when:
1. FQr every E in S, C:;;'E.
2. Iffor every E in S, D:;;'E, then D:;;,C.

Any two least generalizations of S are equivalent under r«, However , when
C1- Cz, C1 and C2 need not be alphabetic variants. For example, take

Cl= {P(x), P(f())} ; C2= {P(f())}.
It turns out that there is a reduced member of the equivalence class, under

- , of any clause. This member is unique to within an alphabetic variant.
C is reduced iff D S C, D - C implies that C;;;;D. In other words, C is reduced
iff it is equivalent to no proper subset of itself.
Lemma 3
If Cp.=C, then C and CIl are alphabetic variants.
Proof We regard C as a set ordered by:;;" and suppose without loss of
generality that p. acts as the identity on variables not in C. Let L be in C. The
sequence L=Lllo, Lp.l=Lp.,Lp.2, . . . is increasing relative to :;;,. As C is
finite and all members of 'the sequence are in C, it follows that for some
i, Hence for some N and for all Lin C, LJ1N
As Cp.=C, there is an M in C so that MJ1N=L, given L in C. Hence, L=
MJ1N - Mp.N+l =LJ1, and so p. maps variables into variables. But as Cp.=C,
C and Cf.L have the same number of variables. Hence p.maps distinct variables
of C to distinct variables of CJ1, and so C and Cp. are alphabetic variants,
thus completing the proof.

7-
If C",D, and C and D are reduced, then they are alphabetic variants. The
following algorithm gives a reduced subset, E, of C such that E",C.
1. Set Eto C.
2. Find an L in C and a substitution a so that EfJSE"",- {L}.

If this is impossible, stop.
3. Change E to EfJ and go to 2.
(It is necessary to be able to test for subsumption in order to carry out

stage 2. Robinson (1965) gives one way to do this.)
Proof As C-D, there are u, Y so that Cp.sD, b-s:«: Hence, Cp.vsC.
But C is reduced so Cf.LV=C. Hence by lemma 3, p»maps the variables of C
into the variables of C in a 1-1 manner. Hence C and D are alphabetic
variants.
The algorithm halts at stage 2, since the number of literals in E is reduced

by at least one at stage 3 and so if it does not halt before then, it will halt
when this number is 1. If C=@, then it will halt on first entering 2.
There is always a p. so that Cp.sE. For at stage 1, take J1=0. Ifone has such

159

MECHANIZED REASONING

a f.l before stage 2, then lUI will be one after stage 2. Hence,' when the
algorithm halts, Cpf;E and Ef;C, and then C",E. .
Suppose E is not reduced at termination. Then there is a proper subset

E' of E so that E' '" E. So there is a a such that Baf;E' .Pick L in E""--E'.
Then Eus; E' f; E""--{L }. This contradicts the fact that the algorithm has
terminated and completes the proof.
This theorem is useful as our method of producing least generalizations of

clauses tends to give clauses with many literals which may often be sub-
stantiallyreduced by the above procedure.
Let S= {Ci!i=1, n} be a set of clauses.
A set of literals, K={Lili= 1, n} is a selection from S iff LiECi(i=1, n).
We can now state the main theorem.

tTheorem 3Z
Every finite set, S, of clauses has a least generalization which is not fJ iff
S has a selection. IfCi and Cz are two clauses with at least one selection, then.
the following algorithm gives one of their least generalizations.
Let S={Cx,C2}, and let the selections from S be {L}, Lr } (1=1,n) where

L{ is in Cj • Suppose that L{=(±)p/(tlz, ..., where (±)P is either
P, or Pl. Let.li be a function letter with k/ places (l= n), and let P be a
predicate letter with n places. Let M, be the literal .

P(!l (t{l' ..., till), ..., fn(t{m ..., tinn)) (j= 1,2).
Find the least generalization of {Mh M2} by the method of theorem 1.

