Storing Data: Disk,
File and Index

COMP9311 24T3; Week 7
By Zhengyi Yang, UNSW

Notice

d Marks and sample solutions for Assignment 1 have been
released

1 Contact your marking tutor by the end of this week if you have
any problems with your marks

 The deadline for Project 1 has passed
 Assignment 2 will be released on Wednesday of this week.

 Assignment 2 deadline: 5pm Monday, Week 10 (11
November)

Functional Components of DBMS

User/Application Database Administrator

Security Control : Transaction Manager l

DML Stmt. DDL Command !
e e i , :
Query Processing DDL i
& Optimization Compiler | | /\
Query Plan }
Execution
Engine Query Processing | @
s Log

Buffer . e

| v ¥ %
. |Index/file/record| | Buffer | | Storage | | | Statistics Indexes
Management Management Manager Metadata User data

Memory Hierarchy

» Primary Storage: main memory.

fast access, expensive.

» Secondary storage: hard disk.

slower access, less expensive.

» Tertiary storage: tapes, cd, etc.

slowest access, cheapest.

Primary Storage

Main memory:

» Fast access (10s to 100s of nanoseconds; 1

nanosecond = 10~° seconds)

» Generally too small (or too expensive) to store the

entire database

» Volatile — contents of main memory are usually

lost if a power failure or system crash occurs.

CPU

Memory

Secondary Storage

Magnetic-disk

» Data is stored on spinning disk, and read/written
magnetically CPU

» Primary medium for the long-term storage of data;
typically stores entire database.

» Data must be moved from disk to main
memory for access, and written back for

storage
» Much slower access than main memory Disk

» Direct-access — possible to read data on disk in

Memory

any order.
» Survives power failures and system crashes
» Recall: disk failure can destroy data, but is rare

Latency Numbers Every Programmer
Should Know

Event Latency Scaled

1 CPU cycle 0.3 ns 1s
Level 1 cache access 0.9 ns 3s
Level 2 cache access 2.8 ns 9s
Level 3 cache access 12.9 ns 43 s
Main memory access (DRAM, from CPU) 120 ns 6 min
Solid-state disk 1/O (flash memory) 50-150 us 2-6 days
Rotational disk I/O 1-10 ms 1-12 months
Internet: San Francisco to New York 40 ms 4 years
Internet: San Francisco to United Kingdom 81 ms 8 years
Internet: San Francisco to Australia 183 ms 19 years

TCP packet retransmit 1-3 s 105-317 years

CPU cost vs I/O cost

The implementation issues

» There are two main costs, CPU cost and I/O
(Input/Output) cost.

» CPU cost is to process data in main memory.
» 1/0O cost is to read/write data from/into disk.

» The dominating cost is I/O cost. For query processing in
DBMS, CPU cost can be ignored.

» The key issue is to reduce |/O cost.
> ltis to reduce the number of I/O accesses.
» Whatis I/O cost?

» Ablock (or page) to be read/written from/into disk is
one |/O access (or one disk-block/page access).

CPU

Memory

OLD Magnetic Hard Disk

Characteristics of disks:
» collection of platters
» each platter = set of tracks

» each track = sequence of sectors
(blocks)

NOTE: Diagram simplifies the structure of actual disk drives

track ¢

cylinder c—-

platter

rotation

< spindle

I
Scc%

| |

|

|

I

read-write
head

N U

]

— arm assembly

OLD Magnetic Hard Disk

track t - Splndle

> Data must be in memory for the

| <— arm assembly

DBMS to operate on it.

> Smallest process unit is Block: If a

read-write

head
single record in a block is needed, Q@%
platter 7

the entire block is transferred. L

rotation

NOTE: Diagram simplifies the structure of actual disk drives

Disks

Access time includes:
> seek time (find the right track, e.g., 10msec)
> rotational delay (find the right sector, e.g., Smsec)

» transfer time (read/write block, e.g., 10usec)

Random access is dominated by seek time and rotational delay

11

Disk Space Management

Improving Disk Access:

Use knowledge of data access patterns.

