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How good is your DB design?

➢ Conceptual Level

➢ How do users interpret the relation schemas and the meaning of 

their attributes?

➢ Physical Level

➢ How the tuples in a base relation are stored and updated?
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How good is your DB design?

➢ Information Preservation

➢ Does your design correctly capture all attributes, entities and relations?

➢ Minimum Redundancy

➢ Does your design minimize redundant storage of the same 

information and reduce the need for multiple updates?
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Example of Redundancy 

Suppose we have a table inst_dept which contains information 
for both instructor and department.

Result is possible repetition of information, which leads to update 
anomalies.
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Update Anomalies

Redundancy in a database means storing a piece of data more 

than once.

Redundancy is often useful for efficiency and semantic reasons, 

but creates the potential for consistency problems.

A poor redundancy control may cause update anomalies.
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Update Anomalies

Consider the previous example relation.

➢ Insertion Anomalies

➢ To insert a new employee, we must include the correct values for 

his/her department or NULLs.

➢ How to insert a department with no employees? (set ID to null 

violates primary key constraint if ID is the primary key)

➢ Deletion Anomalies

➢ What if we delete the last employee in a department? (lose the 

information of a department)

➢ Modification Anomalies

➢ What if we change the budget of a department? (have to maintain 

multiple duplication of the same value) 
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Devise a Theory for what is Good

We want to do two things:

1. Decide whether a particular relation R is in “good” form.

2. If a relation R is not in “good” form, decompose it into a set of relations {R1, R2, ..., Rn} 

such that

➢ each relation is in good form 

➢ the decomposition is a lossless

Our theory/properties are defined based on functional 

dependencies.
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Attribute Values can be Related
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Functional Dependencies

A functional dependency describes a relation between attributes

Whenever any two tuples t1 and t2 of r agree on one attribute α, 

they also agree on another attribute β:

  t1[α] = t2 [α]   ⇒   t1[β ]  = t2 [β ] 

This relation is denoted α → β.
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Functional Dependencies

ID → Name, Depart_name → Building

Describes the semantics or meaning of the attributes
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Functional Dependencies

The functional dependency 

X → Y is true (holds)

if and only if

  t1[X] = t2 [X]   ⇒   t1[Y]  = t2 [Y] 

in relation R
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ID Name Code Grade

100 J 3550 A

200 X 3550 B

100 J 4540 B

100 J 4550 A

➢ Example: R = {ID, Name, Code, Grade}

➢ ID → Name (OK)

➢ ID → Grade (not OK),                  ID → Code  (not OK)

➢ ID, Name → Grade (not OK),      ID, Code → Grade (OK)

➢ ID, Name → Name (trivial)



Functional Dependencies: Test

Let’s see if you understand (Test1)

  F: X → Y

   X   Y
---------

   a    b

   a    ?
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Functional Dependencies: Test

Let’s see if you understand (Test1)

  F: X → Y

   X   Y
---------

   a    b

   a    ?

? must be b
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Functional Dependencies: Test

Let’s see if you understand (Test2)

  F: X → Y

   X   Y
---------

   a    b

   ?    b
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Functional Dependencies: Test

Let’s see if you understand (Test2)

  F: X → Y

   X   Y
---------

   a    b

   ?    b

? can be any value
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Functional Dependencies: Test

Let’s see if you understand (Test3)

  F: X → Y

   X   Y
---------

   a    b

   c    b  ?  

   is it okay?
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Functional Dependencies: Test

Let’s see if you understand (Test3)

  F: X → Y

   X   Y
---------

   a    b

   c    b  ?  

   Yes, it doesn’t violates X → Y
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Functional Dependencies: Test

Let’s see if you understand (Test4,5)

X, Y → X ?

X → X ?
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Functional Dependencies: Test

Let’s see if you understand (Test4,5)

X, Y → X ? Yes

X → X ? Yes

Note: Functional dependencies like these are trivial
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Functional Dependencies: Test

Let’s see if you understand (Test6)

Consider R (A , B) with the following instance r.

On this instance, A → B does NOT hold
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1 4

1     5

3     7



FD: relation between two sets

A functional dependency is a relation between two sets of attributes.

I.e., the value for a set of attributes determines the value for another 
set of attributes.

A functional dependency describes the relation between two sets of 
attributes from a relation. 

Examples:

XY → WZ

XW → Z

Z → XQ
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Functional Dependencies

A functional dependency is a constraint between two sets of 

attributes for all its relation instances. 

A constraint means a constraint across all it's relation instances 

(extensions), that it must hold for all relation instances.

