
Transaction
Management

COMP9311 24T3; Week 8.1

By Zhengyi Yang, UNSW

Transaction

A transaction is a unit of program execution that accesses and possibly

updates various data items.

E.g., transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

Two main issues to deal with:

➢ Failures of various kinds, such as hardware failures and system crashes

➢ Concurrent execution of multiple transactions

2

Issue (1)

Concurrent execution of multiple transactions is needed

➢ Why?

i. Multiple users/transactions may read/change the same data

ii.Allowing multiple transactions to update data concurrently can result in complications -

data inconsistency.

➢ Therefore transaction processing systems...

i. need to support multiple transactions at the same time.

ii.usually allow multiple transactions to run concurrently.

3

Issue (2)

Failures of various kinds

a.System failure:

i. Disk failure - e.g., head crash, media fault.

ii.System crash - e.g., unexpected failure requiring a reboot.

b.Program error:

i. e.g., divide by zero.

c.Exception conditions:

i. e.g., no seats for your reservation.

d.Concurrency control:

i. e.g., deadlock, expired locks.

Transaction Processing Systems need to be robust against failure

4

Example of Fund Transfer (1)

A transaction is a unit of program execution that accesses and

possibly updates various data items.

Example: A possible transaction to transfer $50 from account A

to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

5

Each transaction typically

includes some database

access operations

Operations relevant to

transaction processing:

1. Read

2. Write

3. Computation

Example of Fund Transfer (2)

Atomicity requirement

➢ If the transaction fails after step 3 and before step 6, money will be “lost”

leading to an inconsistent database state

➢ Failure could be due to software or hardware

➢ The system should ensure that updates of a partially executed

transaction are not reflected in the database (all-or-nothing)

6

Example:

Transaction to transfer $50

from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Example of Fund Transfer (3)

Durability requirement

➢ Once the user has been notified that the transaction has completed (i.e.,

the transfer of the $50 has taken place), the updates to the database by

the transaction must persist even if there are software or hardware

failures.

7

Example:

Transaction to transfer $50

from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Example of Fund Transfer (4)

Consistency requirement in above example:

➢ The sum of A and B is unchanged by the execution of the transaction

In general, consistency requirements include

➢ Explicitly specified integrity constraints such as primary keys and foreign keys

➢ Implicit integrity constraints

➢ A transaction must see a consistent database.

During transaction execution the database may be temporarily inconsistent.

➢ When the transaction completes successfully, the database must be consistent

➢ Erroneous transaction can lead to inconsistency

8

Example of Fund Transfer (5)

Isolation requirement — if between steps 3 and 6, another transaction T2 is allowed to access the

partially updated database, it will see an inconsistent database (the sum A + B will be less than it

should be)

 T1 T2

1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B)

Isolation can be ensured trivially by running transactions serially. That is, one after the other.

However, executing multiple transactions concurrently has significant benefits.

9

ACID Summary

A transaction is a unit of program execution that accesses and possibly updates various data items. To

preserve the integrity of data, the database system must ensure the ACID property.

➢ Atomicity: Either all operations of the transaction are properly reflected in the database, or none are.

➢ Consistency: Every transaction sees a consistent database.

➢ Isolation: Although multiple transactions may execute concurrently, each transaction must be

unaware of other concurrently executing transactions. Intermediate transaction results must be hidden

from other concurrently executed transactions.

➢ That is, for every pair of transactions Ti and Tj, it must appear to Ti that either Tj, finished execution

before Ti started, or Tj started execution after Ti finished.

➢ Durability: After a transaction completes successfully, the changes it has made to the database

persist, even if there are system failures.

10

Transaction States

Active – the initial state; the transaction stays in this state while it is executing

Partially committed – after the final statement has been executed.

Failed -- after the discovery that normal execution can no longer proceed.

