
Functional
Dependencies

COMP9311 24T3; Week 4.2

By Wenjie Zhang, UNSW

How good is your DB design?

➢ Conceptual Level

➢ How do users interpret the relation schemas and the meaning of

their attributes?

➢ Physical Level

➢ How the tuples in a base relation are stored and updated?

2

How good is your DB design?

➢ Information Preservation

➢ Does your design correctly capture all attributes, entities and relations?

➢ Minimum Redundancy

➢ Does your design minimize redundant storage of the same

information and reduce the need for multiple updates?

3

Example of Redundancy

Suppose we have a table inst_dept which contains information
for both instructor and department.

Result is possible repetition of information, which leads to update
anomalies.

4

Update Anomalies

Redundancy in a database means storing a piece of data more

than once.

Redundancy is often useful for efficiency and semantic reasons,

but creates the potential for consistency problems.

A poor redundancy control may cause update anomalies.

5

Update Anomalies

Consider the previous example relation.

➢ Insertion Anomalies

➢ To insert a new employee, we must include the correct values for

his/her department or NULLs.

➢ How to insert a department with no employees? (set ID to null

violates primary key constraint if ID is the primary key)

➢ Deletion Anomalies

➢ What if we delete the last employee in a department? (lose the

information of a department)

➢ Modification Anomalies

➢ What if we change the budget of a department? (have to maintain

multiple duplication of the same value)
6

Devise a Theory for what is Good

We want to do two things:

1. Decide whether a particular relation R is in “good” form.

2. If a relation R is not in “good” form, decompose it into a set of relations {R1, R2, ..., Rn}

such that

➢ each relation is in good form

➢ the decomposition is a lossless

Our theory/properties are defined based on functional

dependencies.

7

Attribute Values can be Related

8

Functional Dependencies

A functional dependency describes a relation between attributes

Whenever any two tuples t1 and t2 of r agree on one attribute α,

they also agree on another attribute β:

 t1[α] = t2 [α] ⇒ t1[β] = t2 [β]

This relation is denoted α → β.

9

Functional Dependencies

ID → Name, Depart_name → Building

Describes the semantics or meaning of the attributes

10

Functional Dependencies

The functional dependency

X → Y is true (holds)

if and only if

 t1[X] = t2 [X] ⇒ t1[Y] = t2 [Y]

in relation R

11

ID Name Code Grade

100 J 3550 A

200 X 3550 B

100 J 4540 B

100 J 4550 A

➢ Example: R = {ID, Name, Code, Grade}

➢ ID → Name (OK)

➢ ID → Grade (not OK), ID → Code (not OK)

➢ ID, Name → Grade (not OK), ID, Code → Grade (OK)

➢ ID, Name → Name (trivial)

Functional Dependencies: Test

Let’s see if you understand (Test1)

 F: X → Y

 X Y

 a b

 a ?

12

Functional Dependencies: Test

Let’s see if you understand (Test1)

 F: X → Y

 X Y

 a b

 a ?

? must be b

13

Functional Dependencies: Test

Let’s see if you understand (Test2)

 F: X → Y

 X Y

 a b

 ? b

14

Functional Dependencies: Test

Let’s see if you understand (Test2)

 F: X → Y

 X Y

 a b

 ? b

? can be any value

15

Functional Dependencies: Test

Let’s see if you understand (Test3)

 F: X → Y

 X Y

 a b

 c b ?

 is it okay?

16

Functional Dependencies: Test

Let’s see if you understand (Test3)

 F: X → Y

 X Y

 a b

 c b ?

 Yes, it doesn’t violates X → Y

17

Functional Dependencies: Test

Let’s see if you understand (Test4,5)

X, Y → X ?

X → X ?

18

Functional Dependencies: Test

Let’s see if you understand (Test4,5)

X, Y → X ? Yes

X → X ? Yes

Note: Functional dependencies like these are trivial

19

Functional Dependencies: Test

Let’s see if you understand (Test6)

Consider R (A , B) with the following instance r.

On this instance, A → B does NOT hold

20

1 4

1 5

3 7

FD: relation between two sets

A functional dependency is a relation between two sets of attributes.

I.e., the value for a set of attributes determines the value for another
set of attributes.

A functional dependency describes the relation between two sets of
attributes from a relation.