> E.g., two records often accessed together: put them in the same block (clustering)

» E.g., records scanned sequentially: place them in consecutive sectors on same track
Keep Track of Free Blocks

» Maintain a list of free blocks

> Use bitmap

Using OS File System to Manage Disk Space

> extend OS facilities, but not rely on the OS file system.

> (portability and scalability)

12

Storage Access

Main Memory
Data must be in memory for the DBMS to operate on it.
A database file is partitioned into fixed-length storage units called
blocks. Blocks are units of both storage allocation and data transfer.
Database system seeks to minimize the number of block transfers
between the disk and memory.
We can reduce the number of disk accesses by keeping as many
blocks as possible in main memory.
Buffer — portion of main memory available to store copies of disk RN
blocks. N
Buffer manager — subsystem responsible for allocating buffer space
in main memory. \/
Disk

13

Disk-Block Access

> Smallest process unit is a block: If a
single record in a block is needed, the
entire block is transferred.

» Data are transferred between disk and
main memory in units of blocks.

> Arelation is stored as a file on disk.

> Afile is a sequence of blocks, where a
block is a fixed-length storage unit.

> Ablock is also called a page.

id

Logical
(table of tuples)

name
John

40K

[nRbB.

Jane

[Albert

50K
20K

Bl W N -

Arun

95K

\/ \
| rect, rec2,. >/

Abstract Physical Physical Realisation
(sequence of blocks) (collection of sectors)

14

h\\,/f

Buffer Management in a DBMS

Application
disk page

(Database server)
READ
BUFFER POOL I WRITE
N
free frame .H

Buffer Management

Manages traffic between disk and memory by maintaining a

buffer pool in main memory.

Buffer Pool

> collection of page slots (frames) which can be filled with

copies of disk block data.

> E.g., One page = 4096 Bytes = One block

16

Buffer Pool

Page requests from DBMS upper levels

v

Buffer pool
Rel R Free Rel R Free Rel S
Block 0 Block 1 Block 6
Rel S Rel R
F
Free Block 2 Free Block 5 ree
Rel Rel R
Free el S © Free Free
Block 4 Block 9
DB on disk

17

Buffer Pool

The request_block operation

If block is already in buffer pool:

» no need to read it again
> use the copy there (unless write-locked)

If block is not in buffer pool yet:

> need to read from hard disk into a free frame
> if no free frames, need to remove block using a buffer replacement policy.

The release_block function indicates that block is no longer in use
> good candidate for removal / replacing

18

Buffer Pool

For each frame, we need to know:

> whether it is currently in use

> Whether it has been modified since loading (dirty bit)

> how many transactions are currently using it (pin count)

> (maybe) time-stamp for most recent access

19

Buffer Pool

The release block operation
» Decrement pin count for specified page.
> No real effect until replacement required.

The write_block operation

» Updates contents of page in pool
> Set dirty bit on

» Note: Doesn’t actually write to disk, until been replaced, or forced to commit

The force block operation
» "commits" by writing to disk.

20

Buffer Replacement Policies

Least Recently Used (LRU)

> release the frame that has not been used for the longest period.

» intuitively appealing idea but can perform badly

Most Recently Used (MRU):

» release the frame used most recently

First in First Out (FIFO)
» need to maintain a queue of frames
» enter tail of queue when read in

Random
No one is guaranteed to be better than the others.

Quite dependent on applications.

21

Quiz 1:

Example1:

Data pages: P1, P2, P3, P4
Queries:

Q1: read P1; Q2: read P2;
Q3: read P3; Q4: read P1;
Q5: read P2;

Buffer:

P1 Q1

P1 Q1 |P2 Q2

P1 Q1 [|P2 o2 |P3 Q3
P1 a4 |P2 Q2 |P3 @3
P1 o4 |P2 o5 |P3 Q3

22

Quiz 1:

Example1:

Data pages: P1, P2, P3, P4
Queries:

Q1: read P1; Q2: read P2;
Q3: read P3; Q4: read P1;
Q5: read P2;

Buffer:

P1 Q4 (P2 o5 |P3 @3

How about if Q6 read P47
Using different buffer relacement policies

23

Quiz 1(LRU):

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2; How about if Q6 read P4?