Suppose that this is
M=P(fi (Ull' ..., Ukl1)' •• •,!n(U1m •• " Ukn)) . Let C be the clause

{(± P)i(UW . ' " Uk/i)1 i= 1, n}.
Then C is a least generalization of S={Cl, Cz}.
Evidently, it is not necessary in any actual calculation to change any PI

to the correspondingfi.
Proof We begin by showing that the algorithm works. By theorem 1, there
are Vi(i= 1,2) so that MVi=Mi. Fromlemma 2, it follows that fi(Ulb .•.,
Ukfi) is a least generalization of {fi(tL,' .. ", ti1i)U= 1, 2}.
Hence L l= (±)Pi(U1b ..., Ukji) is a.least generalization of Ll}(i=

1, n).

Hence CVi= {LDs;Ci and so C is a generalization of {Cr, C2 } .
1=1

Note also that by lemma 2, if XVi=yvi(i= 1,2), then x=y.
Now suppose that E is any generalization of {Cl, Cz}.We show that E C.

Let lXi be chosen so that ElXif;Ci. (i=1,2), and let E= {Mh •••, Mm} .
{MplXili=1,2} will be a selection, say {LhLj,}. Consequently,
the corresponding least generalization of the selection, and there is a j3p
so that Mp{Jp=Lp'.

160

PLOTKIN
m

Hence, if u{3p exists, E(ul3p)£ C and we will have finished. Now ufJp
p=l

exists precisely if, whenever x is an individual variable in M p1 and M p].

(PI ¥=pz) then xfJPl =xfJp].. Let the notation (A, B literals; 0: a substitu-
tion) mean Acx=B. We have shown that the relationships described by
figure 3 hold:

(i, k= I, 2)

. Figure 3
Now x{3PI< is a term in 1, 2), which is a least generalization of

Hence, by lemma 2, xl3Pk is a least generalization of {xl3PkYl,
x!3PkVZ}= {xO:l, xaz} from the diagram, (k= 1,2).
Consequently, x{3P1' x{3pz are alphabetic variants. Let x}, Xz be variables

having the same place in x/3Pl' xfJpz respectively. Then as xI3P1Vi=XfJPzVi=
xai(i= 1,2), it follows that X1Vi=XZVi(i= 1,2). Hence by our note 011 the
properties of the vi(i= 1,2) at the beginning of the proof, Xl=xz. Hence
xfJPl =x{3p:z.' and u/3p exists and C and so C is a least generalization of
{Cl, Cz}.
Next, we note that C is not empty and indeed if a particular combination

of sign and predicate letter occurs in a selection from {Cl, Cz} then it occurs
in C. Suppose that S= {Ci}(i= 1,q) is a finite set of clauses. If C (:;6RJ) is a
generalization of S, there are ai so that Cai£ Gi, and if L is in C, {Lail i= 1,q}
is'a selection. On the other hand, RJ is a generalization of S. Hence if S has no
selection its only, and hence its least, generalization is 0. Otherwise, by
nesting infs as in the proof of theorem I, we can find a least generalization
of S which, by the note at the beginning of this paragraph, will not be 0.
This completes the proof.

AN EXA IVI PLE
Suppose that some two-person game is being played on a board with two
squares, 10 and 20 and that the positions in figure 4 are won positions for
the first player: '

Ixloll-xl-xl
FigUre 4
M

Position Pi0

161

Position pzO

MECHANIZED REASONING

lOis the name of the left hand side square, and 20 of the right hand square;
PI0 and P20 are the names of the positions and 00, XO are the names of
the marks 0, x: We describe the fact that these positions are wins by means
of the following two clauses:
1. Occ(lO, XO,PI0)VOcc(20, 00,PI0)VWin(pI0).
2. Occ(lO. XO,P20)VOcc(20, XO,PzO)VWin(pzO)·

The course of the calculation is indicated as follows:
Occ(lO, XO.PIO) Occ(lO. XO.p)
Occ(lO, XO.P20) Occ(lO. XO,p)