Examples:

XY → WZ

XW → Z

Z → XQ

21

Functional Dependencies

A functional dependency is a constraint between two sets of

attributes for all its relation instances.

A constraint means a constraint across all it's relation instances

(extensions), that it must hold for all relation instances.

F is a set of FD specified on relation R. It must hold on all relation

instances.

22

Constraint on all Relations

Example: course → course_code in Students

23

STUDENTS

id course course_code major prof

1 Database 353 Comp Sci Smith

2 Chem101 427 Chemistry Turner

3 Database 353 Comp Sci Smith

STUDENTS

id course course_code major prof

1 Database 353 Comp Sci Yu

4 Agile Dev 821 Comp Sci Turner

…

5 Compiler 237 Comp Sci Clark

Legal Extensions of R

Relation extensions r(R) that satisfy the functional dependency constraints

are called legal relation states (or legal extensions) of R.

Let course → course_code be the only FD for Students

24

STUDENTS

id course course_code major prof

1 Database 353 Comp Sci Smith

2 Chem101 427 Chemistry Turner

3 Database 353 Comp Sci Clark

STUDENTS

id course course_code major prof

1 Database 353 Comp Sci Yu

4 Agile Dev 821 Comp Sci Turner

5 Compiler 237 Comp Sci Clark

Also legal

Legal

Notation and Terminology

Let X → Y be a functional dependency on relation R

We say that
➢ X → Y holds on R

We say that
➢ X functionally determines Y
➢ Y is functionally dependent on X

We say that
➢ X is determinant of the dependency
➢ Y is dependent of the dependency
OR
➢ X is left-hand side of the dependency
➢ Y is right-hand side of the dependency

25

Functional Dependencies

A WORKS_ON relation

➢ Ssn = social security number

➢ Pnumber = project number

Question:
What might be the FDs of
WORKS_ON?

Ssn, Pnumber → Hours

26

Functional Dependencies

An EMPLOYEE relation

➢ SSn = social security number

➢ Bdate = birthday

➢ Dnumer = department number

Question: What might be the FDs of EMPLOYEE?

Ssn → Ename, Address, Bdate

27

Functional Dependencies

Example: R = {ID, Name, Code, Grade}

r(R) Instance A r(R) Instance B

28

ID Name Code Grade

100 J 3550 A

200 X 3550 B

100 J 4540 B

100 J 4550 A

ID Name Code Grade

100 J 3550 A

200 X 3550 B

100 J 4540 A

100 J 4550 A

➢ ID => Name (OK),

➢ ID => Grade (not OK),

➢ ID => Code (not OK),

➢ ID, Name => Grade (not OK),

➢ ID, Code => Grade (OK).

➢ ID => Name (OK)

➢ ID => Grade (OK),

➢ ID => Code (not OK)

➢ ID, Name => Grade (OK),

➢ ID, Code => Grade (OK).

Important: You can’t infer FD’s from a relation’s instances

Functional Dependencies

Functional dependencies exist to:

➢ specify the semantics between attributes

➢ semantics of a relation should be kept across all its extensions

➢ specify constraints on a relational schema

➢ this semantics is not captured by ER

29

Designing FDs

FD cannot be inferred automatically from a given relation
extension r.

So given a relation, where do its FDs come from? Where do we
find it?

Deciding the FDs of a table is part of a design decision.

➢ Defined explicitly by someone who knows the semantics of the attributes of R.

30

Designing FDs

Assume we need to define the FDs of this relation

We need to know the semantics of the columns.

Could each ID have a unique phone number and major?

31

STUDENTS

ID Course Phone Major Prof Grade

Which Columns are Related?

Every ID has a unique phone number and major
➢ We can say {ID} →{Phone , Major}

Other relations between columns:
➢ Every course has a unique professor {Course} → {Prof}

➢ Every ID and course has a unique grade {ID , Course} → {Grade}

Whenever the semantics of two sets of attributes in R indicate
that a functional dependency should hold, we specify the
dependency as a constraint.

