
Storing Data: Disk,
File and Index

COMP9311 24T3; Week 7

By Zhengyi Yang, UNSW

Notice

❑ Marks and sample solutions for Assignment 1 have been
released

❑ Contact your marking tutor by the end of this week if you have
any problems with your marks

❑ The deadline for Project 1 has passed

❑ Assignment 2 will be released on Wednesday of this week.

❑ Assignment 2 deadline: 5pm Monday, Week 10 (11
November)

2

Functional Components of DBMS

3

Memory Hierarchy

➢ Primary Storage: main memory.

 fast access, expensive.

➢ Secondary storage: hard disk.

 slower access, less expensive.

➢ Tertiary storage: tapes, cd, etc.

 slowest access, cheapest.

4

Primary Storage

Main memory:

➢Fast access (10s to 100s of nanoseconds; 1

nanosecond = 10−9 seconds)

➢Generally too small (or too expensive) to store the

entire database

➢Volatile — contents of main memory are usually

lost if a power failure or system crash occurs.

5

Secondary Storage

Magnetic-disk

➢ Data is stored on spinning disk, and read/written

magnetically

➢ Primary medium for the long-term storage of data;

typically stores entire database.

➢ Data must be moved from disk to main

memory for access, and written back for

storage

➢ Much slower access than main memory

➢ Direct-access – possible to read data on disk in

any order.

➢ Survives power failures and system crashes

➢ Recall: disk failure can destroy data, but is rare

6

Latency Numbers Every Programmer
Should Know

7

Event Latency Scaled

1 CPU cycle 0.3 ns 1 s

Level 1 cache access 0.9 ns 3 s

Level 2 cache access 2.8 ns 9 s

Level 3 cache access 12.9 ns 43 s

Main memory access (DRAM, from CPU) 120 ns 6 min

Solid-state disk I/O (flash memory) 50-150 μs 2-6 days

Rotational disk I/O 1-10 ms 1-12 months

Internet: San Francisco to New York 40 ms 4 years

Internet: San Francisco to United Kingdom 81 ms 8 years

Internet: San Francisco to Australia 183 ms 19 years

TCP packet retransmit 1-3 s 105-317 years

CPU cost vs I/O cost

The implementation issues

➢ There are two main costs, CPU cost and I/O

(Input/Output) cost.

➢ CPU cost is to process data in main memory.

➢ I/O cost is to read/write data from/into disk.

➢ The dominating cost is I/O cost. For query processing in

DBMS, CPU cost can be ignored.

➢ The key issue is to reduce I/O cost.

➢ It is to reduce the number of I/O accesses.

➢ What is I/O cost?

➢ A block (or page) to be read/written from/into disk is

one I/O access (or one disk-block/page access).

8

OLD Magnetic Hard Disk

Characteristics of disks:

➢ collection of platters

➢ each platter = set of tracks

➢ each track = sequence of sectors

(blocks)

9

NOTE: Diagram simplifies the structure of actual disk drives

OLD Magnetic Hard Disk

➢ Data must be in memory for the

DBMS to operate on it.

➢ Smallest process unit is Block: If a

single record in a block is needed,

the entire block is transferred.

10

NOTE: Diagram simplifies the structure of actual disk drives

Disks

Access time includes:

➢ seek time (find the right track, e.g., 10msec)

➢ rotational delay (find the right sector, e.g., 5msec)

➢ transfer time (read/write block, e.g., 10μsec)

Random access is dominated by seek time and rotational delay

11

Disk Space Management

Improving Disk Access:

Use knowledge of data access patterns.

➢ E.g., two records often accessed together: put them in the same block (clustering)

➢ E.g., records scanned sequentially: place them in consecutive sectors on same track

Keep Track of Free Blocks

➢ Maintain a list of free blocks

➢ Use bitmap

Using OS File System to Manage Disk Space

➢ extend OS facilities, but not rely on the OS file system.

➢ (portability and scalability)

12

Storage Access

Data must be in memory for the DBMS to operate on it.

