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- Additional consultation will be scheduled before the final exam

- Project 1: marks and sample solution will be released on Wednesday

- Assignment 2 will be due at 5pm next Monday
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NoSQL is Hot!
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NoSQL stands for “not only SQL”:

➢ Non-tabular databases and store 

data differently than relational 

tables

➢ Firstly proposed in 2009



Big Data
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▪ Very large volumes of data being collected

• Driven by growth of web, social media, and more recently internet-of-
things

• Web logs were an early source of data

▪ Analytics on web logs has great value for advertisements, web site 
structuring, what posts to show to a user, etc

▪ Big Data:  differentiated from data handled by earlier generation databases

• Volume: much larger amounts of data stored

• Velocity: much higher rates of insertions

• Variety: many types of data, beyond relational data



Some Old Numbers
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• Facebook: 

▪ 130TB/day: user logs

▪ 200-400TB/day: 83 million pictures

• Google: > 25 PB/day processed data

• Gene sequencing: 100M kilobases

per day per machine

▪ Sequence 1 human cell costs Illumina $1k

▪ Sequence 1 cell for every infant by 2015?

▪ 10 trillion cells / human body

• Total data created in 2010: 1.ZettaByte (1,000,000 PB)/year

▪ ~60% increase every year



Big Data is not only Databases
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Big data is more about data analytics and on-line querying

Many components:

• Storage systems

• Database systems

• Data mining and statistical algorithms

• Visualization



Features of RDBMS
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• Data stored in columns and tables

• Relationships represented by data

• Data Manipulation Language

• Data Definition Language 

• Transactions (ACID)

• Abstraction from physical layer

• Applications specify what, not how

• Physical layer can change without modifying applications



The Value of Relational Databases
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• A (mostly) standard data model

• Many well developed technologies

➢ physical organization of the data, search indexes, query optimization, search 

operator implementations

• Good concurrency control (ACID)
➢ transactions: atomicity, consistency, isolation, durability

• Many reliable integration mechanisms
➢ “shared database integration” of applications

• Well-established: familiar, mature, support,...



Data Management: Trends & Requirements
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Trends

• Volume of data

• Cloud comp. (IaaS)

• Velocity of data

• Big users

• Variety of data

Requirements

• Real database scalability massive

➢ database distribution

➢ dynamic resource management

➢ horizontally scaling systems

• Frequent update operations

• Massive read throughput

• Flexible database schema

➢ semi-structured data



RDBMS for Big Data
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● relational schema
○ data in tuples

○ a priori known schema

● schema normalization
○ data split into tables (3NF)

○ queries merge the data

● transaction support
○ trans. management with ACID 
○ Atomicity, Consistency, Isolation, Durability

○ safety first

● but current data are 

naturally flexible

● inefficient for large data

● slow in distributed

environment

● full transactions very 

inefficient in distributed

enviroment.



CAP Theorem
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At most two of the following three can be 

maximized at one time 

• Consistency

• Each client has the same view of the data 

• Availability

• Each client can always read and write 

• Partition Tolerance 

• System works well across distributed physical networks



Summary: Querying Big Data
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▪ Transaction processing systems that need very high scalability

• Many applications willing to sacrifice ACID properties and other 

database features, if they can get very high scalability

▪ Query processing systems that

• Need very high scalability, and 

• Need to support non-relation data



Processing Data - Terms

14

● OLTP: Online Transaction Processing (DBMSs)

○ Database applications

○ Storing, querying, multi-user access

● OLAP: Online Analytical Processing (Warehousing)

○ Answer multi-dimensional analytical queries

○ Financial/marketing reporting, budgeting, 

forecasting, …

● HTAP: Hybrid Transaction/Analytical Processing



NoSQL Databases
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● NoSQL: Database technologies that are (mostly):
○ Not using the relational model (nor the SQL language)

○ Designed to run on large clusters (horizontally scalable)

○ No schema - fields can be freely added to any record

○ Open source

○ Based on the needs of the current big data era

● Other characteristics (often true):
○ easy replication support (fault-tolerance, query efficiency)

○ Simple API

○ Eventually consistent (not ACID)



Just Another Temporary Trend?

16

● There have been other trends here before

○ object databases, XML databases, etc.

● But NoSQL databases:

○ are answer to real practical problems big companies have

○ are often developed by the biggest players

○ outside academia but based on solid theoretical results

■ e.g. old results on distributed processing

○ widely used



The End of RDBMS?
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● Relational databases are not going away

○ are ideal for a lot of structured data, reliable, mature, etc.