Q3: read P3; Q4: read P1; Using different buffer relacement policies
Q5: read P2; LRU: Least Recently Used

Buffer:

P1 Q4 (P2 o5 |P3 Q3 > P1 Q4 |P2 o5 |P4 Q6

24

Quiz 1(MRU);

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2; How about if Q6 read P4?

Q3: read P3; Q4: read P1; Using different buffer relacement policies
Q5: read P2; MRU: Most Recently Used

Buffer:

P1 Q4 (P2 o5 |P3 Q3 > P1 Q4 (P4 Q6 | P3 Q3

25

Quiz 1(FIFO):

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2; How about if Q6 read P4?

Q3: read P3; Q4: read P1; Using different buffer relacement policies
Q5: read P2; FIFO: First In First Out

Buffer:

P1 Q4 (P2 o5 |P3 Q3 > P4 g6 [|P2 @5 |P3 @3

26

Quiz 1(Random):

Example1:

Data pages: P1, P2, P3, P4

Queries:

Q1: read P1; Q2: read P2; How about if Q6 read P47

Q3: read P3; Q4: read P1; Using different buffer relacement policies
Q5: read P2; Random

Buffer:

P1 a4 P2 a5 |P3 Q3 Randomly choose one buffer to replace

rTt1

27

Cache Performance

» (Cache hits

» pages can be served by the cache

> (Cache misses

» pages have to be retrieved from the disk

> Hit rate = #cache hits / (#cache hits + #cache misses)

28

Repeated Scan (LRU)

Cache Hit: O

Attempts: O Frame Frame Frame
Frame Frame Frame
Disk Space Manager

|

29

Repeated Scan (LRU): Read Page 1

Cache Hit: O

Attempts: 1 Frame Frame Frame
Frame Frame Frame
Disk Space Manager

|

30

Repeated Scan (LRU): Read Page 2

Cache Hit: O

Attempts: 2 Frame Frame
Frame Frame Frame
Disk Space Manager

31

Repeated Scan (LRU): Read Page 3

Cache Hit: O

Frame Frame Frame
Disk Space Manager

32

Repeated Scan (LRU): Read Page 4

Cache Hit: O

Frame Frame Frame
Disk Space Manager

33

Repeated Scan (LRU): Read Page 5

Cache Hit: O

Frame Frame
Disk Space Manager

34

Repeated Scan (LRU): Read Page 6

Cache Hit: O

Disk Space Manager

35

Repeated Scan (LRU): Read Page 6

Cache Hit: O
Attempts: 6

So far, unavoidable cache misses.

Now the fun begins

Disk Space Manager

Repeated Scan (LRU): Read Page 7

Cache Hit: O

Disk Space Manager

37

Repeated Scan (LRU): Reset to
beginning

Cache Hit: 0

Disk Space Manager

38

Repeated Scan (LRU): Read Page
1(again)

Cache Hit: O

Disk Space Manager

39

Repeated Scan (LRU): Read Page
2(again)

Cache Hit: 0

Disk Space Manager

40

Repeated Scan (LRU): Read Page
3(again)

Cache Hit: O

Disk Space Manager

41

Repeated Scan (LRU): Read Page
4(again)

Cache Hit: O

Disk Space Manager

42

Repeated Scan (LRU): Read Page 5,
cont

Cache Hit: O

Disk Space Manager

43

Repeated Scan (LRU): Read Page 5,

cont
Cache Hit: O
Attempts: 12

Disk Space Manager

Get the picture? A worst-case scenario!

“Sequential Flooding”

Page 5

44

Repeated Scan (MRU)

Cache Hit: O
Attempts: 6

So far, navoidable cache misses.

Now the fun begins

Disk Space Manager

Repeated Scan (MRU): Read Page 7

Cache Hit: O

Disk Space Manager

46

Repeated Scan (MRU): Reset

Cache Hit: O

Disk Space Manager

47

Repeated Scan (MRU): Read Page
1(again)

Cache Hit: 1

Disk Space Manager

48

Repeated Scan (MRU): Read Page
2(again)

Cache Hit: 2

Disk Space Manager

49

Repeated Scan (MRU): Read Page
3(again)

Cache Hit: 3

Disk Space Manager

50

Repeated Scan (MRU): Read Page
4(again)

Cache Hit: 4

Disk Space Manager

o1

Repeated Scan (MRU): Read Page 5
(again)

Cache Hit: 5

Disk Space Manager

52

Compare LRU and MRU

When LRU and MRU both read Page 5 again
LRU:

Cache hit: O

Attempts: 12

MRU:

Cache hit: 5

Attempts: 12

What if we keep reading the next page with MRU?