F is a set of FD specified on relation R. It must hold on all relation 

instances.
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Constraint on all Relations 

Example: course →  course_code in Students
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STUDENTS

id course course_code major prof

1 Database 353 Comp Sci Smith

2 Chem101 427 Chemistry Turner

3 Database 353 Comp Sci Smith

STUDENTS

id course course_code major prof

1 Database 353 Comp Sci Yu

4 Agile Dev 821 Comp Sci Turner

…

5 Compiler 237 Comp Sci Clark



Legal Extensions of R

Relation extensions r(R) that satisfy the functional dependency constraints 

are called legal relation states (or legal extensions) of R. 

Let course →  course_code be the only FD for Students
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STUDENTS

id course course_code major prof

1 Database 353 Comp Sci Smith

2 Chem101 427 Chemistry Turner

3 Database 353 Comp Sci Clark

STUDENTS

id course course_code major prof

1 Database 353 Comp Sci Yu

4 Agile Dev 821 Comp Sci Turner

5 Compiler 237 Comp Sci Clark

Also legal

Legal



Notation and Terminology

Let X → Y be a functional dependency on relation R

We say that
➢ X → Y    holds    on R

We say that
➢ X    functionally determines    Y
➢ Y is    functionally dependent   on X

We say that
➢ X is   determinant    of the dependency 
➢ Y is   dependent   of the dependency
OR 
➢ X is   left-hand side    of the dependency 
➢ Y is   right-hand side   of the dependency
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Functional Dependencies

A WORKS_ON relation 

➢ Ssn = social security number

➢ Pnumber = project number 

Question:
What might be the FDs of
WORKS_ON?

Ssn, Pnumber → Hours
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Functional Dependencies

An EMPLOYEE relation 

➢ SSn = social security number

➢ Bdate = birthday

➢ Dnumer = department number

Question: What might be the FDs of EMPLOYEE?

Ssn → Ename, Address, Bdate
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Functional Dependencies

Example: R = {ID, Name, Code, Grade}

r(R) Instance A r(R) Instance B
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ID Name Code Grade

100 J 3550 A

200 X 3550 B

100 J 4540 B

100 J 4550 A

ID Name Code Grade

100 J 3550 A

200 X 3550 B

100 J 4540 A

100 J 4550 A

➢ ID => Name (OK),

➢ ID => Grade (not OK),                  

➢ ID => Code  (not OK),

➢ ID, Name => Grade (not OK), 

➢ ID, Code => Grade (OK).

➢ ID => Name (OK)

➢ ID => Grade (OK),                  

➢ ID => Code  (not OK)

➢ ID, Name => Grade (OK),     

➢ ID, Code => Grade (OK).

Important: You can’t infer FD’s from a relation’s instances



Functional Dependencies

Functional dependencies exist to:

➢ specify the semantics between attributes

➢ semantics of a relation should be kept across all its extensions

➢ specify constraints on a relational schema

➢ this semantics is not captured by ER
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Designing FDs

FD cannot be inferred automatically from a given relation 
extension r.

So given a relation, where do its FDs come from? Where do we 
find it?

Deciding the FDs of a table is part of a design decision.

➢ Defined explicitly by someone who knows the semantics of the attributes of R. 

30



Designing FDs

Assume we need to define the FDs of this relation

We need to know the semantics of the columns.

Could each ID have a unique phone number and major?
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STUDENTS

ID Course Phone Major Prof Grade



Which Columns are Related?

Every ID has a unique phone number and major
➢ We can say {ID} →{Phone , Major}

Other relations between columns:
➢ Every course has a unique professor {Course} → {Prof}

➢ Every ID and course has a unique grade {ID , Course} → {Grade}

Whenever the semantics of two sets of attributes in R indicate 
that a functional dependency should hold, we specify the 
dependency as a constraint. 
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STUDENTS

ID Course Phone Major Prof Grade



Final Notations

We may denote the attributes sets with/without curly brackets
➢ With curly brackets, attributes are comma separated

➢ {X,Y} = XY

The order of the attribute sets doesn’t matter
➢ ZY = YZ  

➢ {Z,Y} = {Y, Z}
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Dependency Diagram

Each horizontal line represents a FD
➢ Left-hand side attr. connected by vertical lines to the line, 

➢ Right-hand side attr. connected by vertical lines with arrows 

➢ Arrow pointing toward the attributes

Dependency diagram from previous example.
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Id Course Phone Major Prof Grade



Dependency Diagram (Cont.)

Some more examples of dependency diagrams.
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Inferring other FDs

A → B and  B → C, what do we know about A → C?