32

STUDENTS

ID Course Phone Major Prof Grade

Final Notations

We may denote the attributes sets with/without curly brackets
➢ With curly brackets, attributes are comma separated

➢ {X,Y} = XY

The order of the attribute sets doesn’t matter
➢ ZY = YZ

➢ {Z,Y} = {Y, Z}

33

Dependency Diagram

Each horizontal line represents a FD
➢ Left-hand side attr. connected by vertical lines to the line,

➢ Right-hand side attr. connected by vertical lines with arrows

➢ Arrow pointing toward the attributes

Dependency diagram from previous example.

34

Id Course Phone Major Prof Grade

Dependency Diagram (Cont.)

Some more examples of dependency diagrams.

35

Inferring other FDs

A → B and B → C, what do we know about A → C?

Given A → B and B → C on relation R,

We know A → C holds on R, given A determines B, and B
determines C.

36

Inferring Other FDs

It’s true that given a set F of functional dependencies, there are other
functional dependencies that are logically implied by F.

F |= X→ Y

Denotes that set of FDs F infers X → Y if all relation instances
satisfying F also satisfies X → Y .

Example:
 F = A → B, B → C,
 F |= A → C

Usually, the schema designer will only specify the functional
dependencies that are semantically obvious.

37

Armstrong’s Axioms

These are the inference rules for functional dependencies

➢ Rule 1 (reflexivity)

➢ if β ⊆ α, then α → β

➢ Rule 2 (augmentation)

➢ if α → β, then γ α → γ β

➢ Rule 3 (transitivity)

➢ if α → β, and β → γ, then α → γ

➢ Where α, β, γ are all (nonempty) sets of attributes

The above are the primary rules/axioms from Armstrong’s Axioms (1974)

38

Practice

R = (A, B, C, G, H, I)
F = { A → B, A → C, CG → H, CG → I, B → H }

These FDs can be inferred/deduced.

A → H

AG → I

CG → HI

39

(Solutions)

R = (A, B, C, G, H, I)

F = { A → B, A → C, CG → H, CG → I, B → H }

A → H

by transitivity from A → B and B → H

AG → I

by augmenting A → C to get AG → CG

then transitivity with given CG → I

CG → HI

by augmenting CG → I to infer CG → CGI,

then augmenting CG → H to infer CGI → HI,

followed up by a transitivity

40

Armstrong’s Axioms (Cont.)

Additional Rules we inferred from Armstrong’s axioms.

➢ Rule 4 (additivity):

➢ If α → β holds and α → γ holds, then α → β γ holds

➢ Rule 5 (projectivity):

➢ If α → β γ holds, then α → β holds and α → γ holds

➢ Rule 6 (pseudo-transitivity):

➢ If α → β holds and γ β → δ holds, then α γ → δ holds

41

Proving Secondary Rules

Let’s try prove rule 5: projectivity

{X → Y Z} |= X → Y

42

Cheat Sheet

F1 (Reflexivity) If X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

(Solution)

Let’s try prove rule 5: projectivity

{X → Y Z} |= X → Y

Step 1. X → Y Z (Given)

Step 2. YZ → Y (Reflexivity)

Step 3. X → Y (Transitivity of 1 and 2)

43

Cheat Sheet

F1 (Reflexivity) If X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

Proving Secondary Rules

Let’s prove rule 6: Pseudo-transitivity

{X → Y , Y Z → W} |= XZ → W

44

Cheat Sheet

F1 (Reflexivity) If X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

(Solution)

Let’s prove rule 6: Pseudo-transitivity

{X → Y , Y Z → W} |= XZ → W

Step 1. X → Y (Given)

Step 2. XZ → YZ (Augmentation of 1)

Step 3. YZ → W (Given)

Step 4. XZ → W (Transitivity, from 2 and 3)

45

Cheat Sheet

F1 (Reflexivity) If X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

Proving Secondary Rules

Let’s prove rule 4: Additivity

{X→ Y , X → Z} |= X → Y Z

46

Cheat Sheet

F1 (Reflexivity) If X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

(Solution)

Let’s prove rule 4: Additivity

{X→ Y , X → Z} |= X → Y Z

Step 1. X→ Y (Given)

Step 2 . XX → XY (Augmentation of 1); that is, X → XY

Step 3. X → Z (Given)

Step 4. X Y → Y Z (Augmentation of 2)

Step 5. X → Y Z (Transitivity, from 2 and 4)

47

Cheat Sheet

F1 (Reflexivity) If X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

Practice FD Inference

Given F = {A → B, A → C, BC → D}
Prove A → D:

48

Cheat Sheet

F1 (Reflexivity) If X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

F4 (Additivity) {X→ Y , X → Z} |= X → Y Z.