53

Repeated Scan (MRU): Read Page 6
(again)

Cache Hit: 5

Disk Space Manager

54

Repeated Scan (MRU): Read Page 7
(again)

Cache Hit: 6

Disk Space Manager

95

Repeated Scan (MRU): Reset (again)

Cache Hit: 6

Disk Space Manager

56

Repeated Scan (MRU): Read Page
1(againx2)

Cache Hit: 7

Disk Space Manager

S7

Repeated Scan (MRU): Read Page
2(againx2)

Cache Hit: 8

Disk Space Manager

58

Repeated Scan (MRU): Read Page
3(againx2)

Cache Hit: 9

Disk Space Manager

59

Repeated Scan (MRU): Read Page
4(againx2)

Cache Hit: 10

Disk Space Manager

60

Repeated Scan (MRU): Read Page
o(againx2)

Cache Hit: 10

Disk Space Manager

61

Sequential Flooding

 LRU: We need to get in/out every page

This is called Sequential Flooding

 MRU: performs the best in this case (repeated scan)

Again, no replacement policy is quaranteed to be superior to the
others. The choice often depends on specific applications and
their requirements.

62

New Trend: Disks are much faster

Sequential Reads Sequential Writes

= 3000 3000
~
(28]
2 1000 2000
N -
e
B
S 1000 1000
©
c
(T
& o0 0
O 4 mvms coe T nvm,
2010 2013 2016 2018

)

{) ﬁj‘i nvm (inteD) OPTANF »»

New Trend: Random vs Sequential Access

Bandwidth (MB/s)

Random 4k = sequential reads

2010 2013
iffki | xaﬁi

Random 4k = sequential writes

3000
2000 .
1000
0
1 = nvm ., ooy
2016 2018
n%;s) @ OPTANE

64

New Trend: Cheaper memory/disk

Historical cost of computer memory and storage
This data is expressed in US dollars per terabyte (TB). It is not adjusted for inflation.
100 trillion $/TB

1 trillion $/TB

10 billion $/TB

100 million $/TB

1 million $/TB
e
10,000 $/TB
Memory
Flash
100 $/TB Solid state
‘ { Disk
1956 1970 1980 1990 2000 2010 2022
Source: John C. McCallum (2022) OurWorldinData.org/technological-change ¢ CC BY

Note: For each year, the time series shows the cheapest historical price recorded until that year.

65

Overview: Block (Page) Formats

Block: A block is a collection of slots.
Slot: Each slot contains a record.

Record: A record is identified by record id: rid = <page id, slot number>.

Question: How are records physically stored on disk?

66

Record Formats

Records are stored within fixed-length blocks.

* Fixed-length: each field has a fixed length as well as the number of fields.
33357462 | Neil Young | Musician | 0277

4 bytes 40 bytes 20 bytes 4 bytes

» Easy for intra-block space management.

» Possible waste of space.

 Variable-length: some field is of variable length.
33357462 | Neil Young Musician 0277

4 bytes 10 bytes 8 bytes 4 bytes

» complicates intra-block space management

» does not waste (as much) space.

Fixed-Length

Encoding scheme for fixed-length records:

« length + offsets stored in header

Offsets

Record1

Record?2

Record length

0 | 4 243438 |
33357462 | Neil Young Musician 0277
33357463 | Tim Bradley | Student 288

68

Fixed-Length Records

For fixed-length records, use record slots:

Slot 1
Slot 2
Slot 3

Slot N

Packed

Free

N

Slot 1
Slot 2
Slot 3
Slot 4
Slot 5

Slot M

Insertion: occupy first free slot; packed more efficient.
Deletion: (a) need to compact, (b) mark with O; unpacked more efficient.

