Exercise 1. A domatic \(k \)-partition of a graph \(G = (V, E) \) is a partition \((D_1, \ldots, D_k) \) of \(V \) into \(k \) dominating sets of \(G \).

\[\text{(sol+tw)-Domatic Partition} \]

<table>
<thead>
<tr>
<th>Input:</th>
<th>graph (G), integer (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter:</td>
<td>(k + \text{tw}(G))</td>
</tr>
<tr>
<td>Question:</td>
<td>Does (G) have a domatic (k)-partition.</td>
</tr>
</tbody>
</table>

- Show that \(\text{(sol+tw)-Domatic Partition} \) is FPT using Courcelle’s theorem

Solution. To show that \(\text{(sol+tw)-Domatic Partition} \) is FPT, we express it as an MSO sentence which is true for the input graph \(G \) if and only if \(G \) has a domatic \(k \)-partition:

\[
\exists D_1 \subseteq V \exists D_2 \subseteq V \ldots \exists D_k \subseteq V \ \ \text{partition}(D_1, D_2, \ldots, D_k) \land \\
\forall v \in V \ \text{dom}(v, D_1) \land \ldots \land \text{dom}(v, D_k)
\]

with

\[
\text{partition}(D_1, \ldots, D_k) := \forall v \in V \ (v \in D_1 \land v \notin D_2 \land v \notin D_3 \land \ldots \land v \notin D_k) \lor \\
(v \notin D_1 \land v \in D_2 \land v \notin D_3 \land \ldots \land v \notin D_k) \lor \\
\ldots \\
(v \notin D_1 \land v \notin D_2 \land v \notin D_3 \land \ldots \land v \in D_k)
\]

and

\[
\text{dom}(v, X) := v \in X \lor \exists x \in X \ \text{adj}(v, w)
\]

The length of this expression is \(O(k^2) \). Since this is a parameterized reduction to Courcelle’s problem, the result follows.

Exercise 2. Show that the incidence treewidth of a CNF formula \(F \) is at most the dual treewidth of \(F \) plus 1.

Solution. Start from a tree decomposition \((T, \gamma)\) of the dual graph of \(F \) with minimum width. For each variable \(v \) in \(F \), select a bag \(i_v \) that contains all the clauses where \(v \) occurs. Such a bag necessarily exists, since these clauses form a clique in the dual graph. Add a new bag containing \(v \) and all the clauses where \(v \) occurs, and make this bag adjacent to \(i_v \). This gives a tree decomposition for the incidence graph of \(F \) whose width equals the width of the tree decomposition of the dual graph plus one.

Exercise 3. Show that CSP is \(\text{W}[1] \)-hard for parameter incidence treewidth and Boolean domain \((D = \{0, 1\})\).

Hints. Reduce from CLIQUE.

1. Use Boolean variables \(x_{ij} \) with \(1 \leq i \leq k \) and \(1 \leq j \leq n \) with the meaning that \(x_{ij} \) is set to 1 if the \(i \)th vertex of the clique corresponds to the \(j \)th vertex in the graph.
2. Add \(O(k^2) \) constraints enforcing that for each \(i \in \{1, \ldots, k\} \), exactly one \(x_{ij} \) is set to 1, and whenever two \(x_{ij}, x_{i'j'} \) with \(i \neq i' \) are set to 1, then vertices \(j \) and \(j' \) are adjacent in the graph.
3. Show that a graph with a vertex cover of size \(q \) has treewidth at most \(q \).

Exercise 4. Design an \(O^*(2^t) \) time DP algorithm for \(\text{tw-INDEPENDENT SET} \).
tw-INDEPENDENT SET

Input: Graph G, integer k, and a tree decomposition of G of width t

Parameter: t

Question: Does G have an independent set of size k?

Solution sketch.

- Obtain a nice tree decomposition (T, γ) of width t in polynomial time.
- Denote T_i the subtree of T rooted at node i
- Denote $\gamma_i(i) = \{ v \in \gamma(j) : j \in V(T_i) \}$ and $G_i(i) = G[\gamma_i(i)]$
- For each node i of T, and each $S \subseteq \gamma(i)$, compute $ind(i, S)$, the size of a largest independent set of $G_i(i)$ that contains all vertices of S and no vertex from $\gamma(i) \setminus S$ by dynamic programming.
- For a leaf node i with $\gamma(i) = \{ v \}$:

 $$\begin{align*}
 ind(i, \emptyset) &= 0 \\
 ind(i, \{ v \}) &= 1

 \end{align*}
$$

- For a forget node i with child i' and $\gamma(i) = \gamma(i') \setminus \{ v \}$:

 $$ind(i, S) = \max(\text{ind}(i', S), \text{ind}(i', S \cup \{ v \}))$$

- For an introduce node i with child i' and $\gamma(i) = \gamma(i') \cup \{ v \}$:

 $$ind(i, S) = \begin{cases}
 \infty & \text{if } G[S] \text{ contains an edge} \\
 ind(i', S \setminus \{ v \}) + 1 & \text{otherwise}
 \end{cases}$$

- For a join node i with children i' and i'':

 $$ind(i, S) = ind(i', S) + ind(i'', S) - |S|$$

Exercise 5. Design an $O^*(9^t)$ time DP algorithm for tw-DOMINATING SET. Can you even achieve an $O^*(4^t)$ time DP algorithm?

tw-DOMINATING SET

Input: Graph G, integer k, and a tree decomposition of G of width at most t

Parameter: t

Question: Does G have a dominating set of size k?

Solution sketch.

- Obtain a nice tree decomposition (T, γ) of width t in polynomial time.
- Denote T_i the subtree of T rooted at node i
- Denote $\gamma_i(i) = \{ v \in \gamma(j) : j \in V(T_i) \}$
- Denote $G_i(i) = G[\gamma_i(i)]$
- For each node i of T, and each labelling $\ell : \gamma(i) \to \{ in, outDom, outNd \}$, compute the smallest size of a subset D of $\gamma_i(i)$ such that $D \cap \gamma_i(i)$ is the set of vertices labelled in by ℓ, and that dominates all vertices from $\gamma_i(i)$ except those that are labeled $outNd$ by ℓ by dynamic programming.

The running time depends on how join nodes are handled. See Section 10.5 in the [Niedermeier, '06] textbook for details.