F5 (Projectivity) {X → Y Z} |= X → Y .

F6 (Pseudo-transitivity) {X → Y , Y Z → W} |= XZ → W.

(Solution)

Given F = {A → B, A → C, BC → D}
Prove A → D:

Step 1. A → B (Given)

Step 2. A → C (Given)

Step 3. A → BC (Additivity, from 1 and
2)

Step 4. BC → D (Given)

Step 5. A → D (Transitivity, from 3 and
4)

49

Cheat Sheet

F1 (Reflexivity) If X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

F4 (Additivity) {X→ Y , X → Z} |= X → Y Z.

F5 (Projectivity) {X → Y Z} |= X → Y .

F6 (Pseudo-transitivity) {X → Y , Y Z → W}

|= XZ → W.

Closure of F

Definition. the set of all dependencies that can be inferred from F
is called the closure of F.

F+ denotes the closure of F.

F+ includes dependencies in F.

Note: We typically reserve F to denote the set of functional
dependencies that are specified on relation schema R.

50

The Procedure for Computing F+

To compute the closure of a set of functional dependencies F:

 F+ = F

repeat

 for each functional dependency f in F+

 apply reflexivity and augmentation rules on f

 add the resulting functional dependencies to F+

 for each pair of functional dependencies f1 and f2 in F+

 if f1 and f2 can be combined using transitivity

 then add the resulting functional dependency to F+

until F+ does not change any further

51

The Procedure for Computing F+

F = { X → Y, Y → Z}

F+ = {XY → X, XY → Y, XY → Z, XZ → X, XZ → Y,
XZ → Z, XYZ → X, XYZ → Y, XYZ → Z, XY → XY,
XY → YZ, XY → XZ, …}

52

Checking Membership by F+

Given F = { X → Y, Y → Z}

Question: Can X → Z be inferred or derived from the FDs in F?

How to do it? Check X → Z by computing F+?

53

Checking Membership by F+

Given F = { X → Y, Y → Z}

Question: Can X → Z be inferred or derived from the FDs in F?

How to do it? Check X → Z by computing F+?

F+ = {XY → X, XY → Y, XY → Z, XZ → X, XZ → Y,

XZ → Z, XYZ → X, XYZ → Y, XYZ → Z, XY → XY,

XY → YZ, XY → XZ, … , X → Z , … }

Oh yes… X → Z is in the closure of F.

54

Checking Membership by F+

Given F = { X → Y, Y → Z}

Question: Can X → Z be inferred or derived from the FDs in F?

How to do it? Check X → Z by computing F+?

F+ = {XY → X, XY → Y, XY → Z, XZ → X, XZ → Y,
XZ → Z, XYZ → X, XYZ → Y, XYZ → Z, XY → XY,
XY → YZ, XY → XZ, … , X → Z , … }

Oh yes… X → Z is in the closure of F.

Problem: In real life, it is impossible to specify all possible functional
dependencies for a given situation. The size of F+ is always
exponential size w.r.t |F|.

55

Closure of Attributes

Given F = { X → Y, Y → Z}

Question: How else to check if X → Z without computing F+ ?

Definition: Given a set of attributes α, define the closure of α under F
(denoted by α+) as the set of attributes that are functionally determined
by α under F.

Realistically:
Narrow our attention to X, which is smaller than F.
Compute X+ instead of F+
Then check if Z is covered by X+

X+ is the largest set of attributes functionally determined by X.