Unpacked, Bitmap

Free

Free

Free

1

1

0{1]0

1

M

54321

69

Deletion in Packed Fixed-Length Records

Simple approach:

» Store record i starting from byte n X (i - 1), where n is the size of each record.

Consider two ways in
deleting record i:

»move recordsi+1,...,n
toi,...,n-1

>»move record ntoi

record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

70

Variable-Length

Encoding schemes where attributes are stored in order.

» Option1: Prefix each field by length

4 | XXXX 10 |[Neil Young 8 |Musician 4 | XXXX

* Option 2: Terminate fields by delimiter
33357462/Neil Young/Musician/0277/

« Option 3: Array of offsets

33357462 Neil Young Musician

0277

AN\ N S A

71

Variable-Length Records (1)

Another encoding scheme: attributes are not stored in order.
Fixed-length part followed by variable-length part.

» (b) The fixed-length part is to tell where we can find the data if it is a variable-length data field.
» (c) The variable-length part is to store the data.

Variable length attributes are represented by fixed size (offset, length) in the fixed-length part, and
keep attribute values in the variable-length part.

Fixed length attributes store attribute values in the fixed-length part.

Suppose there is a relation with 4 attributes: 2 fixed-length and 2 variable-length.
Fixed-length part Variable-length part

\ \

Variable | Variable
attribute | attribute

S~

72

Variable-Length Records (2)

Example: a tuple of (ID, Name, DeptName, Salary) where the first

three are variable length.
Fixed-length part Variable-length part

\ \

Variable | Variable
attribute | attribute

\

ID Name DeptName Salary
20,5 25,10 35,10 | 65000 [lokiokMues]e1s1\'%:Cr-To BN 0Te]q ol BSTe
Bytes 0 ﬂ 4 | 8 | 12

Offset = 20, length =5

73

Variable-Length Records

e How do we know
where each record
begins?

 What happens when

we add and delete
records”?

Records metadata to
footer

74

Slotted Page

* Introduce slot directory

» Pointer to free space
beginning of record

cord
+ Reverse order E “
« Record ID = location in Dt W =

slot table
» From right

e Delete?

Pointer

Slot Directory

75

Slotted Page: Delete Record

p—

[rcrs > [
heem
[——>

forw 0]][] |

Slot Directory

* Delete record (Page 2,
Record 4): Set 4th slot
directory pointer to null

Doesn’t affect pointers to other
records

76

Slotted Page: Insert Record

p—

[rcrs > [
heem
[——>

e BB

Slot Directory

 |nsert:

77

Slotted Page: Insert Record, Pt 2.

p—

e
B
[——> [

 |nsert:

* Place record in free space
on page

= K e K

Slot Directory

78

Slotted Page: Insert Record, Pt. 3

p—

e

* |nsert:
* Place record in free space
on page

* Create pointer/length pair in
next open slot in slot
directory

= [—— b
—
e[|

Slot Directory

79

Slotted Page: Insert Record, Pt. 4

p—

e
oo
[—=]
|

Slot Directory

* |nsert:
* Place record in free space
on page

* Create pointer/length pair in
next open slot in slot
directory

« Update the free space
pointer

80

Slotted Page: Insert Record, Pt. 5

p—

T —]
Record —. m
= oo ===
* Fragmentation?
e o[]

Slot Directory

* |nsert:
* Place record in free space
on page

* Create pointer/length pair in
next open slot in slot
directory

« Update the free space
pointer

81

Variable-Length Records

Fragmented free space:

il
freel
recN
A recl y
rec? > free?
_
free3 *
N
N 4 3 2 1

Slot Directory

82

Fragmented Free Space

p—

e —]
fecri ——p [

Recor
insertion

compaction when system is idle

Slot Directory

* Fragmentation?

« Reorganise data on page!

 When should | reorganise?

* We could reorganise on deletion

Too costly

* Or wait until fragmentation blocks

Record ID:
(Page 2, Record 4) 83

Notes

Reminder:
> The basic store unit on disk (in memory) is block (page)
> We will use page/block interchangeably.

» One page consists of multiple data records.