Given A → B and  B → C on relation R,

We know A → C holds on R, given A determines B, and B 
determines C.
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Inferring Other FDs

It’s true that given a set F of functional dependencies, there are other 
functional dependencies that are logically implied by F.

F |= X→ Y

Denotes that set of FDs F infers X → Y if all relation instances 
satisfying F also satisfies X → Y . 

Example:
 F = A → B, B → C,
 F |= A → C

Usually, the schema designer will only specify the functional 
dependencies that are semantically obvious.
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Armstrong’s Axioms

These are the inference rules for functional dependencies 

➢ Rule 1 (reflexivity)

➢ if β ⊆ α, then α → β

➢ Rule 2 (augmentation)

➢ if α → β, then γ α →  γ β

➢ Rule 3 (transitivity)

➢ if α → β, and β → γ, then α →  γ   

➢ Where α, β, γ are all (nonempty) sets of attributes

The above are the primary rules/axioms from Armstrong’s Axioms (1974)

38



Practice

R = (A, B, C, G, H, I)
F = { A → B, A → C, CG → H, CG → I, B → H }

These FDs can be inferred/deduced.

A → H        

AG → I       

CG → HI

39



(Solutions)

R = (A, B, C, G, H, I)

F = { A → B, A → C, CG → H, CG → I, B → H }

A → H        

by transitivity from A → B and B → H

AG → I       

by augmenting A → C to get AG → CG 

then transitivity with given CG → I 

CG → HI     

by augmenting CG → I to infer CG → CGI, 

then augmenting CG → H to infer CGI → HI, 

followed up by a transitivity
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Armstrong’s Axioms (Cont.)

Additional Rules we inferred from Armstrong’s axioms.

➢ Rule 4 (additivity): 

➢ If α → β holds and α → γ holds,  then α → β γ holds 

➢ Rule 5 (projectivity): 

➢ If α → β γ holds, then α → β  holds and α → γ holds 

➢ Rule 6 (pseudo-transitivity):

➢ If α → β  holds and γ β → δ holds, then α γ → δ holds
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Proving Secondary Rules

Let’s try prove rule 5: projectivity

{X → Y Z} |= X → Y

42

Cheat Sheet

F1 (Reflexivity) If  X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.



(Solution)

Let’s try prove rule 5: projectivity

{X → Y Z} |= X → Y

Step 1. X → Y Z (Given) 

Step 2. YZ → Y  (Reflexivity) 

Step 3. X → Y (Transitivity of 1 and 2) 
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Cheat Sheet

F1 (Reflexivity) If  X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.



Proving Secondary Rules

Let’s prove rule 6: Pseudo-transitivity

{X → Y , Y Z → W} |= XZ → W
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Cheat Sheet

F1 (Reflexivity) If  X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.



(Solution)

Let’s prove rule 6: Pseudo-transitivity

{X → Y , Y Z → W} |= XZ → W

Step 1. X → Y (Given) 

Step 2. XZ → YZ (Augmentation of 1) 

Step 3. YZ → W (Given) 

Step 4. XZ → W (Transitivity, from 2 and 3) 
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Cheat Sheet

F1 (Reflexivity) If  X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.



Proving Secondary Rules

Let’s prove rule 4: Additivity

{X→ Y , X → Z} |= X → Y Z

   

46

Cheat Sheet

F1 (Reflexivity) If  X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.



(Solution)

Let’s prove rule 4: Additivity

{X→ Y , X → Z} |= X → Y Z

Step 1. X→ Y (Given)

Step 2 . XX → XY (Augmentation of 1); that is, X → XY

Step 3. X → Z (Given)

Step 4. X Y → Y Z  (Augmentation of 2)

Step 5. X → Y Z  (Transitivity, from 2 and 4) 
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Cheat Sheet

F1 (Reflexivity) If  X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.



Practice FD Inference

Given F = {A → B, A → C, BC → D}
Prove A → D:
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Cheat Sheet

F1 (Reflexivity) If  X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

F4 (Additivity) {X→ Y , X → Z} |= X → Y Z.

F5 (Projectivity) {X → Y Z} |= X → Y .

F6 (Pseudo-transitivity) {X → Y , Y Z → W} |= XZ → W.



(Solution)

Given F = {A → B, A → C, BC → D}
Prove A → D:

Step 1. A → B (Given)

Step 2. A → C (Given)

Step 3. A → BC (Additivity, from 1 and 
2)

Step 4. BC → D (Given)

Step 5. A → D (Transitivity, from 3 and 
4)
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Cheat Sheet

F1 (Reflexivity) If  X ⊇ Y then X →Y .

F2 (Augmentation) {X → Y } |= XZ → Y Z.