A database file is partitioned into fixed-length storage units called

blocks. Blocks are units of both storage allocation and data transfer.

Database system seeks to minimize the number of block transfers

between the disk and memory.

We can reduce the number of disk accesses by keeping as many

blocks as possible in main memory.

Buffer – portion of main memory available to store copies of disk

blocks.

Buffer manager – subsystem responsible for allocating buffer space

in main memory.

13

Disk

Main Memory

Disk-Block Access

➢ Smallest process unit is a block: If a

single record in a block is needed, the

entire block is transferred.

➢ Data are transferred between disk and

main memory in units of blocks.

➢ A relation is stored as a file on disk.

➢ A file is a sequence of blocks, where a

block is a fixed-length storage unit.

➢ A block is also called a page.

14

Buffer Management in a DBMS

15

Buffer Management

Manages traffic between disk and memory by maintaining a

buffer pool in main memory.

Buffer Pool

➢ collection of page slots (frames) which can be filled with

copies of disk block data.

➢ E.g., One page = 4096 Bytes = One block

16

Buffer Pool

17

Rel R

Block 0
Free

Rel R

Block 1
Free

Rel S

Block 6

Free
Rel S

Block 2
Free

Rel R

Block 5
Free

Free
Rel S

Block 4

Rel R

Block 9
Free Free

Page requests from DBMS upper levels

Buffer pool

DB on disk

Buffer Pool

The request_block operation

If block is already in buffer pool:
➢ no need to read it again

➢ use the copy there (unless write-locked)

If block is not in buffer pool yet:

➢ need to read from hard disk into a free frame

➢ if no free frames, need to remove block using a buffer replacement policy.

The release_block function indicates that block is no longer in use
➢ good candidate for removal / replacing

18

Buffer Pool

For each frame, we need to know:

➢ whether it is currently in use

➢ whether it has been modified since loading (dirty bit)

➢ how many transactions are currently using it (pin count)

➢ (maybe) time-stamp for most recent access

19

Buffer Pool

The release_block operation

➢ Decrement pin count for specified page.

➢ No real effect until replacement required.

The write_block operation

➢ Updates contents of page in pool

➢ Set dirty bit on

➢ Note: Doesn’t actually write to disk, until been replaced, or forced to commit

The force_block operation

➢ "commits" by writing to disk.

20

Buffer Replacement Policies

Least Recently Used (LRU)
➢ release the frame that has not been used for the longest period.

➢ intuitively appealing idea but can perform badly

Most Recently Used (MRU):
➢ release the frame used most recently

First in First Out (FIFO)
➢ need to maintain a queue of frames

➢ enter tail of queue when read in

Random

21

No one is guaranteed to be better than the others.

Quite dependent on applications.

Quiz 1:

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2;

Q3: read P3; Q4: read P1;

Q5: read P2;

22

P1 Q1

Buffer:

P1 Q1 P2 Q2 P3 Q3

P1 Q1 P2 Q2

P1 Q4 P2 Q2 P3 Q3

P1 Q4 P2 Q5 P3 Q3

Quiz 1:

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2;

Q3: read P3; Q4: read P1;

Q5: read P2;

Buffer:

23

P1 Q4 P2 Q5 P3 Q3

How about if Q6 read P4?

Using different buffer relacement policies

Quiz 1(LRU):

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2;

Q3: read P3; Q4: read P1;

Q5: read P2;

Buffer:

24

P1 Q4 P2 Q5 P3 Q3 P1 Q4 P2 Q5 P4 Q6

How about if Q6 read P4?

Using different buffer relacement policies

LRU: Least Recently Used

Quiz 1(MRU):

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2;

Q3: read P3; Q4: read P1;

Q5: read P2;

Buffer:

25

P1 Q4 P2 Q5 P3 Q3 P1 Q4 P4 Q6 P3 Q3

How about if Q6 read P4?

Using different buffer relacement policies

MRU: Most Recently Used

Quiz 1(FIFO):

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2;

Q3: read P3; Q4: read P1;

Q5: read P2;

Buffer:

26

P1 Q4 P2 Q5 P3 Q3 P4 Q6 P2 Q5 P3 Q3

How about if Q6 read P4?