OCC(lO. XO.PI0) Occ(10, XO.p) Occ(nh XO,p)
Occ(20, XO,pzO) Occ(20. XO,p) Occ(nh XO,p)
Occ(20. 00,PIO) Occ(20, OO,p) Occ(20, OO,p) Occ(nz, OO,p) Occ(n2, x,p)
Occ(lO, XO,PzO) Dec(1 0, XO,p) Occ(lO. XO,p) Occ(nz, XO,p) Occ(n2, x,p)
Occ(20, 00,PIO) Occ(20. OO,p) Occ(20, OO,p) Occ(20, OO.p) Occ(20, x,p)
Occ(20, XO,pzO) Occ(20, XO,p) Occ(20. XO,p) Occ(20. XO,p) Occ(20, x,p)
Win (PI 0) Win(p)
Win(p2(» Win(p)
As indicated above, we have not replaced predicate symbols by function
symbols, and we have left P implicit. Each vertical column displays M, and
M z at an instance of stage 2 of the algorithm of theorem 1. In a given column,
the pairs of literals are corresponding arguments in Ml and M2. We find
t1 and tz by searching through M; and M2 from left to right. As soon as two
literals have become the same in a column, we do not mention them in
subsequent columns.
Thus the least generalization is:
Occ(lO, XO,p) VOcc(nl. X(),p) VOcc(n2, x,p) VOcc(20, x,p) VWin(p).
We use the algorithm of theorem 2. We can take L=Occ(nl, XO,p),

0'= {I 0 InI}. This gives
Ca=Occ(l 0, XO,p) VOcc(n2, x,p) VOcc(20, x,p) VWin(p).

Next, we can take L=Occ(n2, x,p) and 0'= {20Inz} and obtain
Ca=Occ(lO, XO,p) VOcc(20, x,p) VWin(p).

The algorithm stops at this point. The final clause says that if a position has
an X in hole 1 and hole 2 has something in it, then the position is a win,
. which, given the evidence, is fairly reasonable.

We leave it to the reader to verify that the conclusion of the inductive
argument given at the beginning of this note is indeed a least generalization
of its antecedents. The main computational weakness in the method for
finding a reduced least generalization lies in that part of the reducing algo-
rithm which requires a test for subsumption, For suppose that we are looking
for the inf of two clauses each with nine literals in a single predicate letter
(this can arise in descriptions of tic-tao-toe, say); there will be at least
eighty-one literals in the raw inf, and we will have to try to tell whether or
not a clause of eighty-one literals subsumes one of eighty.

162

PLOTKIN

FURTHER RESULTS

We give without proof some further results obtained on the algebraic nature
of the relation between clauses.
Let [Cj.denote the equivalence class under >- of C. We say that [C] [D]

iff D. It is easily seen that this is a proper definition.
The set of equivalence classes forms a lattice with the lattice operations

given by:
[CJn [D] = [inf {C, D}]
[C]U [D] =

where c; is a substitution which standardizes the variables of C and D apart.
This lattice is not modular. It has an infinite strictly ascending chain

[C;] 1) where
Cl={P(XO, Xl)}; Cj=Ci_IU{P(Xi_1, xJ}.

This chain is bounded above by {P(x, x) } .
. There is also a rather complicated infinite strictly descending chain,
[Gil (i';:: 1) with the following properties:
1. No literal in any C, contains any function symbols.
2. The clauses are all formed from a single binary predicate letter and a
single unary one.
Any infinite descending chain is bounded below by @. We hope to publish

the proofs elsewhere.

Acknowledgements
I should like to thank my supervisors R.J.Popplestone and R.M.Burstall for all the
different kinds of help they gave me. Particular thanks are due to Dr Bernard Meltzer,
without whose encouragement this paper would not have been written. The work was
supported by an SRC research studentship.

REFERENCES

MacLane, S. & Birkhoff, G. (1967) Algebra. New York: Macmillan.
Popplestone, R.J. (1970) An experiment in automatic induction. Machine Intelligence 5
pp. 203-15 (eds Meltzer, B. & Michie, D.). Edinburgh: Edinburgh University Press.

Reynolds, J.e. (1970) Transformational systems and the algebraic structure of atomic
formulas. MachineIntelligence 5 pp. 135-52 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

Robinson, J.A. (1965) A machine-oriented logic based on the resolution principle.
J. Ass. comput. Mach., 12, 23-41.

163

	Note-1 1
	Note-2 2
	Note-1 2
	Note-2 3
	Note-1 3
	Note-2 4
	Note-1 4
	Note-2 5
	Note-1 5
	Note-2 6
	Note-1 6