F3 (Transitivity) {X → Y , Y → Z} |= X → Z.

F4 (Additivity) {X→ Y , X → Z} |= X → Y Z.

F5 (Projectivity) {X → Y Z} |= X → Y .

F6 (Pseudo-transitivity) {X → Y , Y Z → W} 

|= XZ → W.



Closure of F

Definition. the set of all dependencies that can be inferred from F 
is called the closure of F.

F+ denotes the closure of F.

F+ includes dependencies in F.

Note: We typically reserve F to denote the set of functional 
dependencies that are specified on relation schema R. 
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The Procedure for Computing F+

To compute the closure of a set of functional dependencies F:

 F+ = F

repeat

 for each functional dependency f in F+

        apply reflexivity and augmentation rules on f

        add the resulting functional dependencies to F+

 for each pair of functional dependencies f1 and f2 in F+

        if f1 and f2 can be combined using transitivity

   then add the resulting functional dependency to F+

until F+ does not change any further

51



The Procedure for Computing F+

F = { X → Y, Y → Z}

F+ = {XY → X, XY → Y, XY → Z, XZ → X, XZ → Y, 
XZ → Z,  XYZ → X, XYZ → Y, XYZ → Z, XY → XY, 
XY → YZ, XY → XZ, …}
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Checking Membership by F+

Given F = { X → Y, Y → Z}

Question: Can X → Z be inferred or derived from the FDs in F?

How to do it? Check X → Z by computing F+?
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Checking Membership by F+

Given F = { X → Y, Y → Z}

Question: Can X → Z be inferred or derived from the FDs in F?

How to do it? Check X → Z by computing F+?

F+ = {XY → X, XY → Y, XY → Z, XZ → X, XZ → Y, 

XZ → Z,  XYZ → X, XYZ → Y, XYZ → Z, XY → XY, 

XY → YZ, XY → XZ, … , X → Z , … }

Oh yes… X → Z  is in the closure of F.
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Checking Membership by F+

Given F = { X → Y, Y → Z}

Question: Can X → Z be inferred or derived from the FDs in F?

How to do it? Check X → Z by computing F+?

F+ = {XY → X, XY → Y, XY → Z, XZ → X, XZ → Y, 
XZ → Z,  XYZ → X, XYZ → Y, XYZ → Z, XY → XY, 
XY → YZ, XY → XZ, … , X → Z , … }

Oh yes… X → Z  is in the closure of F.

Problem: In real life, it is impossible to specify all possible functional 
dependencies for a given situation. The size of F+ is always 
exponential size w.r.t |F|. 
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Closure of Attributes

Given F = { X → Y, Y → Z}

Question: How else to check if X → Z without computing F+ ?

Definition: Given a set of attributes α, define the closure of α under F 
(denoted by α+) as the set of attributes that are functionally determined 
by α under F.

Realistically:
Narrow our attention to X, which is smaller than F.
Compute X+ instead of F+
Then check if Z is covered by X+

X+ is the largest set of attributes functionally determined by X. 
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Closure of Attribute Sets

Pseudocode to the closure of α under F

      result := a;
 while (changes to result) do
  for each β → γ in F do
   begin
    if β ⊆ result then result := result ∪ γ 
   end

When no additional changes to result is possible, the final value of variable 
result is α+
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Algorithm to Compute X+

An algorithm for you to follow step by step

X+ := X;
change := true;
while change do
 begin
 change := false;
 for each FD W → Z in F do
  begin
  if (W ⊆ X+) and (Z − X+ ≠ ∅) then do
   begin
   X+ := X+ ∪ Z;
   change := true;
   end
  end
 end
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Exercise

F = { A → B, BC → D, A → C }

Practice: Compute A+

59

Cheat Sheet: 

X+ := X;
change := true;
while change do
 begin
 change := false;
 for each FD W → Z in F do
     begin
     if (W ⊆ X+) and (Z − X+ ≠ ∅)
     then do
  begin
  X+ := X+ ∪ Z;
  change := true;
  end
     end
 end



(Solution)

F = { A → B, BC → D, A → C }

Task: Compute {A}+

1st scan of F: 

X+ := {A}
X+ := {A, B}
X+ := {A, B, C}

2nd scan of F:

X+ := {A, B, C, D }

3rd scan of F: no change, 
therefore, the algorithm terminates.