Using different buffer relacement policies

FIFO: First In First Out

Quiz 1(Random):

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2;

Q3: read P3; Q4: read P1;

Q5: read P2;

Buffer:

27

P1 Q4 P2 Q5 P3 Q3

How about if Q6 read P4?

Using different buffer relacement policies

Random

Randomly choose one buffer to replace

Cache Performance

➢ Cache hits

➢ pages can be served by the cache

➢ Cache misses

➢ pages have to be retrieved from the disk

➢ Hit rate = #cache hits / (#cache hits + #cache misses)

28

Repeated Scan (LRU)

Cache Hit: 0

Attempts:

29

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 2

0

Page 3

Repeated Scan (LRU): Read Page 1

Cache Hit: 0

Attempts:

30

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 2

1

Page 3

Repeated Scan (LRU): Read Page 2

Cache Hit: 0

Attempts:

31

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1

Page 2

2

Page 3

Repeated Scan (LRU): Read Page 3

Cache Hit: 0

Attempts:

32

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 23

Page 3

Repeated Scan (LRU): Read Page 4

Cache Hit: 0

Attempts:

33

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 24 Page 3

Page 4

Repeated Scan (LRU): Read Page 5

Cache Hit: 0

Attempts:

34

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 25 Page 3

Page 4

Page 5

Repeated Scan (LRU): Read Page 6

Cache Hit: 0

Attempts:

35

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 26 Page 3

Page 4 Page 5

Page 6

Repeated Scan (LRU): Read Page 6

Cache Hit: 0

Attempts:

36

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 26 Page 3

Page 4 Page 5 Page 6

So far, unavoidable cache misses.
Now the fun begins

Repeated Scan (LRU): Read Page 7

Cache Hit: 0

Attempts:

37

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 27 Page 3

Page 4 Page 5 Page 6

Page 7

Repeated Scan (LRU): Reset to
beginning
Cache Hit: 0

Attempts:

38

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 27 Page 3

Page 4 Page 5 Page 6

Page 7

Repeated Scan (LRU): Read Page
1(again)
Cache Hit: 0

Attempts:

39

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 28 Page 3

Page 4 Page 5 Page 6

Page 7

Page 1

Repeated Scan (LRU): Read Page
2(again)
Cache Hit: 0

Attempts:

40

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

9 Page 3

Page 4 Page 5 Page 6

Page 7 Page 1

Page 2

Repeated Scan (LRU): Read Page
3(again)
Cache Hit: 0

Attempts:

41

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

10

Page 4 Page 5 Page 6

Page 7 Page 1 Page 2

Page 3

Repeated Scan (LRU): Read Page
4(again)
Cache Hit: 0

Attempts:

42

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

11

Page 5 Page 6

Page 7 Page 1 Page 2

Page 3

Page 4

Repeated Scan (LRU): Read Page 5,
cont
Cache Hit: 0

Attempts:

43

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

12

Page 6

Page 7 Page 1 Page 2

Page 3 Page 4

Page 5

Repeated Scan (LRU): Read Page 5,
cont
Cache Hit: 0

Attempts:

44

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

12 Page 7 Page 1 Page 2

Page 3 Page 4 Page 5

Get the picture? A worst-case scenario!
“Sequential Flooding”

Repeated Scan (MRU)

Cache Hit: 0

Attempts:

45

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 26 Page 3

Page 4 Page 5 Page 6

So far, navoidable cache misses.
Now the fun begins

Repeated Scan (MRU): Read Page 7

Cache Hit: 0

Attempts:

46

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 1 Page 27 Page 3

Page 4 Page 5 Page 6

Page 7

Repeated Scan (MRU): Reset

Cache Hit: 0

Attempts:

47

Frame

Frame

Frame Frame

Frame Frame

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

Page 27 Page 3

Page 4 Page 5 Page 7

Page 1

Repeated Scan (MRU): Read Page
1(again)
Cache Hit: 1

Attempts:

48

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

8 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1

Repeated Scan (MRU): Read Page
2(again)
Cache Hit: 2

Attempts:

49

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

9 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1

Repeated Scan (MRU): Read Page
3(again)
Cache Hit: 3

Attempts:

50

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

10 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1

Repeated Scan (MRU): Read Page
4(again)
Cache Hit: 4

Attempts:

51

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

11 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1

Repeated Scan (MRU): Read Page 5
(again)
Cache Hit: 5

Attempts:

52

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

12 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1

Compare LRU and MRU

When LRU and MRU both read Page 5 again

LRU:

Cache hit: 0

Attempts: 12

MRU:

Cache hit: 5

Attempts: 12

53

What if we keep reading the next page with MRU?

Repeated Scan (MRU): Read Page 6
(again)
Cache Hit: 5

Attempts:

54

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

13 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1

Page 6

Repeated Scan (MRU): Read Page 7
(again)
Cache Hit: 6

Attempts:

55

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

14 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 7

Page 1

Page 6

Repeated Scan (MRU): Reset (again)

Cache Hit: 6

Attempts:

56

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

14 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 7

Page 1

Page 6

Repeated Scan (MRU): Read Page
1(againx2)
Cache Hit: 7

Attempts:

57

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

15 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 7

Page 1

Page 6

Repeated Scan (MRU): Read Page
2(againx2)
Cache Hit: 8

Attempts:

58

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

16 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 7

Page 1

Page 6

Repeated Scan (MRU): Read Page
3(againx2)
Cache Hit: 9

Attempts:

59

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

17 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 7

Page 1

Page 6

Repeated Scan (MRU): Read Page
4(againx2)
Cache Hit: 10

Attempts:

60

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

18 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 7

Page 1

Page 6

Repeated Scan (MRU): Read Page
5(againx2)
Cache Hit: 10

Attempts:

61

Page 1 Page 2 Page 7Page 3 Page 4 Page 5 Page 6

Disk Space Manager

19 Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 5 Page 7

Page 1Frame

Frame

Frame Frame

Frame Frame

Page 2 Page 3

Page 4 Page 7

Page 1

Page 6

Page 5

Sequential Flooding

• LRU: We need to get in/out every page

• This is called Sequential Flooding

• MRU: performs the best in this case (repeated scan)

Again, no replacement policy is guaranteed to be superior to the

others. The choice often depends on specific applications and

their requirements.

62

New Trend: Disks are much faster

63

New Trend: Random vs Sequential Access

64

New Trend: Cheaper memory/disk

65

Overview: Block (Page) Formats

• Block: A block is a collection of slots.

• Slot: Each slot contains a record.

• Record: A record is identified by record_id: rid = <page id, slot number>.

Question: How are records physically stored on disk?

66

Record Formats

Records are stored within fixed-length blocks.

 • Fixed-length: each field has a fixed length as well as the number of fields.

 4 bytes 40 bytes 20 bytes 4 bytes

➢ Easy for intra-block space management.

➢ Possible waste of space.

 • Variable-length: some field is of variable length.

 4 bytes 10 bytes 8 bytes 4 bytes

➢ complicates intra-block space management

➢ does not waste (as much) space.

67

33357462 Neil Young Musician 0277

33357462 Neil Young Musician 0277

Fixed-Length

Encoding scheme for fixed-length records:
• length + offsets stored in header

Offsets

Record1

Record2

68

0 4 24 34 38

33357462 Neil Young Musician 0277

Record length

33357463 Tim Bradley Student 288

Fixed-Length Records

For fixed-length records, use record slots:

Insertion: occupy first free slot; packed more efficient.

Deletion: (a) need to compact, (b) mark with 0; unpacked more efficient.

69

Packed

Slot 1

Slot 2

Slot 3

. . .