56

Closure of Attribute Sets

Pseudocode to the closure of α under F

 result := a;
 while (changes to result) do
 for each β → γ in F do
 begin
 if β ⊆ result then result := result ∪ γ
 end

When no additional changes to result is possible, the final value of variable
result is α+

57

Algorithm to Compute X+

An algorithm for you to follow step by step

X+ := X;
change := true;
while change do
 begin
 change := false;
 for each FD W → Z in F do
 begin
 if (W ⊆ X+) and (Z − X+ ≠ ∅) then do
 begin
 X+ := X+ ∪ Z;
 change := true;
 end
 end
 end

58

Exercise

F = { A → B, BC → D, A → C }

Practice: Compute A+

59

Cheat Sheet:

X+ := X;
change := true;
while change do
 begin
 change := false;
 for each FD W → Z in F do
 begin
 if (W ⊆ X+) and (Z − X+ ≠ ∅)
 then do
 begin
 X+ := X+ ∪ Z;
 change := true;
 end
 end
 end

(Solution)

F = { A → B, BC → D, A → C }

Task: Compute {A}+

1st scan of F:

X+ := {A}
X+ := {A, B}
X+ := {A, B, C}

2nd scan of F:

X+ := {A, B, C, D }

3rd scan of F: no change,
therefore, the algorithm terminates.

{A}+ := {A, B, C, D }

60

Cheat Sheet:

X+ := X;
change := true;
while change do
 begin
 change := false;
 for each FD W → Z in F do
 begin
 if (W ⊆ X+) and (Z − X+ ≠ ∅)
 then do
 begin
 X+ := X+ ∪ Z;
 change := true;
 end
 end
 end

Recall of Attribute Set Closure

R = (A, B, C, G, H, I)

F = {A → B, A → C, CG → H, CG → I, B → H}

We know (AG)+ = ABCGHI

Observation: could AG be a candidate key?
Is AG a super key?

Does AG → R? => Is (AG) + = R?

Is any subset of AG a super key?

Does A → R? => Is (A) + = R?

Does G → R? => Is (G) + = R?

61

Functional Dependencies (Cont.)

K is a super key for relation schema R if and only if K → R

K is a candidate key for R if and only if

➢ K → R, and

➢ for no α ⊂ K, α → R

62

Answer

R = (A, B, C, G, H, I)

F = {A → B, A → C, CG → H, CG → I, B → H}

We know (AG)+ = ABCGHI

Observation: could AG be a candidate key?
Is AG a super key?

Does AG → R? => Is (AG) + = R? Yes, so AG is a super key

Is any subset of AG a super key?

Does A → R? => Is (A) + = R? No

Does G → R? => Is (G) + = R? No

So AG is a candidate key

63

Procedurally Determine Keys

How to compute a candidate key of a relation R
based on the FD’s belonging to R

Algorithm:

➢ Step 1 : Assign a super-key of R in F to X.

➢ Step 2 : Iteratively remove attributes from X while retaining the property
X+ = R till no reduction on X is possible.

➢ The remaining X is a key.

Let’s try an example

64

Practice

Given:
R = {A, B, C, D}
F = { A → B, BC → D, A → C }

65

Step 1 : Assign a super-key of R in F to X.

Step 2 : Iteratively remove attributes from X while retaining the property X+

= R till no reduction on X is possible.

The remaining X is a key.

(Solution)

Given:
R = {A, B, C, D}
F = { A → B, BC → D, A → C }

Let X = {A, B, C} ({A, B, C, D} is also a super
key)

A cannot be removed because {BC}+ = {B, C,
D} ≠ R

B can be removed because {AC}+ = {A, B, C,
D} = R

We remove B from X and update X to be { A, C}

C can be further removed because {A}+ = {A, B,
C, D}

We remove C from X and update X to be { A}

66

Step 1 : Assign a super-key of R in F to X.

Step 2 : Iteratively remove attributes from

X while retaining the property X+ = R till no

reduction on X is possible.

The remaining X is a key.

Compute all Candidate Keys

Given a relational schema R and a set of functional

dependencies F on R, find all the possible ways we can identify a

row.

Note: we know how to compute one candidate key already.

67

Compute All the Candidate Keys

Given a relational schema R and a set F of functional dependencies on R, the algorithm to compute all the
candidate keys is as follows:

T := ∅

Main:

﻿ X := S where S is a super key which does not contain any candidate key in T

﻿ remove := true

﻿ While remove do

﻿ For each attribute A ∈ X

﻿ Compute {X-A}+ with respect to F

﻿ If {X-A}+ contains all attributes of R then

﻿ X := X – {A}

﻿ Else

﻿ remove := false

﻿ T :=T ∪ X

Repeat Main until no available S can be found. Finally, T contains all the candidate keys. 68

Compute all Candidate Keys

Given relation R(A, B, C, D, E)

with set of FDs {A → B, BC → A, D → E}

Find all the candidate keys for relation R

69

(Solution)