84

Indexes (basic concept)

Find all subcode belonging to the Law faculty (i.e., subcode = subcode | code | name | uoc | career
LAWS) T N e T T
LAND | LAND1170 | Design 1 | 4| UG
ANAT | ANAT2211 | Histology 1 | @ | UG
. CHEN | CHEN2862 | Intro to Process Chemistry 2 | 3 | UG
Basic Strategy = scan ..., test, select LAWS | LAWS2332 | Law and Social Theory | 8] UG
L. ECON | ECON4321 | Economic History 4 Honours | 48 | UG
Not efficient ... AHIS | AHIS1602 | History 1 | 12 |
LAWS | LAWS2425 | Research Thesis | 4 | UG
ENVS | ENVS4503 | Env Sci Hons (Geog) 18uoc | 18 | UG
“: ” : . ‘ y SOLA | SOLA5@58 | Special Topic in PV | 6 | PG
An “idea” of an index on a file on the search key ‘subcode’ may BENV | BENV2704 | Advanced Construction Systems | 3 | UG
: ANAT | ANAT3141 | Functional Anatomy 2 | 6| UG
|()()l(I"(EB e BENV | BENV2285 | Classical Architecture | 3] UG
LAND, {1} BENV | BENV24@2 | Design Modelling - Time Based | 6 | UG
BIOT | BIOT3881 | Environmental Biotech | 6| UG
ANAT, {2!19} BIOC | BIOC4163 | Genetics & Honours Full-Time | 24 | UG
BENV, {...} ECON | ECON4127 | Thesis (Economics) | 12 | U6
ENVS | ENVS4404 | Environmental Science 4 Chemis | 24 | UG
I—/\\A/ES,{Z1;7, _.} LAWS | LAWS2423 | Research Thesis | 8| UG
MUSC | MUSC2482 | Professional Practices D | 6| UG
REGS | REGS3756 | Negotiation | 8] UG
I i HPSC | HPSC5@820 | Supervised Reading Program | 8| PG
An index gives a short cut to the tuples that match the search key eiTniete | Crin Fonore (Rasacery et | 26 | ve
BIOC | BIOC4189 | Genetics Honours (PT) | 12 | UG
CEIC | CEIC4185 | Professional Electives | 3] ue

An added cost for building/maintaining it

85

e.g., Data record in B+ Tree

__A-_

Index & Data

/

N

(1,’aa’)

(2, 'xx")

(3,99)

(8,'iI")

(9,dd’)

1
2
3
5
7
8
9

aa

XX

qq
tt

00

dd

86

e.g., B+ Tree

leaf pages doubly linked 3
(not shown here)

» / Kk
/ _//ﬂ Jfa ~

(1, RID) (9,RID)

(1, RID) (2, RID) (3,RID)} (5RID) (7,RID) (8,RID) (9,RID)

/H

Data

H " '\ ' . R
AL A\ \z sl A\ 1ot L
s —= 4 y i

(3.99) 97dd) | (7,)00) (51) | ®) (1, aa) (2,'xx) (1, 'aa) (2 w) | (3'99) || s | @oeo) | (&) (9,dd)
L

The leaves of the index contains a pointer to the data (single record)

You can build many such indexes on a file (different search keys) as the index is separated from the
data

The underlying file that contains the records may or not be sorted by key ... when unsorted, the arrows
(i.e., the pointers to the data) ‘cross’ each other, this is referred to as ‘unclustered’ index option (cf.
clustered, on the right)

87

e.g., Hash index

Index contains “buckets”, each bucket contains the
index data entries ...

h(search key) mod M 0 bucket[0]: {(1, rid), (2, rid)}
bucket[2]: {(7, rid)}

A hash function works on the search key and produces
a number over the range of 0 ... M-1 (M is the number Search key

of buckets). —(b)

e.g., h(K) = (a* K+ b), where a, b are constant ... Kis

[§]

M-1
the search key.
Buckets
Fast to search (i.e., no traversing of tree nodes) (an approximate dlagram of Hash Index)

Best for equality searches, cannot support range
searches.

88

Indexes

Indexes provide efficient content-based access to tuples (i.e., through search keys).
Can build indexes on any (combination of) attributes.

