PLpgSQL

COMP9311 24T3; Week 4
By Wenjie Zhang, UNSW

Notice

The deadline for Assignment 1 has passed
Project will be released this week

Project deadline: 5pm Monday, week 7 (21 October)

SQL

SELECT

» Single Table
» Multiple Tables
Aggregation

» GROUP BY

» HAVING

Data definition

> CREATE TABLE

Modification

» INSERT/DELETE/UPDATE
Change schemas

» ALTER

Views

Can SQL do this?

Consider the scenario:

» Withdraw money at an ATM
» A bank customer attempts to withdraw funds in their account.

» An ATM interacts with a secure database with your banking details.

What can SQL do?(cont.)

Example: say a person with acctNum 1 is trying to withdraw 50 dollars
Imagine that this is the implementation for the bank withdraw scenario:

Select 'Insufficient Funds'
from Accounts
where acctNo = 1 and balance < 50;

Update Accounts
set balance = balance - 50
where acctNo = 1 and balance >= 50;

Select 'New balance:' || balance
from Accounts
where acctNo = 1;

What can SQL do?(cont.)

We can feel that it implicitly defines two evaluation scenarios:

» Display ‘Insufficient Funds’, UPDATE has no effect, displays unchanged

balance

» UPDATE occurs as required, displays changed balance

l.e., If there is not enough funds, the ATM should indicate
‘Insufficient Funds’; otherwise, it should allow the withdrawal and

update the account balance.

What can SQL do”(cont.)

Select 'Insufficient Funds'
from Accounts
where acctNo = 1 and balance < 50;

Update Accounts
set balance = balance - 50

where acctNo = 1 and balance >=
50;

Select 'New balance:' || balance
from Accounts
where acctNo = 1;

Some issues:
1. There is no parameterization (e.qg.

acctNum, amount)

2. Will always attempt UPDATE, even
when it knows it's invalid

3. Will always display a “new” balance,
even if it's unchanged

To accurately express the “business
logic” of withdrawing money, we need
facilities like conditional controls.

The Limitation of SQL

What we have seen from SQL.:
> Data definition (create table(...))
> Query (select...from...where...)

» Constraints on values (domain, key, referential integrity)

And some useful functionalities.

> Views (giving names to SQL queries)

However, this is not enough to support real applications. Therefore, more
extensibility and programmability are needed.

SQL as a Programming Language

SQL is a powerful language for manipulating relational data, but it is

not meant to be a powerful programming language.

What if at some point in developing complete database applications

» We will need to consider implementing user interactions
» we need to control sequences of database operations

» we need to process query results in additional ways

How would SQL be able to handle these?

Extending SQL by PostgreSQL

Ways that SQL could be extended:
> new data types (incl. constraints, I/O, indexes, ...)
> more powerful constraint checking
> packaging/parameterizing queries
> more functions/aggregates for use in queries

> event-based triggered actions

All are required to assist application development.

10

Database Programming

(Let’s return to the example of withdrawing money)

To return one of the two possible text results :

> If try to withdraw too much => return 'Insufficient funds’

> |If withdrawal ok => return 'New balance: newAmount'

Requires a combination of
> SQL code to access the database

» procedural code to control the process

11

Database Programming

Database programming requires a combination of
» manipulation of data in DB (via SQL)

» conventional programming (via procedural code)

This combination is realized in several ways:

» Passing SQL commands via a "call-level” interface
(PL is decoupled from DBMS; most flexible; e.g., Java/JDBC, Python/ODBC)

» Embedding SQL into augmented programming languages
(requires PL pre-processor; typically, DBMS-specific; e.g. SQL/C)

> ...

12

A Stored Procedure Approach

Stored procedures Benefits of using stored procedures:

» procedures/functions that are stored in > minimal data transfer cost SQL «» procedural code

DB along with data
» user-defined functions can be nicely integrated with
» written in a language combining SQL and

SQL
procedural ideas

> provide a way to extend operations » procedures are managed like other DBMS data

available in the database (ACID)
> executed within the DBMS (close » procedures and the data they manipulate are held
coupling with query engine) together

13

SQL/PSM

SQL/PSM is a 1996 standard for SQL stored procedures. (PSM = Persistent

Stored Modules)
Syntax for PSM procedure/function dentitions:

CREATE PROCEDURE ProcName (<ParamList>)
[local declarations |
procedure body ;

CREATE FUNCTION FuncName (<ParamList>)
RETURNS Type

[local declarations]

function body ;

Parameters have three modes: IN, OUT, INOUT

14

Parameters

> IN: A variable passed in this mode is of read-only nature.