Step 1:

Let X := {A, B, C, D}

Step 2:

Try to remove A

{B, C, D}+ = {A, B, C, D, E}

Thus X := {B, C, D}

70

Steps 3,4,5:

Attempts to remove B, C, D

separately

{C, D}+ = {C, D, E}

{B, D}+ = {B, D, E}

{B, C}+ = {A, B, C}

None can be removed

So {B, C, D} is a candidate key

and add to T

(Solution)

Step 6:
Find another super key
Let X := {A, C, D}

Step 7,8,9:
Attempts to remove A, C, D separately

{C, D}+ = {C, D, E}

{A, D}+ = {A, B, D, E}

{A, C}+ = {A, B, C}

None cannot be removed
So, {A, C, D} is another candidate key and add to T

71

(Solution)

Step 10:
Cannot find any other super keys,

Conclusion: candidate keys are {B, C, D} and {A, C, D}

72

Lecture Learning Outcomes

Take aways

➢ Functional Dependencies

➢ Armstrong’s axioms

➢ Given a FD, check if the FD can be derived from a given set of FD

➢ How to compute one candidate key

➢ How to compute all candidate keys

73

	Slide 1
	Slide 2: How good is your DB design?
	Slide 3: How good is your DB design?
	Slide 4: Example of Redundancy
	Slide 5: Update Anomalies
	Slide 6: Update Anomalies
	Slide 7: Devise a Theory for what is Good
	Slide 8: Attribute Values can be Related
	Slide 9: Functional Dependencies
	Slide 10: Functional Dependencies
	Slide 11: Functional Dependencies
	Slide 12: Functional Dependencies: Test
	Slide 13: Functional Dependencies: Test
	Slide 14: Functional Dependencies: Test
	Slide 15: Functional Dependencies: Test
	Slide 16: Functional Dependencies: Test
	Slide 17: Functional Dependencies: Test
	Slide 18: Functional Dependencies: Test
	Slide 19: Functional Dependencies: Test
	Slide 20: Functional Dependencies: Test
	Slide 21: FD: relation between two sets
	Slide 22: Functional Dependencies
	Slide 23: Constraint on all Relations
	Slide 24: Legal Extensions of R
	Slide 25: Notation and Terminology
	Slide 26: Functional Dependencies
	Slide 27: Functional Dependencies
	Slide 28: Functional Dependencies
	Slide 29: Functional Dependencies
	Slide 30: Designing FDs
	Slide 31: Designing FDs
	Slide 32: Which Columns are Related?
	Slide 33: Final Notations
	Slide 34: Dependency Diagram
	Slide 35: Dependency Diagram (Cont.)
	Slide 36: Inferring other FDs
	Slide 37: Inferring Other FDs
	Slide 38: Armstrong’s Axioms
	Slide 39: Practice
	Slide 40: (Solutions)
	Slide 41: Armstrong’s Axioms (Cont.)
	Slide 42: Proving Secondary Rules
	Slide 43: (Solution)
	Slide 44: Proving Secondary Rules
	Slide 45: (Solution)
	Slide 46: Proving Secondary Rules
	Slide 47: (Solution)
	Slide 48: Practice FD Inference
	Slide 49: (Solution)
	Slide 50: Closure of F
	Slide 51: The Procedure for Computing F+
	Slide 52: The Procedure for Computing F+
	Slide 53: Checking Membership by F+
	Slide 54: Checking Membership by F+
	Slide 55: Checking Membership by F+
	Slide 56: Closure of Attributes
	Slide 57: Closure of Attribute Sets
	Slide 58: Algorithm to Compute X+
	Slide 59: Exercise
	Slide 60: (Solution)
	Slide 61: Recall of Attribute Set Closure
	Slide 62: Functional Dependencies (Cont.)
	Slide 63: Answer
	Slide 64: Procedurally Determine Keys
	Slide 65: Practice
	Slide 66: (Solution)
	Slide 67: Compute all Candidate Keys
	Slide 68: Compute All the Candidate Keys
	Slide 69: Compute all Candidate Keys
	Slide 70: (Solution)
	Slide 71: (Solution)
	Slide 72: (Solution)
	Slide 73: Lecture Learning Outcomes

