4. Basics of Parameterized Complexity
COMP6741: Parameterized and Exact Computation

Serge Gaspers1,2

1School of Computer Science and Engineering, UNSW Sydney, Australia
2Decision Sciences Group, Data61, CSIRO, Australia

Semester 2, 2017
Outline

1 Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2 Basic Definitions

3 Further Reading
Outline

1 Introduction
- Vertex Cover
- Coloring
- Clique
- Δ-Clique

2 Basic Definitions

3 Further Reading
Outline

1. Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2. Basic Definitions

3. Further Reading
A vertex cover in a graph $G = (V, E)$ is a subset of its vertices $S \subseteq V$ such that every edge of G has at least one endpoint in S.

Vertex Cover

Input: A graph $G = (V, E)$ and an integer k

Parameter: k

Question: Does G have a vertex cover of size k?
Algorithms for Vertex Cover

- brute-force: $O^*(2^n)$
- brute-force: $O^*(n^k)$
- vc1: $O^*(2^k)$ (cf. Lecture 1)
- vc2: $O^*(1.4656^k)$ (cf. Lecture 1)
- fastest known: $O(1.2738^k + k \cdot n)$ [Chen, Kanj, Xia, 2010]
Running times in practice

\(n = 1000 \) vertices,
\(k = 20 \) parameter

\[
\begin{array}{c|c|c}
\text{Theoretical} & \text{Running Time} & \text{Real} \\
\hline
2^n & 1.07 \cdot 10^{301} & 4.941 \cdot 10^{282} \text{ years} \\
n^k & 10^{60} & 4.611 \cdot 10^{41} \text{ years} \\
2^k \cdot n & 1.05 \cdot 10^9 & 15.26 \text{ milliseconds} \\
1.4656^k \cdot n & 2.10 \cdot 10^6 & 0.31 \text{ milliseconds} \\
1.2738^k + k \cdot n & 2.02 \cdot 10^4 & 0.0003 \text{ milliseconds} \\
\end{array}
\]

Notes:
- We assume that \(2^{36} \) instructions are carried out per second.
- The Big Bang happened roughly \(13.5 \cdot 10^9 \) years ago.
Goal of Parameterized Complexity

Confine the combinatorial explosion to a parameter k.

(1) Which problem–parameter combinations are fixed-parameter tractable (FPT)? In other words, for which problem–parameter combinations are there algorithms with running times of the form

$$f(k) \cdot n^{O(1)},$$

where the f is a computable function independent of the input size n?

(2) How small can we make the $f(k)$?
Examples of Parameters

A Parameterized Problem

Input: an instance of the problem
Parameter: a parameter
Question: a Yes–No question about the instance and the parameter

- A parameter can be
 - solution size
 - input size (trivial parameterization)
 - related to the structure of the input (maximum degree, treewidth, branchwidth, genus, ...)
 - combinations of parameters
 - etc.
Outline

1. Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2. Basic Definitions

3. Further Reading
A k-coloring of a graph $G = (V, E)$ is a function $f : V \rightarrow \{1, 2, \ldots, k\}$ assigning colors to V such that no two adjacent vertices receive the same color.

COLORING

Input: Graph G, integer k
Parameter: k
Question: Does G have a k-coloring?

Brute-force: $O^*(k^n)$, where $n = |V(G)|$.
Inclusion-Exclusion: $O^*(2^n)$.
FPT?
Known: \textsc{Coloring} is \textsf{NP}-complete when $k = 3$

Suppose there was a $O^*(f(k))$-time algorithm for \textsc{Coloring}

 Then, 3-\textsc{Coloring} can be solved in $O^*(f(3)) \subseteq O^*(1)$ time

Therefore, $P = \textsf{NP}$

Therefore, \textsc{Coloring} is not \textsf{FPT} unless $P = \textsf{NP}$
Outline

1 Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2 Basic Definitions

3 Further Reading
A clique in a graph $G = (V, E)$ is a subset of its vertices $S \subseteq V$ such that every two vertices from S are adjacent in G.