> OUT: In this mode, a variable is write-only and can be
passed back to the calling program. It cannot be read inside
the procedure and needs to be assigned a value.

> INOUT: This procedure has features of both IN and OUT
mode. The procedure can also read the variables value and

can also change it to pass it to the calling function.

15

SQL/PSM

Example: Defining a procedure:

CREATE PROCEDURE AddNewPerson (
N name CHAR(20),
N id INTEGER

NSERT INTO People VALUES(name, id);

)

Example: Invoking a procedure using the SQL/PSM statement
CALL

CALL AddNewPerson(‘Codd’, 000001);

16

Status of PSM in Modern DB

Unfortunately, the PSM standard was developed after most DBMSs had
their own stored procedure language -> No DBMS implements the PSM

standard exactly.
1. IBM's DB2 and MySQL implement the SQL/PSM closely (but not exactly)
2. Oracle's PL/SQL is moderately close to the SQL/PSM standard

3. PostgreSQL's PLpgSQL is close to PL/SQL (95% compatible)

17

PostgreSQL

» We can pass SQL commands via a "call-level" interface
(PL is decoupled from DBMS; most flexible; e.g., Java/JDBC, Python/ODBC)

» We can embed SQL into augmented programming languages
(requires PL pre-processor; typically, DBMS-specific; e.g. SQL/C)

» Database programming can also be realized via special-purpose programming
language in the DBMS

> integrated with DBMS;
» enables extensibility;
> e.g. PL/SQL, PL/pgSAQL.

18

User-defined Data Types

SQL data definition language provides:
» atomic types: integer, float, character, Boolean
> ability to define tuple types (create table)

PostgreSQL also provides mechanisms to define new types:
> basic types: CREATE DOMAIN

> tuple types: CREATE TYPE

19

User-defined Data Types(cont.)

Syntax for defining a new atomic type (as specialization of existing type):
CREATE DOMAIN DomainName [AS] DataType

[DEFAULT eXpreSSion] ~ is POSIX RegUIar

[CONSTRAINT ConstrName constraint | Expressions
Example

Create Domain UnswCourseCode as text POSIX regular

expressions provide
a more powerful
means for pattern

which can then be used like other SQL atomic types matching than LIKE
Create Table Course (and SIMILAR TO.
1d integer,
code UnswCourseCode,

check (value ~ '"[A-Z]1{4}[0-91{4}"');

) g

20

User-defined Data Types(cont.)

Syntax for defining a new tuple type:
CREATE TYPE TypeName AS
(AttrName1 DataType1, AttrName2 DataTypeZ2, ...)

Example
Create type ComplexNumber as (r float, 1 float);

Create type CourselInfo as (
course UnswCourseCode,
syllabus text,
lecturer text

) ;
If attributes need constraints, can be supplied by using a DOMAIN.

21

User-defined Data Types(cont.)

CREATE TYPE is different from CREATE TABLE:
1. does not create a new (empty) table
2. does not provide for key constraints

3. does not have explicit specification of domain constraints

Used for specifying return types of functions that return tuples

or sets.

22

PostgreSQL: SQL Functions

PostgreSQL allows users to define functions to be used 1n SQL

CREATE OR REPLACE FUNCTION

funcName (argltype, argZtype,)
RETURNS rettype

AS $S
SQL statements

$S LANGUAGE sqgl;

23

PostgreSQL: SQL Functionseon

Function arguments: accessed as $1, $2, ...

Return value: result of the last SQL statement.
> rettype can be any PostgreSQL data type.