Slot N

Free

N

Unpacked, Bitmap

Slot 1

Slot 2 Free

Slot 3

Slot 4 Free

Slot 5

Free

Slot M

1 1 0 1 0 1 M

M 5 4 3 2 1

Deletion in Packed Fixed-Length Records

Simple approach:

➢Store record 𝑖 starting from byte 𝑛 × (𝑖 – 1), where 𝑛 is the size of each record.

Consider two ways in

deleting record 𝑖:

➢move records 𝑖 + 1, . . . , 𝑛

to 𝑖, . . . , 𝑛 – 1

➢move record 𝑛 to i

70

Variable-Length

Encoding schemes where attributes are stored in order.

• Option1: Prefix each field by length

 xxxx Neil Young Musician xxxx

• Option 2: Terminate fields by delimiter

 33357462/Neil Young/Musician/0277/

• Option 3: Array of offsets

71

4 10 8 4

33357462 Neil Young Musician 0277

Variable-Length Records (1)

Another encoding scheme: attributes are not stored in order.

Fixed-length part followed by variable-length part.

➢ (b) The fixed-length part is to tell where we can find the data if it is a variable-length data field.

➢ (c) The variable-length part is to store the data.

Variable length attributes are represented by fixed size (offset, length) in the fixed-length part, and

keep attribute values in the variable-length part.

Fixed length attributes store attribute values in the fixed-length part.

Suppose there is a relation with 4 attributes: 2 fixed-length and 2 variable-length.

72

Variable
attribute

Variable
attribute

Fixed
attribute

Fixed
Attribute

Fixed-length part Variable-length part

Variable-Length Records (2)

Example: a tuple of (ID, Name, DeptName, Salary) where the first
three are variable length.

73

Offset = 20, length = 5

Variable
attribute

Variable
attribute

Fixed
attribute

Fixed
Attribute

Fixed-length part Variable-length part

Variable-Length Records

• How do we know
where each record
begins?

• What happens when
we add and delete
records?

Records metadata to
footer

74

Record Record

Record Record

Record

Footer

Slotted Page

• Introduce slot directory
in footer

➢ Pointer to free space

➢ Length + Pointer to
beginning of record
• Reverse order

• Record ID = location in
slot table

➢ From right

• Delete?
➢ E.g. 4th record on the page

75

Record Record

Record

Footer 18 12 32 24 16

Slot Directory

Free
Space
Pointer

Record Record

Slotted Page: Delete Record

• Delete record (Page 2,
Record 4): Set 4th slot
directory pointer to null

• Doesn’t affect pointers to other
records

76

Record Record

Record Record

Record

Footer 18 32 24 16

Slot Directory

Slotted Page: Insert Record

• Insert:

77

Record Record

Record Record

Record

Footer 18 32 24 16

Slot Directory

Slotted Page: Insert Record, Pt 2.

• Insert:

• Place record in free space
on page

78

Record Record

Record Record

Record

Footer 18 32 24 16

Slot Directory

Record

Slotted Page: Insert Record, Pt. 3

• Insert:

• Place record in free space
on page

• Create pointer/length pair in
next open slot in slot
directory

79

Record Record

Record Record

Record

Footer 18 42 32 24 16

Slot Directory

Record

Slotted Page: Insert Record, Pt. 4

• Insert:

• Place record in free space
on page

• Create pointer/length pair in
next open slot in slot
directory

• Update the free space
pointer

80

Record Record

Record Record

Record

Footer 18 42 32 24 16

Slot Directory

Record

Slotted Page: Insert Record, Pt. 5

• Insert:

• Place record in free space
on page

• Create pointer/length pair in
next open slot in slot
directory

• Update the free space
pointer

• Fragmentation?

81

Record Record

Record Record

Record

Footer 18 42 32 24 16

Slot Directory

Record

Variable-Length Records

Fragmented free space:

82

Fragmented Free Space

• Fragmentation?

• Reorganise data on page!

• When should I reorganise?

• We could reorganise on deletion

• Too costly

• Or wait until fragmentation blocks

insertion

• Modern RDBMS often do

compaction when system is idle

83

Record Record

Record Record

Record

Footer 18 42 32 24 16

Slot Directory
Record ID:
(Page 2, Record 4)

Notes

Reminder:

➢ The basic store unit on disk (in memory) is block (page)

➢ We will use page/block interchangeably.