Aborted – after the transaction has been rolled back using log and the database restored to its state

prior to the start of the transaction. Two options after it has been aborted:

➢ Restart the transaction

➢ Kill the transaction

Committed – after successful completion.

11

Concurrent Executions

Multiple transactions are allowed to run concurrently in the system.

The advantages are:

➢ Increased processor and disk utilization

➢ leading to better transaction throughput

➢ E.g., one transaction can be using the CPU while another is reading from or writing to the disk

➢ Reduced average response time for transactions: short transactions need not wait

behind long ones.

Concurrency control schemes – mechanisms to achieve isolation

➢ That is, to control the interaction among the concurrent transactions to prevent them

from destroying the consistency of the database

12

A Simple Transaction Model

We do not consider the full set of SQL language, and ignore SQL insertion/delete operations.

Two operations:

➢ read(X) to transfer the data item X from database to a variable, also called X in a buffer in main memory.

➢ write(X) to transfer the value in the variable X in the buffer to the data item in the database.

Recall example: transaction transfers $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

13

More Concepts

Concurrency/Isolation/Schedule/Control

➢ The concurrent execution in a database system is similar to the multiprogramming in

an operating system (OS).

➢ When several transactions run concurrently, the isolation property may be violated.

➢ A schedule can help identify the executions that are guaranteed to ensure the isolation

property and thus database consistency.

➢ A concurrency-control scheme is to control the interaction among the concurrent

transactions to prevent them from destroying the consistency of the database.

14

Schedules

Schedule – a sequence that specifies the order in which instructions of concurrent

transactions are executed.

➢ A schedule for a set of transactions must consist of all instructions of those transactions

➢ Must preserve the order in which the instructions appear in each individual transaction.

➢ A transaction that successfully completes its execution will have a commit instruction as the

last statement

➢ By default, transaction is assumed to execute commit instruction as its last step

➢ A transaction that fails to successfully complete its execution will have an abort instruction

as the last statement

15

Two Transactions

Consider that the system receives two transactions

Let T1 transfer $50 from A to B,

Let T2 transfer 10% of the balance from A to B.

16

T1

read (A)

A := A – 50

write (A)

read (B)

B := B + 50

write (B)

commit

T2

read (A)

temp := A * 0.1

A := A - temp

write (A)

read (B)

B := B + temp

write (B)

commit

Schedule 1

A schedule S is serial if for every

transaction T in the schedule, all (the

operations of) T are executed

consecutively in the schedule.

Example: a serial schedule in which T1 is

followed by T2 :

17

T1 T2
read (A)

A := A – 50

write (A)

read (B)

B := B + 50

write (B)

commit

read (A)

temp := A * 0.1

A := A - temp

write (A)

read (B)

B := B + temp

write (B)

commit

Schedule 2

Example: another valid serial schedule where T2 is followed by T1

18

T1 T2
read (A)

temp := A * 0.1

A := A - temp

write (A)

read (B)

B := B + temp

write (B)

commit

read (A)

A := A – 50

write (A)

read (B)

B := B + 50

write (B)

commit

Schedule 3

Let T1 and T2 be the transactions given previously.

➢ The following schedule is not a serial schedule

➢ but it is equivalent to Schedule 1

In Schedules 1, 2 and 3, the sum A + B is preserved.

19

T1 T2
read (A)

A := A – 50

write (A)

read (A)

temp := A * 0.1

A := A - temp

write (A)

read (B)

B := B + 50

write (B)

commit

read (B)

B := B + temp

write (B)

commit

Schedule 4

The following concurrent schedule:

➢ does NOT preserve the value of (A + B).

Not all concurrent schedules are desirable

20

T1 T2
read (A)

A := A – 50

read (A)

temp := A * 0.1

A := A - temp

write (A)

read (B)

write (A)

read (B)

B := B + 50

write (B)

commit

B := B + temp

write (B)

commit

How to Avoid These Problems?

If operations are interleaved arbitrarily, incorrect results may occur.