» Rettype can be a table: returns set of TupleType

24

PostgreSQL: SQL Functionseon

Example1:

maxPrice(text) float

select max(price) from Sells where beer = $1;
language sql;

25

PostgreSQL: SQL Functionseon

select maxPrice('New’);
maxprice

select bar, price from sells
where beer='New' and price=maxPrice('New’);

Marble Bar 2.8

26

PostgreSQL: SQL Functionseon

Example2:

create or replace function
hotelsIn(text) returns setof Bars

as $%

select * from Bars where addr = $1;
$$ language sql;

27

PostgreSQL: SQL Functionseon

select * from hotelsIn('The Rocks');

name addr license

Australia Hotel The Rocks 123456
Lord Nelson The Rocks 123888

28

PL/pgSQL (PostgreSQL Manual: Chapter 43)

Procedural Language extensions to PostgreSQL

A PostgreSQL-specific language integrating features of:
» procedural programming

» SQL programming

29

PL/pgSQL Function

PLpgSQL functions are created in the db :

CREATE OR REPLACE FUNCTION
funcName (paraml, paramZ,)
RETURNS rettype

AS $5S
DECLARE

variable declarations
BEGIN
code for function
END;
$S LANGUAGE plpgsql;

Note: the entire function body is a single SQL string.

30

PL/pgSQL Function Parameters

All parameters are passed by value in PL/pgSQL

Within a function, parameters can be referred:
» using positional notation ($1, $2, ...)
OR
» Via aliases, supplied either
» as part of the function header (e.g. f(a int, b int))
> as part of the declarations (e.g. a alias for $1; b alias for $2)

31

PL/pgSQL Function Parameters(cont.)

Example: new-style function

CREATE OR REPLACE FUNCTION
add (x text, y text) RETURNS

text
AS $$
DECLARE
result text; -- local variable
BEGIN
result = x| [""""||y;

return result;
END;
$S LANGUAGE 'plpgsgl';

Beware: never give aliases the same names as attributes.

PL/pgSQL Function Parameters(cont.)

Example: old-style function exists

CREATE OR REPLACE FUNCTION
cat (text, text) RETURNS text

AS $$

DECLARE
x alias for $1; -- alias for parameter
y alias for $2; -- alias for parameter
result text; -- local variable

BEGIN
result := x| |""""""""||y;

return result;
END;
SSLANGUAGE ‘plpgsqgl’;

Beware: never give aliases the same names as attributes.

33

PL/pgSQL Function Parameters(cont.)

Restrictions: requires x and y to have values of the same
“addable" type.

CREATE OR REPLACE FUNCTION
add (x any element , y any element) RETURNS any element
AS $5S
BEGIN
return x + vy ;
END ;
$S LANGUAGE plpgsqgl ;

PL/pgSQL Function Parameters...

PLpgSQL allows function overloading (i.e. same name, different arg types)

Example
CREATE FUNCTION add (int , int) RETURNS int AS

$$ BEGIN return $1 + $2 ; END ; $$ LANGUAGE plpgsql ;

CREATE FUNCTION add (int , int , int) RETURNS int AS
$$ BEGIN return $1 + $2 + $3 ; END ; $$ LANGUAGE plpgsgl ;

CREATE FUNCTION add (char (1) , int) RETURNS int AS
$$ BEGIN return ascii ($1)+ $2 ; END ; S LANGUAGE plpgsgl;

But must differ in arg types, so cannot also define:
CREATE FUNCTION add (char (1) , int) RETURNS char AS

$$ BEGIN return chr (ascii ($1)+ $2); END ; $$ LANGUAGE plpgsqgl ;

i.e. cannot have two functions that look like add(char(1), int).

35

Function Return Types

A PostgreSQL function can return a value which is
» an atomic data type (e.g. integer, text, ...)
» a tuple (e.g. table record type or tuple type)
» a set of atomic values (like a table column)
» a setof tuples (i.e. atable)
» void (i.e. no return value)

A function returning a set of tuples is similar to a view.

36

Function Return Types .

Examples of different function return types:

create type Employee as (id integer, name text, salary float, ...);

create function factorial(integer)
returns integer ...

create function EmployeeOfMonth(date)
returns Employee ...

create function allSalaries()
returns setof float ...

create function OlderEmployees()
returns setof Employee ...