Defining indexes (syntax):
CREATE INDEX index_name ON table _name (attr1, attr2, ...)
e.g., CREATE INDEX idx_address _phone ON address(phone);

CREATE INDEX also allows us to specify
an access method (USING btree, hash, rtree, or gist)
e.g., CREATE INDEX idx_address_phone ON address USING hash (phone);

89

Query Processing

mapping SQL to relational algebra (RA)

RA Exp —"‘:_Optimiser__,:‘

.

1

.

SQL —"""::H Parser J_,:’ RA Ops

'

1

\ Display fj_

;

\DB Engnl? .

Tuplas

—* Results

RA Expressions - Optimiser - concrete RA operations

(e.g., JOIN on empid) (e.g., HASH JOIN on empid)

90

Query Optimisation Problem

An execution plan is a sequence of relational operations

Consider execution plans for: o, (R P4y S P4, T7)

tmpl := hash join[d](R,S)

tmp2 := sort merge join[e](tmpl,T)
result := binary search[c](tmp2)
or

tmpl := sort merge join[e](S,T)
tmp2 := hash_join[d](R,tmpl)
result := 1linear_ search[c](tmp2)
or

tmpl := btree search[c](R)

tmp2 := hash join[d](tmpl,S)
result := sort_merge_ join[e](tmp2)

All produce same result but have different costs.

91

Query Optimisation Problem

The query optimizer start with an RA expression, then
» generates a set of equivalent expressions

» generates possible execution plans for each

» estimates cost of each plan, chooses cheapest

The cost of evaluating a query is determined by:

» size of relations (database relations and temporary relations)

» access mechanisms (indexing, hashing, sorting, join algorithms)
» size/number of main memory buffers (and replacement strategy)

Analysis of costs involves estimating:
» the size of intermediate results

» then, based on this, cost of disk storage accesses (i.e., I/O - page read/write)

92

PostgreSQL Query Tuning: EXPLAIN

Select on indexed attribute

ass2=# explain select * from student where id=100250;
QUERY PLAN
Index Scan using student pkey on student (cost=0.00..5.94 rows=1 width=17)
Index Cond: (id = 100250)

ass2=# explain analyze select * from student where id=100250;
QUERY PLAN
Index Scan using student pkey on student (cost=0.00..5.94 rows=1 width=17)
(actual time=31.209..31.212 rows=1 loops=1)
Index Cond: (id = 100250)
Total runtime: 31.252 ms

PostgreSQL Query Tuning: EXPLAIN

Select on non-indexed attribute

ass2=# explain select * from student where stype='local';
QUERY PLAN
Seq Scan on student (cost=0.00..70.33 rows=18 width=17)
Filter: ((stype)::text = 'local'::text)

ass2=# explain analyze select * from student where stype='local';
QUERY PLAN
Seq Scan on student (cost=0.00..70.33 rows=18 width=17)
(actual time=0.061..4.784 rows=2512 loops=1)
Filter: ((stype)::text = 'local'::text)
Total runtime: 7.554 ms