➢ Isolation can be ensured trivially by running transactions serially.

Question: why not run only serial schedules?

Answer: Because of very poor throughput due to disk latency

➢ If a transaction waits for an I/O operation to complete, we cannot switch the CPU

processor to another transaction, thus wasting valuable CPU processing time.

➢ Additionally, if some transaction T is quite long, the other transactions must wait for T

to complete all its operations before starting.

21

How to Avoid These Problems?

Question: why run non-serial schedules?

➢ It is desirable to interleave the operations of transactions in an appropriate way.

➢ We can fully utilise resources.

➢ For example, if one transaction is waiting for I/O to complete, another transaction can use the CPU.

Point:

➢ serial schedules are considered unacceptable in practice

➢ executing multiple transactions concurrently has significant benefits.

22

Motivation (1)

We need to study the notion of correctness of concurrent executions.

➢ Every transaction is executed from beginning to end in isolation from the

operations of other transactions, we get a correct end result on the database.

We first need to define types of schedules that are always considered

to be correct when concurrent transactions are executing.

23

Motivation (2)

Question: How do we determine if non-serial schedules are

correct?

Intuition: If we can determine which non-serial schedules are

equivalent to a serial schedule, we can allow these schedules to

occur.

24

Summary

➢ Every serial schedule is considered correct

➢ We can assume this because every transaction is assumed to be correct if executed

on its own (according to the consistency preservation property).

➢ For serial schedules, it does not matter which transaction execute first. They are all

correct.

Basic Assumption – Each transaction preserves database consistency

➢ Therefore, a serial execution of a set of transactions preserves database consistency.

➢ Serial executions are correct

25

Serializability

A (possibly concurrent) schedule S of n transactions is

serializable if

➢ it is equivalent to some serial schedule of the same n transactions.

There are many notions forms of schedule equivalence give rise

to the notion of Conflict serializability (Will Discuss Later)

26

A Simplified View of Transactions

We ignore operations other than read and write instructions

We assume that transactions may perform arbitrary computations on data in local buffers in

between reads and writes.

Our simplified schedules consist of only read and write instructions.

An example: For a transaction that transfers $50 from account A to account B:

 1. read(A)

 2. A := A – 50

 3. write(A)

 4. read(B)

 5. B := B + 50

 6. write(B)

27

We simply considers the

read/write only

 read(A)

 write(A)

 read(B)

 write(B)

Conflicting Instructions

Instructions li and lj of different transactions Ti and Tj respectively, conflict if and only if there exists

some item Q accessed by both li and lj, and at least one of these instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.

 2. li = read(Q), lj = write(Q). They conflict.

 3. li = write(Q), lj = read(Q). They conflict

 4. li = write(Q), lj = write(Q). They conflict

Intuitively, a conflict between li and lj forces a (logical) temporal order between them. i.e., changing

their order can result in a different combined outcome.

If li and lj are consecutive in a schedule and they do not conflict, their results would remain the same

even if they had been interchanged in the schedule.

For example, read–read operations are are not conflicting.

28

Summary: Conflicting Instructions

Summary: Two operations O1 and O2 are conflicting if

➢ They are in different transactions

➢ They access the same data item,

➢ At least one of them must be a write.

Language: The transaction of the second operation in the pair is

said to be in conflict with the transaction of the first operation.

29

Conflict Equivalence

Two schedules are said to be conflict equivalent if:
➢ the order of any two conflicting operations is the same in both schedules.

Two schedules are conflict equivalent if:
➢ Involve the same actions of the same transactions

➢ Every pair of conflicting actions is ordered the same way

For two schedules to be conflict equivalent:
➢ the operations applied to each data item affected by the schedules should be applied to

that item in both schedules in the same order.

We define equivalence of schedules by conflict equivalence, which is the more
commonly used definition

A better definition of equivalence compared to result equivalence .

