COMP4418: Knowledge Representation and Reasoning
Horn Logic

Maurice Pagnucco
School of Computer Science and Engineering
COMP4418, Week 3
Horn clauses

Clauses are used two ways:

- as disjunctions: (rain ∨ sleet)
- as implications: (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause

- positive / definite clause = exactly one +ve literal

 \[[¬p_1, ¬p_2, \ldots, ¬p_n, q] \]

- negative clause = no +ve literals

 \[[¬p_1, ¬p_2, \ldots, ¬p_n] \]

Note:

\[[¬p_1, ¬p_2, \ldots, ¬p_n, q] \] is a representation for

\((¬p_1 ∨ ¬p_2 ∨ \ldots ∨ ¬p_n ∨ q) \) or

\[[(p_1 ∧ p_2 ∧ \ldots ∧ p_n) → q] \]

So can read as

If \(p_1 \) and \(p_2 \) and \(\ldots \) and \(p_n \) then \(q \)

and write sometimes as

\(p_1 ∧ p_2 ∧ \ldots ∧ p_n → q \)

B&L (2005)
Resolution with Horn clauses

Only two possibilities:

It is possible to rearrange derivations (of negative clauses) so that all new derived clauses are negative clauses

Can also change derivations such that each derived clause is a resolvent of the previous derived one (-ve) and some +ve clause in the original set of clauses

- Since each derived clause is negative, one parent must be positive (and so from original set) and one negative
- Continue working backwards until both parents of derived clause are from the original set of clauses
- Eliminate all other clauses not on direct path
SLD Resolution

Recurring pattern in derivations

See previously:
- Example 1
- Example 3
- Arithmetic example

But not:
- Example 2
- 3 block example

An *SLD-derivation* of a clause c from a set of clauses S is a sequence of clause $c_1, c_2, \ldots c_n$ such that $c_n = c$, and

1. $c_1 \in S$
2. c_{i+1} is a resolvent of c_i and a clause in S

Write: $S \vdash_{SLD} c$

Note: SLD derivation is just a special form of derivation and where we leave out the elements of S (except c_1)

SLD means S(elected) literals, L(inear) form, D(efinite) clauses
Completeness of SLD

In general, cannot restrict Resolution steps to always use a clause that is in the original set.

Proof:

\[S = \{ [p, q], [p, \neg q], [\neg p, q], [\neg p, \neg q] \} \]

then \(S \vdash [] \).

Need to resolve some \([l]\) and \([\neg l]\) to get \([]\).
But \(S \) does not contain any unit clauses.
So will need to derive both \([l]\) and \([\neg l]\) and then resolve them together.

But can do so for Horn clauses . . .

Theorem: for Horn clauses, \(H \vdash [] \) iff \(H \vdash_{SLD} [] \)

So: \(H \) is unsatisfiable iff \(H \vdash_{SLD} [] \)
This will considerably simplify the search for derivations.

Note: in Horn version of SLD-Resolution, each clause \(c_1, c_2, \ldots c_n \) will be negative.
So clauses \(H \) must always contain at least one negative clause, \(c_1 \).
Example 1 (again)

KB:
- FirstGrade
- FirstGrade \rightarrow Child
- Child \land Male \rightarrow Boy
- Kindergarten \rightarrow Child
- Child \land Female \rightarrow Girl
- Female

Show $\text{KB} \cup \{\neg\text{Girl}\}$ unsatisfiable

A goal tree whose nodes are atoms, whose root is the atom to prove, and whose leaves are in the KB.
Horn clauses form the basis of Prolog

\[
\text{Append}(\text{nil}, y, y) \\
\text{Append}(x, y, z) \rightarrow \text{Append}(\text{cons}(w, x), y, \text{cons}(w, z))
\]

So goal succeeds with \(u = \text{cons}(a, \text{cons}(b, \text{cons}(c, \text{nil}))) \)
that is: \(\text{Append}([a \ b], [c], [a \ b \ c]) \)

With SLD derivation, can always extract answer from proof

\[H \vdash \exists x \alpha(x) \text{ iff for some term } t, H \vdash \alpha(t) \]

Different answers can be found by finding other derivations
Back-chaining procedure

Satisfiability of a set of Horn clauses with exactly one negative clause

Solve \([q_1, q_2, \ldots, q_n] = /* to establish conjunction of \(q_i */\)
If \(n = 0\) then return \textbf{YES}; /* empty clause detected */
For each \(d \in KB\) do
 If \(d = [q_1, \neg p_1, \neg p_2, \ldots, \neg p_m] /* match first \(q\) */
 and /* replace \(q\) by -ve lits */
 Solve \([p_1, p_2, \ldots, p_m, q_2, \ldots, q_n] /* recursively */\)
 then return \textbf{YES}
end for; /* can’t find a clause to eliminate \(q\) */
Return \textbf{NO}

Depth-first, left-right, back-chaining
- depth-first because attempt \(p_i\) before trying \(q_i\)
- left-right because try \(q_i\) in order, \(1, 2, 3, \ldots\)
- back-chaining because search from goal \(q\) to facts in KB \(p\)

This is the execution strategy of Prolog
First-order case requires unification etc.
Problems with back-chaining

Can go into infinite loop

tautologous clause: \([p, \neg p]\\)
corresponds to Prolog program with \(p :- p\\).

Previous back-chaining algorithm is inefficient

Example:

consider \(2n\\) atoms: \(p_1, \ldots, p_n, q_1, \ldots, q_n\\,

and \(4n - 4\\) clauses:

\((p_i \Rightarrow p_{i+1}), (q_i \Rightarrow q_{i+1})\\),

\((p_i \Rightarrow q_{i+1}), (q_i \Rightarrow q_{i+1})\\).

with goal \(p_n\\) has execution tree like this:

```
  p_n
 / \ / \ / \
 p_{n-1} q_{n-1} p_{n-2} q_{n-2}
 / \ / \
 p_{n-2} q_{n-2} p_{n-2} q_{n-2}
```

search eventually fails after \(2^n\\) steps!

Is this inherent in Horn clauses?
Forward-chaining

Simple procedure to determine if Horn KB ⊢ q.
main idea: mark atoms as solved

1. If q is marked as solved, then return YES
2. Is there a \{p_1, \neg p_2, \ldots, \neg p_n\} ∈ KB such that p_2, \ldots, p_n are marked as solved, but the positive literal p_1 is not marked as solved?
 no: return NO
 yes: mark p_1 as solved, and go to 1.

FirstGrade example:
Marks: FirstGrade, Child, Female, Girl
then done!

Observe:
• only letters in KB can be marked, so at most a linear number of iterations
• not goal-directed, so not always desirable

A similar procedure with better data structures will run in linear time overall
First-order undecidability

Even with just Horn clauses, in the first-order case we still have the possibility of generating an infinite branch of resolvents

\[\text{KB: LessThan(succ}(x),y) \rightarrow \text{LessThan}(x,y) \]
\[\text{Q: LessThan(zero,zero)} \]

As with full Resolution, there is no way to detect when this will happen, so there is no procedure that will test for satisfiability of first-order Horn clauses; the question is undecidable.

As with full clauses, the best that can be expected is to give control of the deduction to the user. To some extent this is what is done in Prolog, but we will see more in “Procedural Control”