37

Function Return Types(cont)
Different kinds of functions are invoked in different ways:

select factorial(5);
-- returns one integer

select EmployeeOfMonth('2008-04-01");
-- returns (X, v, z,...)

select * from EmployeeOfMonth('2008-04-01");
-- one-row table

select * from allSalaries();
-- single-column table

select * from OlderEmployees();
-- subset of Employees

38

Using PL/pgSQL Functions

PLpgSQL functions can be invoked in several ways:

as part of a SELECT statement
select myFunction (arg1, arg2);
select * from myTableFunction (arg1 , arg2);

as part of the execution of another PLpgSQL function
PERFORM myVoidFunction (arg1, arg2);
result := myOtherFunction (arg1);

automatically via an insert/delete/update trigger
create trigger T before an update on R
for each row execute procedure myCheck ();

39

Declaring Data Types

Variables can also be defined in terms of:
» the type of an existing variable or table column

» the type of an existing table row (implicit RECORD type)

40

Declaring Data Types

The variable of a composite type is called a row-type variable.
A row-type variable can hold one row from a SELECT query result.

You can declare a variable to have the same type as a row from a
table using <table_name>%ROWTYPE, e.q.

account Accounts%ROWTYPE ;

You may also refer to an attribute type using and specifying
<table_name>. <column_name>%TYPE, e.q.

account.boranchName%TYPE

41

Declaring Data Types

Examples of declaring data types (in a PL/pgsql function)
» quantity INTEGER,;

» start_quantity quantity% TYPE;
» employee Employees%ROWTYPE;

» name Employees.name%TYPE;

42

Control Structures in Pl/pgsql

Assignment
> variable := expression;

Example:
tax := subtotal * 0.06;
my_record.user_id := 20;

Conditionals

> IF ... THEN

> IF ... THEN ... ELSE

> IF ... THEN ... ELSIF ... THEN ... ELSE

Example
IF v_user_id >0 THEN

UPDATE users SET email = v_email WHERE user_id =v_user _id; END IF;

43

Control Structures .,

Iteration

LOOP
Statement
END LOOP;

Example

LOOP
-- some computations
EXIT WHEN count > 0;
END LOOP;

44

Control Structures .,

Iteration

FOR int_var IN low .. high LOOP
Statement
END LOOP ;

Example
FORIiIN 1..10 LOOP
-- 1 will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop
END LOOP;

45

PL/pgSQLcn,

The PL/pgSQL interpreter

» executes procedural code and manages variables
> calls PostgreSQL engine to evaluate SQL statements

PostgreSQL Engine

SQL Execution Engine }

SR N1

rPLpgSQL Interpreter ‘
Procedural
PLpgsQL |59k >{ Statement }

Code non-SQL Executor

. vy

PL/pgSQL

Provided a means for extending DBMS functionality, e.g.

» implementing constraint checking (triggered functions)
» complex query evaluation (e.g. recursive)
» complex computation of column values

» detailed control of displayed results

47

PL/pgSQL Function

Stored-procedure approach (PLpgSQL):

create function _
withdraw(acctNum text, amount integer) returns text as $$

declare bal integer;

begin _
select balance into bal
from Accounts
where acctNo = acctNum;
if (bal < amount? then
return 'Insufficient Funds';
else
update Accounts
set balance = balance - amount
where acctNo = acctNum;
select balance into bal
from Accounts where acctNo = acctNum;
_ return 'New Balance: ' || bal;
end if;
end;
$$ language plpgsql;

48

SELECT ... INTO

Can capture query results via:
SELECT Expq, Exp,, ..., Expy,
INTO Vary,Var,, ...,Var,
FROM TablelList
WHERE Condition ...

The semantics:

1. Execute the query as usual

2. Return “projection list” (Exp,, Exp,, ...) as usual
3. Assign each Exp; to corresponding Var;

49

SELECT ... INTOon

Assigning a simple value via SELECT ... INTO:

-- cost is local var, price is attr

SELECT price INTO cost

FROM StockList

WHERE item = 'Cricket Bat';
cost := cost * (1 + tax_rate);
total := total + cost ;

Exceptions

Syntax of exceptions

BEGIN
Statements ...
EXCEPTION
WHEN Exceptionsl THEN
StatementsForHandlerl
WHEN Exceptions2 THEN
StatementsForHandler?2

END;

Each Exception could be an OR list of exception names, e.g.,

» division_by zero OR floating_point_exception OR ...

o1

ExceptionS o

Example:
-- Table T contains one tuple ('Tom', 'Jones')
DECLARE
X INTEGER := 3;
BEGIN

