Assignment 2

Please make sure that you always use notations consistent with lecture notes. Different notations will not be accepted.

The deadline for assignment 2 is: 5pm Fri 17th, November

Question 1 (12 marks)

Consider a relation *R* (*A*, *B*, *C*, *D*, *E*, *G*, *H*, *I*, *J*) and its FD set *F* = {A -> EI, BC -> DEG, CEH -> GJ, D -> CJ, DHJ ->AB}

Regarding the following questions. Give and justify your answers if the question is specified.

- 1) Check if $BD \rightarrow G$. Justify your answer. (1 mark)
- 2) Find all the candidate keys for *R*. (2 mark)
- 3) Determine the highest normal form of R with respect to F. Justify your answer. (2 marks)
- 4) Find a minimal cover F_m for F. (2 marks)
- 5) Regarding F, does the decomposition R1 = {ABDE}, R2 = {CEHJ}, R3 = {AGIJ} of *R* satisfy the lossless join property? Please justify your answer. (2 marks)
- 6) Provide a step-by-step lossless decomposition of R into BCNF normal form. (3 marks)

Question 2 (6 marks)

Consider the following query:

P1, P2, P3, P4, P3, P1, P5, P2, P3, P6, P7, P5, P2, P1.

(The user is trying to read page 1 from disk, then page 2, page 3, ...) Assume there are 4 buffers in the buffer pool.

- 1) Sketch the process of how blocks are replaced in the First In First Out (FIFO) policy. (2 marks)
- 2) Sketch the process of how blocks are replaced in the Least Recently Used (LRU) policy. (2 marks)
- 3) Between FIFO and LRU policies, which one performs better in the given query? Why? (2 marks)

Question 3 (8 marks)

Consider the schedule below. Here, R(*) and W(*) stand for 'Read' and 'Write', respectively. T1, T2, T3 and T4 represent four transactions and t_i represents a time slot.

	t1	t 2	t ₃	t4	t 5	t 6	t7	t8	t9	t 10	t 11	t 12	t 13	t 14	t 15	t 16
T1	R(A)					W(C)						R(A)			W(A)	
T2				R(B)			R(C)	W(B)		W(A)						
ТЗ		R(B)	R(D)								W(B)		W(D)			
Τ4					R(C)				W(C)					R(D)		W(D)

Each transaction begins at the time slot of its first operation and commits right after its last operation (same time slot).

Regarding the following questions. Give and justify your answers.

- Assume a checkpoint is made between t₄ and t₅, what should be done to the four transactions when the crash happens between t₁₁ and t₁₂. (2 marks)
- 2) Is the transaction schedule conflict serializable? Give the full precedence graph to justify your answer. (2 marks)
- Construct a schedule (which is different from above) of these four transactions which **causes** deadlock when using two-phase locking protocol. You should clearly indicate all the locks and the corresponding unlocks in your schedule. If no such schedule exists, explain why. (4 marks)

Assignment Submission

- Students must submit an electronic copy of their answers to the above questions to the course website in Moodle.
- Only .doc or .pdf file is accepted. The file name should be ass2_studentID.doc or ass2_studentID.pdf (e.g., ass2_z5100000.doc or ass2_z5100000.pdf).

Note:

- 1. If you have problems relating to your submission, please write to the course email at junhua.zhang@unsw.edu.au or yiheng.hu@unsw.edu.au.
- 2. All submissions will be checked for plagiarism. The university regards plagiarism as a form of academic misconduct and has very strict rules. <u>Not knowing the rules will not be considered a valid excuse when you are caught.</u>
 - a. For UNSW policies, penalties, and information to help avoid plagiarism, please see: https://student.unsw.edu.au/plagiarism.
 - b. For guidelines in the online ELISE tutorials for all new UNSW students: <u>https://subjectguides.library.unsw.edu.au/elise/plagiarism</u>.

Late Submission Penalty

- 5% of the max assessment mark will be deducted for each day late (1 second late is considered as one day late), up to 5 days (5*24 hours).
- Submissions that are more than five days late will not be marked.