Clique

Input: Graph $G = (V, E)$, integer k
Parameter: k
Question: Does G have a clique of size k?

Is Clique NP-complete when k is a fixed constant? Is it FPT?
Algorithm for Clique

- For each subset \(S \subseteq V \) of size \(k \), check whether all vertices of \(S \) are adjacent
- Running time: \(O^*(\binom{n}{k}) \subseteq O^*(n^k) \)
- When \(k \in O(1) \), this is polynomial
- But: we do not currently know an \textbf{FPT} algorithm for \textbf{CLIQUE}
- Since \textbf{CLIQUE} is \(W[1] \)-hard, we believe it is not \textbf{FPT}. (See lecture on \(W \)-hardness.)
Outline

1 Introduction
- Vertex Cover
- Coloring
- Clique
- Δ-Clique

2 Basic Definitions

3 Further Reading
A different parameter for Clique

Δ-CLIQUE

Input: Graph $G = (V, E)$, integer k
Parameter: $\Delta(G)$, i.e., the maximum degree of G
Question: Does G have a clique of size k?

Is Δ-CLIQUE FPT?
Algorithm for Δ-Clique

- If $k = 0$, answer **Yes**.
- If $k > \Delta + 1$, answer **No**.
- Otherwise,
 - // A clique of size k contains at least one vertex v. We try all possibilities for v.

Running time: $O^*((\Delta + 1)^k) \subseteq O^*((\Delta + 1)^\Delta)$. (FPT for parameter Δ)
Algorithm for Δ-Clique

- If $k = 0$, answer **Yes**.
- If $k > \Delta + 1$, answer **No**.
- Otherwise,
 - // A clique of size k contains at least one vertex v. We try all possibilities for v.
 - // For each $v \in V$, we will check whether G has a clique of size k containing v.
 - // Note that for a clique S containing v, we have $S \subseteq N_G[v]$.
 - For each $v \in V$, check for each vertex subset $S \subseteq N_G[v]$ of size k whether S is a clique in G.

Running time: $O^*((\Delta + 1)^k) \subseteq O^*((\Delta + 1)^{\Delta})$. (FPT for parameter Δ)
Algorithm for Δ-Clique

- If $k = 0$, answer **Yes**.
- If $k > \Delta + 1$, answer **No**.
- Otherwise,
 - // A clique of size k contains at least one vertex v. We try all possibilities for v.
 - // For each $v \in V$, we will check whether G has a clique of size k containing v.
 - // Note that for a clique S containing v, we have $S \subseteq N_G[v]$.
 - For each $v \in V$, check for each vertex subset $S \subseteq N_G[v]$ of size k whether S is a clique in G.
- Running time: $O^*((\Delta + 1)^k) \subseteq O^*((\Delta + 1)^\Delta)$. (**FPT** for parameter Δ)
Outline

1 Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2 Basic Definitions

3 Further Reading
Main Parameterized Complexity Classes

\(n \): instance size
\(k \): parameter

P: class of problems that can be solved in \(n^{O(1)} \) time
FPT: class of parameterized problems that can be solved in \(f(k) \cdot n^{O(1)} \) time
XP: class of parameterized problems that can be solved in \(f(k) \cdot n^{g(k)} \) time
("polynomial when \(k \) is a constant")

\[P \subseteq \text{FPT} \subseteq W[1] \subseteq W[2] \cdots \subseteq W[P] \subseteq \text{XP} \]

Known: If \(\text{FPT} = W[1] \), then the Exponential Time Hypothesis fails, i.e. 3-SAT can be solved in \(2^{o(n)} \) time, where \(n \) is the number of variables.

Note: We assume that \(f \) is computable and non-decreasing.
Outline

1 Introduction
 - Vertex Cover
 - Coloring
 - Clique
 - Δ-Clique

2 Basic Definitions

3 Further Reading
Further Reading