{A}+ := {A, B, C, D }

60

Cheat Sheet: 

X+ := X;
change := true;
while change do
 begin
 change := false;
 for each FD W → Z in F do
     begin
     if (W ⊆ X+) and (Z − X+ ≠ ∅)
     then do
  begin
  X+ := X+ ∪ Z;
  change := true;
  end
     end
 end



Recall of Attribute Set Closure

R = (A, B, C, G, H, I)

F = {A → B, A → C, CG → H, CG → I, B → H}

We know (AG)+ = ABCGHI

Observation: could AG be a candidate key?  
Is AG a super key?

Does AG → R? => Is (AG) + = R?

Is any subset of AG a super key?

Does A → R? => Is (A) + = R?

Does G → R? => Is (G) + = R?
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Functional Dependencies (Cont.)

K is a super key for relation schema R if and only if K → R

K is a candidate key for R if and only if 

➢ K → R, and

➢ for no α ⊂ K, α → R
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Answer

R = (A, B, C, G, H, I)

F = {A → B, A → C, CG → H, CG → I, B → H}

We know (AG)+ = ABCGHI

Observation: could AG be a candidate key?  
Is AG a super key?

Does AG → R? => Is (AG) + = R? Yes, so AG is a super key

Is any subset of AG a super key?

Does A → R? => Is (A) + = R? No

Does G → R? => Is (G) + = R? No

So AG is a candidate key
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Procedurally Determine Keys

How to compute a candidate key of a relation R
based on the FD’s belonging to R

Algorithm:

➢ Step 1 : Assign a super-key of R in F to X. 

➢ Step 2 : Iteratively remove attributes from X while retaining the property 
X+ = R till no reduction on X is possible. 

➢ The remaining X is a key.

Let’s try an example

64



Practice

Given:
R = {A, B, C, D}
F = { A → B, BC → D, A → C } 

65

Step 1 : Assign a super-key of R in F to X. 

Step 2 : Iteratively remove attributes from X while retaining the property X+ 

= R till no reduction on X is possible. 

The remaining X is a key.



(Solution)

Given:
R = {A, B, C, D}
F = { A → B, BC → D, A → C } 

Let X = {A, B, C} ({A, B, C, D} is also a super 
key)

A cannot be removed because {BC}+ = {B, C, 
D} ≠ R

B can be removed because {AC}+ = {A, B, C, 
D} = R 

We remove B from X and update X to be { A, C}

C can be further removed because {A}+ = {A, B, 
C, D}

We remove C from X  and update X to be { A}

66

Step 1 : Assign a super-key of R in F to X. 

Step 2 : Iteratively remove attributes from 

X while retaining the property X+ = R till no 

reduction on X is possible. 

The remaining X is a key.



Compute all Candidate Keys

Given a relational schema R and a set of functional 

dependencies F on R, find all the possible ways we can identify a 

row. 

Note: we know how to compute one candidate key already.
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Compute All the Candidate Keys

Given a relational schema R and a set F of functional dependencies on R, the algorithm to compute all the 
candidate keys is as follows:

T := ∅

Main:

﻿        X := S where S is a super key which does not contain any candidate key in T

﻿        remove := true

﻿        While remove do 

﻿                For each attribute A ∈ X

﻿                Compute {X-A}+ with respect to F

﻿                If {X-A}+ contains all attributes of R then 

﻿                        X := X – {A}

﻿  Else  

﻿                        remove := false

﻿        T :=T ∪ X

Repeat Main until no available S can be found. Finally, T contains all the candidate keys. 68



Compute all Candidate Keys

Given relation R(A, B, C, D, E) 

with set of FDs {A → B, BC → A, D → E}

Find all the candidate keys for relation R
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(Solution)

Step 1:

Let X := {A, B, C, D}

Step 2:

Try to remove A

{B, C, D}+ = {A, B, C, D, E}

Thus X := {B, C, D}

70

Steps 3,4,5:

Attempts to remove B, C, D 

separately

{C, D}+ = {C, D, E}

{B, D}+ = {B, D, E}

{B, C}+ = {A, B, C}

None can be removed

So {B, C, D} is a candidate key 

and add to T 



(Solution)

Step 6:
Find another super key
Let X := {A, C, D}

Step 7,8,9:
Attempts to remove A, C, D separately

{C, D}+ = {C, D, E}

{A, D}+ = {A, B, D, E}

{A, C}+ = {A, B, C}

None cannot be removed
So, {A, C, D} is another candidate key and add to T 
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(Solution)

Step 10:
Cannot find any other super keys,

Conclusion: candidate keys are {B, C, D}  and {A, C, D} 
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Lecture Learning Outcomes

Take aways

➢ Functional Dependencies

➢ Armstrong’s axioms

➢ Given a FD, check if the FD can be derived from a given set of FD

➢ How to compute one candidate key

➢ How to compute all candidate keys
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