UPDATE T SET firstname = 'Joe’' WHERE lastname = 'Jones';

-- Table T now contains ('Joe', 'Jones')
X 1= X + 1;
y := X / 0;
EXCEPTION
WHEN division by zero THEN
-- update on T is rolled back to ('Tom',
RAISE NOTICE 'Caught division by zero';
RETURN x ;
-- value returned is 4
END ;

*Jones ")

52

ExceptionS o

The RAISE operator generates server log entries, e.g.
> RAISE DEBUG ' Simple message ';
> RAISE NOTICE 'User =% ", user _id ;
> RAISE EXCEPTION ' Fatal : value was % ', value ;

There are several levels of severity:

> DEBUG, LOG, INFO, NOTICE, WARNING, and EXCEPTION

> not all severities generate a message to the client

53

Cursors

A cursor is an object that retrieves rows from a result table

A cursor is linked to a query, cursors move sequentially from row
to row of a result table

Useful for applications to retrieve each row sequentially from the
result table.

What happen when the cursor reaches the end of a result table?

Employees
cursor---> 961234 John Smith 35000.00
954321 Kevin Smith 48000.00

912222 David Smith 31000.00 54

Cursors

Benefits of cursors:

> Save network bandwidth and time. We don’t need to wait for whole

result set to be retrieved/ processed.

» Since the cursor already stores the value of a row, other database

processes can continue to update or delete other rows on the table,

» You can return a cursor in a pl/pgsql function.

95

CursorsSon,

A FOR loop works with a built-in cursor. There are also explicit cursors in pl/pgsql.
Requires: RECORD variable or Table% ROWTYPE variable

Create Function totalSalary() Returns real As $$

Declare
employee RECORD; _
totalSalary REAL:=0; Note: |

Begin the record type provided
FOR employee IN SELECT * FROM Employees by PostgreSQL is like the
Loop row-type.

totalSalary:=totalSalary+employee.salary ; You may use only a single

End Loop; row in a record variable.

Return total;
End ; $$ Language plpgsql;

This style accounts for 95% of cursor usage.

56

Opening and Closing Cursors

A cursor is usually bound to a specific query (i.e., a bound cursor)

<cursor_name_a> CURSOR FOR <query_b>;
OPEN <cursor_name_a>;

CLOSE <cursor_name_a>,

OR a cursor may be declared without reference to any query. A cursor that isn’t bound to a query is an
unbound cursor.

<cursor_name_c> REFCURSOR;
OPEN <cursor_name _c> FOR <query _d>; ... CLOSE <cursor_name_c>;
OPEN <cursor_name_c> FOR <query e>; ...

Either way, declaring a cursor creates an explicit cursor.

S7

Fetching Cursors

The fetch operator retrieves the next row from the cursor into a
target.

FETCH e INTO me;
FETCH e INTO my _id , my name , my salary ;

Note: the variables need to match the corresponding type form
the return table.

You could also use fetch in the opposite direction if you specified
SCROLL in the cursor declaration.

E.g., <cursor_name_a> SCROLL CURSOR FOR <query_b>;

58

Cursors(cont.)

Example of operations on cursors:

DECLARE
employee Employee%ROWTYPE;
e CURSOR FOR Select * From Employees ;
totalSalary REAL:=0;
Begin
OPEN e;
LOOP
FETCH e INTO employee;
EXIT WHEN NOT FOUND;
totalSalary := totalSalary +employee.salary;
END LOOP ;
CLOSE e

End; ...

59

Database Triggers(cont.)

The event-condition-action rules were developed to support the need
to react to different kinds of events occurring in active databases

Most relational DBMSs effectively support ECA rules by using triggers
or procedures, and triggers are included in the SQL:1999 standard.

Event-condition-action rules approach:
» an event activates the trigger

» on activation, the trigger checks a condition
» if the condition holds, a procedure is executed (the action)

In short: a set of stored procedures to automatically executed in
response to specified database events

60

Database Triggers in PostgreSQL

Syntax for PostgreSQL trigger definition:
CREATE TRIGGER TriggerName
AFTER/BEFORE Eventl [OR Event2 ...]
ON TableName
FOR EACH ROW/STATEMENT
EXECUTE PROCEDURE FunctionName(args...);

Once a trigger is defined, it is bound to one or more database events.