30

Conflict Serializability

Using the notion of conflict equivalence, we define a schedule S to be conflict serializable if it is

(conflict) equivalent to some serial schedule S.

For conflict serializable schedules:

➢ we can reorder the nonconflicting operations in S until we form the equivalent serial schedule S.

This means that if a schedule can be transformed to any serial schedule without changing orders of

conflicting operations (but changing orders of non-conflicting, while preserving operation order inside

each transaction), then the outcome of both schedules is the same, and the schedule is conflict-

serializable by definition.

If a schedule S can be transformed into a schedule S’ by a series of swaps of non-conflicting

instructions, we say that S and S’ are conflict equivalent.

We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule.

31

Conflict Serializability (2)

Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by

series of swaps of non-conflicting instructions. Therefore Schedule 3 is conflict serializable.

Note: any conflict serializable schedule is also a serializable schedule

32

Schedule 3 Schedule 6

T1 T2
read (A)

write (A)

read (A)

write (A)

read (B)

write (B)

read (B)

write (B)

T1 T2
read (A)

write (A)

read (B)

write (B)

read (A)

write (A)

read (B)

write (B)

Conflict Serializability (3)

Example of a schedule that is not conflict serializable:

We are unable to swap instructions in the above schedule to obtain
either the serial schedule <T3, T4>, or the serial schedule <T4, T3>.

Note: Not all schedules are conflict serializable.

33

T3 T4

read (Q)

write (Q)

write (Q)

Allow Some Concurrent Schedules

Now we characterized the types of schedules that are always

considered to be correct when concurrent transactions are

executing.

The concept of serializability of schedules is used to identify

which schedules are correct when transaction executions have

interleaving of their operations in the schedules.

Since serial schedules are not practical, we can allow conflict

serializable schedules since they are correct!

34

Allow Some Concurrent Schedules

Saying that a non-serial schedule S is serializable is equivalent to

saying that it is correct

➢ because it is equivalent to a serial schedule, which is always

considered correct.

Practice:

1. Is a serializable schedule correct?

2. Is being serializable the same as being serial.

3. Is a non-serializable schedule correct?

4. Is a nonserial schedule correct?

35

Learning Outcomes

➢ Transaction Concept

➢ Transaction State

➢ Concurrent Executions

➢ Serializability

➢ A nonserial schedules can be one of the following case:

➢ those that are equivalent to one (or more) of the serial schedules

➢ those that are not equivalent to any serial schedule and hence are not

serializable.

36

	默认节
	Slide 1
	Slide 2: Transaction
	Slide 3: Issue (1)
	Slide 4: Issue (2)
	Slide 5: Example of Fund Transfer (1)
	Slide 6: Example of Fund Transfer (2)
	Slide 7: Example of Fund Transfer (3)
	Slide 8: Example of Fund Transfer (4)
	Slide 9: Example of Fund Transfer (5)
	Slide 10: ACID Summary
	Slide 11: Transaction States
	Slide 12: Concurrent Executions
	Slide 13: A Simple Transaction Model
	Slide 14: More Concepts
	Slide 15: Schedules
	Slide 16: Two Transactions
	Slide 17: Schedule 1
	Slide 18: Schedule 2
	Slide 19: Schedule 3
	Slide 20: Schedule 4
	Slide 21: How to Avoid These Problems?
	Slide 22: How to Avoid These Problems?
	Slide 23: Motivation (1)
	Slide 24: Motivation (2)
	Slide 25: Summary
	Slide 26: Serializability
	Slide 27: A Simplified View of Transactions
	Slide 28: Conflicting Instructions
	Slide 29: Summary: Conflicting Instructions
	Slide 30: Conflict Equivalence
	Slide 31: Conflict Serializability
	Slide 32: Conflict Serializability (2)
	Slide 33: Conflict Serializability (3)
	Slide 34: Allow Some Concurrent Schedules
	Slide 35: Allow Some Concurrent Schedules
	Slide 36: Learning Outcomes