94

Key Learning Outcomes

- Buffer replacement policies: how does each policy work

- Record / Page management
- Index and query performance

Next Week: Transaction_Management

95

	Slide 1
	Slide 2: Notice
	Slide 3: Functional Components of DBMS
	Slide 4: Memory Hierarchy
	Slide 5: Primary Storage
	Slide 6: Secondary Storage
	Slide 7: Latency Numbers Every Programmer Should Know
	Slide 8: CPU cost vs I/O cost
	Slide 9: OLD Magnetic Hard Disk
	Slide 10: OLD Magnetic Hard Disk
	Slide 11: Disks
	Slide 12: Disk Space Management
	Slide 13: Storage Access
	Slide 14: Disk-Block Access
	Slide 15: Buffer Management in a DBMS
	Slide 16: Buffer Management
	Slide 17: Buffer Pool
	Slide 18: Buffer Pool
	Slide 19: Buffer Pool
	Slide 20: Buffer Pool
	Slide 21: Buffer Replacement Policies
	Slide 22: Quiz 1:
	Slide 23: Quiz 1:
	Slide 24: Quiz 1(LRU):
	Slide 25: Quiz 1(MRU):
	Slide 26: Quiz 1(FIFO):
	Slide 27: Quiz 1(Random):
	Slide 28: Cache Performance
	Slide 29: Repeated Scan (LRU)
	Slide 30: Repeated Scan (LRU): Read Page 1
	Slide 31: Repeated Scan (LRU): Read Page 2
	Slide 32: Repeated Scan (LRU): Read Page 3
	Slide 33: Repeated Scan (LRU): Read Page 4
	Slide 34: Repeated Scan (LRU): Read Page 5
	Slide 35: Repeated Scan (LRU): Read Page 6
	Slide 36: Repeated Scan (LRU): Read Page 6
	Slide 37: Repeated Scan (LRU): Read Page 7
	Slide 38: Repeated Scan (LRU): Reset to beginning
	Slide 39: Repeated Scan (LRU): Read Page 1(again)
	Slide 40: Repeated Scan (LRU): Read Page 2(again)
	Slide 41: Repeated Scan (LRU): Read Page 3(again)
	Slide 42: Repeated Scan (LRU): Read Page 4(again)
	Slide 43: Repeated Scan (LRU): Read Page 5, cont
	Slide 44: Repeated Scan (LRU): Read Page 5, cont
	Slide 45: Repeated Scan (MRU)
	Slide 46: Repeated Scan (MRU): Read Page 7
	Slide 47: Repeated Scan (MRU): Reset
	Slide 48: Repeated Scan (MRU): Read Page 1(again)
	Slide 49: Repeated Scan (MRU): Read Page 2(again)
	Slide 50: Repeated Scan (MRU): Read Page 3(again)
	Slide 51: Repeated Scan (MRU): Read Page 4(again)
	Slide 52: Repeated Scan (MRU): Read Page 5 (again)
	Slide 53: Compare LRU and MRU
	Slide 54: Repeated Scan (MRU): Read Page 6 (again)
	Slide 55: Repeated Scan (MRU): Read Page 7 (again)
	Slide 56: Repeated Scan (MRU): Reset (again)
	Slide 57: Repeated Scan (MRU): Read Page 1(againx2)
	Slide 58: Repeated Scan (MRU): Read Page 2(againx2)
	Slide 59: Repeated Scan (MRU): Read Page 3(againx2)
	Slide 60: Repeated Scan (MRU): Read Page 4(againx2)
	Slide 61: Repeated Scan (MRU): Read Page 5(againx2)
	Slide 62: Sequential Flooding
	Slide 63: New Trend: Disks are much faster
	Slide 64: New Trend: Random vs Sequential Access
	Slide 65: New Trend: Cheaper memory/disk
	Slide 66: Overview: Block (Page) Formats
	Slide 67: Record Formats
	Slide 68: Fixed-Length
	Slide 69: Fixed-Length Records
	Slide 70: Deletion in Packed Fixed-Length Records
	Slide 71: Variable-Length
	Slide 72: Variable-Length Records (1)
	Slide 73: Variable-Length Records (2)
	Slide 74: Variable-Length Records
	Slide 75: Slotted Page
	Slide 76: Slotted Page: Delete Record
	Slide 77: Slotted Page: Insert Record
	Slide 78: Slotted Page: Insert Record, Pt 2.
	Slide 79: Slotted Page: Insert Record, Pt. 3
	Slide 80: Slotted Page: Insert Record, Pt. 4
	Slide 81: Slotted Page: Insert Record, Pt. 5
	Slide 82: Variable-Length Records
	Slide 83: Fragmented Free Space
	Slide 84: Notes
	Slide 85: Indexes (basic concept)
	Slide 86: e.g., Data record in B+ Tree
	Slide 87: e.g., B+ Tree
	Slide 88: e.g., Hash index
	Slide 89: Indexes
	Slide 90: Query Processing
	Slide 91: Query Optimisation Problem
	Slide 92: Query Optimisation Problem
	Slide 93: PostgreSQL Query Tuning: EXPLAIN
	Slide 94: PostgreSQL Query Tuning: EXPLAIN
	Slide 95: Key Learning Outcomes