PostgreSQL triggers provide a mechanism for INSERT, DELETE or UPDATE
events to automatically activate PL/pgSQL functions

61

Trigger Procedures(cont.)

A trigger is defined, there needs to be a trigger procedure.
-- Create a trigger

CREATE TRIGGER TriggerName

EXECUTE PROCEDURE function name(args...);
-- follow with the trigger procedure

CREATE OR REPLACE FUNCTION function_name() RETURNS
TRIGGER

62

Types of Triggers

Row level triggers and Statement-level triggers
> Row-level triggers executes once for each row affected in the transaction

> Statement-level trigger is invoked once per statement/transaction

CREATE TRIGGER TriggerName
AFTER/BEFORE Event1 ON TableName
FOR EACH ROW
EXECUTE PROCEDURE FunctionName(args...),

CREATE TRIGGER TriggerName
AFTER/BEFORE Event1 ON TableName
FOR EACH STATEMENT
EXECUTE PROCEDURE FunctionName(args...);

63

Trigger Procedures(cont.)

The trigger function also receives two variables NEW and OLD that
contains the new and old row version, respectively.

Depending on the trigger, NEW and OLD variables can be accessed.

Insert Yes No
Update Yes Yes
Delete No Yes

Possible usage: RETURN OLD or RETURN NEW (depending on
which version of the tuple is to be used)

64

Trigger Example

Consider a database of people in the USA:
Create table Person (

id integer primary key,

ssn varchar(11) unique,

state char(2), ...);

Create table States (
id integer primary key,
code char(2) unique,

)

We want the state value
Person.state € (select code from States), or
exists (select id from States where code=Person.state)

Note: we can use a trigger to help enforce this constraint.

65

Trigger Example(cont.)

Create Trigger checkState before insert or update on Person for each row
execute procedure checkState();

Create Function checkState() returns trigger as $$
begin
-- normalize the user-supplied value
new.state = upper(trim(new.state));
if (new.state !~ "~[A-Z][A-Z]$') then
raise exception 'Code Must Be Two Alpha Chars';
end if;
-- implement referential integrity check
select * from States where code=new.state;
if (not found) then
raise exception 'Invalid State Code %',new.state;
end if;
return new;
end; $$ language plpgsql;

Trigger Examplecon,

Example Scenario:

» Employee(id, name, address, deptartment, salary)

» Department(id, name, manager, totSal)

Consider a constraint that we wish to enforce.
The value of Department.total _salary be equal to that of...

select sum(e.salary) from Employee e where e.dept = d.id;

Question: How can we keep the value of total salary correct?

67

Trigger Examplecon,

Example Scenario:

» Employee(id, name, address, deptartment, salary)

» Department(id, name, manager, totSal)

These natural events could affect the validity of the database

» anew employee beginning work in some department

» an employee getting a rise in salary

» an employee changing from one department to another
>

an employee leaving the company

68

Trigger Examplecon,

Case 1: A new employees arrives
Create trigger TotalSalary1
after insert on Employees
for each row execute procedure totalSalary1();

Create function totalSalary1() returns trigger
as $$
begin
if (new.dept is not null) then
update Department
set totSal = totSal + new.salary where Department.id = new.dept;
end if;
return new;
end; $$ language plpgsql;

69

Trigger Examplecon,

Case 2: An employees change departments/salaries
Create trigger TotalSalary2
after update on Employee
for each row execute procedure totalSalary2();

Create function totalSalary2() returns trigger
as $$
begin
update Department
set totSal = totSal + new.salary where Department.id = new.dept;

update Department
set totSal = totSal - old.salary where Department.id = old.dept;

return new;
end; $$ language plpgsql;

70

Trigger Examplecon,

Case 3: An employee leaves
Create trigger TotalSalary3
after delete on Employee
for each row execute procedure totalSalary3();

Create function totalSalary3() returns trigger
as $$
begin
if (old.department is not null) then
update Department
set totSal = totSal - old.salary where Department.id = old.deptartment;
end if;
return old;
end; $$ language plpgsql;

71

Database Triggers(cont.)

General database trigger usage scenarios:
1. To maintain a separate table for summary data
2. Checking schema-level constraints (assertions) on update

3. To perform updates across tables (to maintain assertions)

72

Trigger events(cont.)