➢ One page consists of multiple data records.

84

Indexes (basic concept)

Find all subcode belonging to the Law faculty (i.e., subcode =

LAWS)

Basic strategy = scan ..., test, select

Not efficient ...

An “idea” of an index on a file on the search key ‘subcode’ may

look like ...
LAND, {1}

ANAT, {2,19}

BENV, {...}

LAWS, {4,7, ...}

An index gives a short cut to the tuples that match the search key

An added cost for building/maintaining it

85

e.g., Data record in B+ Tree

86

e.g., B+ Tree

The leaves of the index contains a pointer to the data (single record)

You can build many such indexes on a file (different search keys) as the index is separated from the

data

The underlying file that contains the records may or not be sorted by key ... when unsorted, the arrows

(i.e., the pointers to the data) ‘cross’ each other, this is referred to as ‘unclustered’ index option (cf.

clustered, on the right)

87

e.g., Hash index

Index contains “buckets”, each bucket contains the

index data entries ...

A hash function works on the search key and produces

a number over the range of 0 ... M-1 (M is the number

of buckets).

e.g., h(K) = (a * K + b), where a, b are constant ... K is

the search key.

Fast to search (i.e., no traversing of tree nodes)

Best for equality searches, cannot support range

searches.

88

Indexes

Indexes provide efficient content-based access to tuples (i.e., through search keys).

Can build indexes on any (combination of) attributes.

Defining indexes (syntax):

CREATE INDEX index_name ON table_name (attr1, attr2, ...)

e.g., CREATE INDEX idx_address_phone ON address(phone);

CREATE INDEX also allows us to specify

an access method (USING btree, hash, rtree, or gist)

e.g., CREATE INDEX idx_address_phone ON address USING hash (phone);

89

Query Processing

mapping SQL to relational algebra (RA)

90

Query Optimisation Problem

An execution plan is a sequence of relational operations

All produce same result but have different costs.

91

Query Optimisation Problem

The query optimizer start with an RA expression, then

➢ generates a set of equivalent expressions

➢ generates possible execution plans for each

➢ estimates cost of each plan, chooses cheapest

The cost of evaluating a query is determined by:

➢ size of relations (database relations and temporary relations)

➢ access mechanisms (indexing, hashing, sorting, join algorithms)

➢ size/number of main memory buffers (and replacement strategy)

Analysis of costs involves estimating:

➢ the size of intermediate results

➢ then, based on this, cost of disk storage accesses (i.e., I/O - page read/write)