Database triggers invoke automatically when the defined event occurs:

We've seen the following in action in the Trigger Example slides
» After Delete? Maintain summary data

» After Update? Maintain summary data

» After Insert? Maintain summary data

Think about situations where this is useful?

> Before Insert? Validate the format of the new data

> Before Delete?

» Before Update? Validate the format of the new data

All can be used to enforce constraints or business rules

73

UDF in PostgreSQL

A User-Defined Function (UDF) is a function that is written by the user and executed by

the database.

PostgreSQL provides four kinds of functions:

» Query language functions (functions written in SQL)
* Procedural language functions (e.g., PL/pgSQL)

* Internal functions

» Functions in other programming language (e.g., C, Python, Java)

74

	Slide 1
	Slide 2: Notice
	Slide 3: SQL
	Slide 4: Can SQL do this?
	Slide 5: What can SQL do?(cont.)
	Slide 6: What can SQL do?(cont.)
	Slide 7: What can SQL do?(cont.)
	Slide 8: The Limitation of SQL
	Slide 9: SQL as a Programming Language
	Slide 10: Extending SQL by PostgreSQL
	Slide 11: Database Programming
	Slide 12: Database Programming
	Slide 13: A Stored Procedure Approach
	Slide 14: SQL/PSM
	Slide 15: Parameters
	Slide 16: SQL/PSM
	Slide 17: Status of PSM in Modern DB
	Slide 18: PostgreSQL
	Slide 19: User-defined Data Types
	Slide 20: User-defined Data Types(cont.)
	Slide 21: User-defined Data Types(cont.)
	Slide 22: User-defined Data Types(cont.)
	Slide 23: PostgreSQL: SQL Functions
	Slide 24: PostgreSQL: SQL Functions(cont.)
	Slide 25: PostgreSQL: SQL Functions(cont.)
	Slide 26: PostgreSQL: SQL Functions(cont.)
	Slide 27: PostgreSQL: SQL Functions(cont.)
	Slide 28: PostgreSQL: SQL Functions(cont.)
	Slide 29: PL/pgSQL (PostgreSQL Manual: Chapter 43)
	Slide 30: PL/pgSQL Function
	Slide 31: PL/pgSQL Function Parameters
	Slide 32: PL/pgSQL Function Parameters(cont.)
	Slide 33: PL/pgSQL Function Parameters(cont.)
	Slide 34: PL/pgSQL Function Parameters(cont.)
	Slide 35: PL/pgSQL Function Parameters(cont.)
	Slide 36: Function Return Types
	Slide 37: Function Return Types(cont)
	Slide 38: Function Return Types(cont)
	Slide 39: Using PL/pgSQL Functions
	Slide 40: Declaring Data Types
	Slide 41: Declaring Data Types
	Slide 42: Declaring Data Types
	Slide 43: Control Structures in Pl/pgsql
	Slide 44: Control Structures(cont.)
	Slide 45: Control Structures(cont.)
	Slide 46: PL/pgSQL(cont)
	Slide 47: PL/pgSQL
	Slide 48: PL/pgSQL Function
	Slide 49: SELECT ... INTO
	Slide 50: SELECT ... INTO(cont.)
	Slide 51: Exceptions
	Slide 52: Exceptions(cont.)
	Slide 53: Exceptions(cont.)
	Slide 54: Cursors
	Slide 55: Cursors
	Slide 56: Cursors(cont.)
	Slide 57: Opening and Closing Cursors
	Slide 58: Fetching Cursors
	Slide 59: Cursors(cont.)
	Slide 60: Database Triggers(cont.)
	Slide 61: Database Triggers in PostgreSQL
	Slide 62: Trigger Procedures(cont.)
	Slide 63: Types of Triggers
	Slide 64: Trigger Procedures(cont.)
	Slide 65: Trigger Example
	Slide 66: Trigger Example(cont.)
	Slide 67: Trigger Example(cont.)
	Slide 68: Trigger Example(cont.)
	Slide 69: Trigger Example(cont.)
	Slide 70: Trigger Example(cont.)
	Slide 71: Trigger Example(cont.)
	Slide 72: Database Triggers(cont.)
	Slide 73: Trigger events(cont.)
	Slide 74: UDF in PostgreSQL