92

PostgreSQL Query Tuning: EXPLAIN

Select on indexed attribute

93

PostgreSQL Query Tuning: EXPLAIN

Select on non-indexed attribute

94

Key Learning Outcomes

- Buffer replacement policies: how does each policy work

- Record / Page management

- Index and query performance

Next Week: Transaction_Management

95

	Slide 1
	Slide 2: Notice
	Slide 3: Functional Components of DBMS
	Slide 4: Memory Hierarchy
	Slide 5: Primary Storage
	Slide 6: Secondary Storage
	Slide 7: Latency Numbers Every Programmer Should Know
	Slide 8: CPU cost vs I/O cost
	Slide 9: OLD Magnetic Hard Disk
	Slide 10: OLD Magnetic Hard Disk
	Slide 11: Disks
	Slide 12: Disk Space Management
	Slide 13: Storage Access
	Slide 14: Disk-Block Access
	Slide 15: Buffer Management in a DBMS
	Slide 16: Buffer Management
	Slide 17: Buffer Pool
	Slide 18: Buffer Pool
	Slide 19: Buffer Pool
	Slide 20: Buffer Pool
	Slide 21: Buffer Replacement Policies
	Slide 22: Quiz 1:
	Slide 23: Quiz 1:
	Slide 24: Quiz 1(LRU):
	Slide 25: Quiz 1(MRU):
	Slide 26: Quiz 1(FIFO):
	Slide 27: Quiz 1(Random):
	Slide 28: Cache Performance
	Slide 29: Repeated Scan (LRU)
	Slide 30: Repeated Scan (LRU): Read Page 1
	Slide 31: Repeated Scan (LRU): Read Page 2
	Slide 32: Repeated Scan (LRU): Read Page 3
	Slide 33: Repeated Scan (LRU): Read Page 4
	Slide 34: Repeated Scan (LRU): Read Page 5
	Slide 35: Repeated Scan (LRU): Read Page 6
	Slide 36: Repeated Scan (LRU): Read Page 6
	Slide 37: Repeated Scan (LRU): Read Page 7
	Slide 38: Repeated Scan (LRU): Reset to beginning
	Slide 39: Repeated Scan (LRU): Read Page 1(again)
	Slide 40: Repeated Scan (LRU): Read Page 2(again)
	Slide 41: Repeated Scan (LRU): Read Page 3(again)
	Slide 42: Repeated Scan (LRU): Read Page 4(again)
	Slide 43: Repeated Scan (LRU): Read Page 5, cont
	Slide 44: Repeated Scan (LRU): Read Page 5, cont
	Slide 45: Repeated Scan (MRU)
	Slide 46: Repeated Scan (MRU): Read Page 7
	Slide 47: Repeated Scan (MRU): Reset
	Slide 48: Repeated Scan (MRU): Read Page 1(again)
	Slide 49: Repeated Scan (MRU): Read Page 2(again)
	Slide 50: Repeated Scan (MRU): Read Page 3(again)
	Slide 51: Repeated Scan (MRU): Read Page 4(again)
	Slide 52: Repeated Scan (MRU): Read Page 5 (again)
	Slide 53: Compare LRU and MRU
	Slide 54: Repeated Scan (MRU): Read Page 6 (again)
	Slide 55: Repeated Scan (MRU): Read Page 7 (again)
	Slide 56: Repeated Scan (MRU): Reset (again)
	Slide 57: Repeated Scan (MRU): Read Page 1(againx2)
	Slide 58: Repeated Scan (MRU): Read Page 2(againx2)
	Slide 59: Repeated Scan (MRU): Read Page 3(againx2)
	Slide 60: Repeated Scan (MRU): Read Page 4(againx2)
	Slide 61: Repeated Scan (MRU): Read Page 5(againx2)
	Slide 62: Sequential Flooding
	Slide 63: New Trend: Disks are much faster
	Slide 64: New Trend: Random vs Sequential Access
	Slide 65: New Trend: Cheaper memory/disk
	Slide 66: Overview: Block (Page) Formats
	Slide 67: Record Formats
	Slide 68: Fixed-Length
	Slide 69: Fixed-Length Records
	Slide 70: Deletion in Packed Fixed-Length Records
	Slide 71: Variable-Length
	Slide 72: Variable-Length Records (1)
	Slide 73: Variable-Length Records (2)
	Slide 74: Variable-Length Records
	Slide 75: Slotted Page
	Slide 76: Slotted Page: Delete Record
	Slide 77: Slotted Page: Insert Record
	Slide 78: Slotted Page: Insert Record, Pt 2.
	Slide 79: Slotted Page: Insert Record, Pt. 3
	Slide 80: Slotted Page: Insert Record, Pt. 4
	Slide 81: Slotted Page: Insert Record, Pt. 5
	Slide 82: Variable-Length Records
	Slide 83: Fragmented Free Space
	Slide 84: Notes
	Slide 85: Indexes (basic concept)
	Slide 86: e.g., Data record in B+ Tree
	Slide 87: e.g., B+ Tree
	Slide 88: e.g., Hash index
	Slide 89: Indexes
	Slide 90: Query Processing
	Slide 91: Query Optimisation Problem
	Slide 92: Query Optimisation Problem
	Slide 93: PostgreSQL Query Tuning: EXPLAIN
	Slide 94: PostgreSQL Query Tuning: EXPLAIN
	Slide 95: Key Learning Outcomes