● RDBMS became one option for data storage

Using different data stores in different circumstances 

Two trends:

1. NoSQL databases implement standard RDBMS features

2. RDBMS are adopting NoSQL principles



NoSQL Properties
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1. Flexible scalability

○ horizontal scalability instead of vertical

2. Dynamic schema of data

○ different levels of flexibility for different types of DB

3. Efficient reading

○ spend more time storing the data, but read fast

○ keep relevant information together 

4. Cost saving

○ designed to run on commodity hardware

○ typically open-source (with a support from a company)



NoSQL Databases
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● Key-value stores

● Document databases

● Column-family stores

● Graph databases



NoSQL Databases by Data Models
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Key-Value Stores
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● Come from a research paper by Amazon (Dynamo)
○ Global Distributed Hash Table (Key-Value Stores)

● A simple hash table (map), primarily used when all 

accesses to the database are via primary key
○ key-value mapping

● In RDBMS world: A table with two columns:
○ ID column (primary key)

○ DATA column storing the value (unstructured binary large object)



Key-Value Stores - Operations
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▪ Key-value stores support

• put(key, value):  used to store values with an associated key, 

• get(key):  which retrieves the stored value associated with the specified 

key

• delete(key): remove the key and its associated value

• scan(from, to): range scan

▪ Some systems also support range queries on key values



Key-Value Stores - Architecture
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1. Embedded systems

a. the system is a library and the DB runs within your

system

2. Large-scale Distributed stores

a. distributed hash table (DHT)



Key-Value Stores
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● Why?

○ Simple Data Model: Hash Table is well-studied

○ Good Scalability: Small System Cost, via good look-up locality and 

caching 

● Why not?

○ Poor to complex (interconnected) data



Key-Value Stores - Vendors
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Project 
Voldemort

Ranked list: http://db-engines.com/en/ranking/key-value+store

http://db-engines.com/en/ranking/key-value+store


Document Stores
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● Basic concept of data: Document

● Documents are self-describing pieces of data
○ Hierarchical tree data structures

○ Nested associative arrays (maps), collections, scalars

○ XML, JSON (JavaScript Object Notation), BSON, …

● Documents in a collection should be “similar”
○ Their schema can differ

● Documents stored in the value part of key-value
○ Key-value stores where the values are examinable

○ Building search indexes on various keys/fields



Document Stores - Example
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key=3 ->  { "personID": 3,

"firstname": "Martin",

"likes": [ "Biking","Photography" ],

"lastcity": "Boston",

"visited": [ "NYC", "Paris" ] }

key=5 ->  { "personID": 5,

"firstname": "Pramod",

"citiesvisited": [ "Chicago", "London","NYC" ],

"addresses": [

{ "state": "AK",

"city": "DILLINGHAM" },

{ "state": "MH",

"city": "PUNE" }  ],

"lastcity": "Chicago“ }



MongoDB
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- humongous => Mongo

- Data are organized in collections. A collection stores a set of 

documents.

- Collection like table and document like record

- but: each document can have a different set of attributes 

even in the same collection

- Semi-structured schema!

- Only requirement: every document should have an “_id” field



Example MongoDB
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{     "_id”:ObjectId("4efa8d2b7d284dad101e4bc9"),     

"Last Name": ” Cousteau",     

"First Name": ” Jacques-Yves",     

"Date of Birth": ”06-1-1910" }, 

{     "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),     

"Last Name": "PELLERIN",     

"First Name": "Franck",     

"Date of Birth": "09-19-1983",     

"Address": "1 chemin des Loges",     

"City": "VERSAILLES" }



MongoDB - Features
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● JSON-style documents 

○ actually uses BSON (JSON's binary format) 

● replication for high availability 

● auto-sharding for scalability 

● document-based queries 

● can create an index on any attribute 

● for faster reads



MongoDB vs RDBMS
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RDBMS MongoDB Equivalent

database database

table collection

row document

attributes fields (field-name:value pairs)

primary key the ‘_id’ field, which is the key 

associated with the document 



Relationships in MongoDB
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Two options: 

1. store references to other documents using their _id 

values

2. embed documents within other documents



Example
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Here is an example of embedded relationship:

{

"_id":ObjectId("52ffc33cd85242f436000001"),

"contact": "987654321",

"dob": "01-01-1991",

"name": "Tom Benzamin",

"address": [

{

"building": "22 A, Indiana Apt",

"pincode": 123456,

"city": "Los Angeles",

"state": "California"

},

{

"building": "170 A, Acropolis Apt",

"pincode": 456789,

"city": "Chicago",

"state": "Illinois"

}

]

} 

{

"_id":ObjectId("52ffc33cd85242f436000001"),

"contact": "987654321",

"dob": "01-01-1991",

"name": "Tom Benzamin",

"address_ids": [

ObjectId("52ffc4a5d85242602e000000"),

ObjectId("52ffc4a5d85242602e000001")

]

}

And here an example of reference based



MongoDB - Queries
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● Query language expressed via JSON

● clauses: where, sort, count, sum, etc.

SQL: SELECT * FROM users

MongoDB: db.users.find()

- SELECT * FROM users WHERE personID = 3

- db.users.find( { "personID": 3 } )

- SELECT firstname, lastcity FROM users WHERE personID = 5

- db.users.find( { "personID": 5}, {firstname:1, lastcity:1} )



Document Stores - Vendors
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Ranked list: http://db-engines.com/en/ranking/document+store

MS Azure

DocumentDB

http://db-engines.com/en/ranking/document+store


Column-Family Stores
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● Origin from Google’s BigTable

● Also known as wide-column or columnar

● Data model: rows that have many columns associated 

with a row key

● Column families are groups of related data (columns) that 

are often accessed together



Column-Family Stores - Main Idea
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- Each table tends to have many attributes (from thousands ~ millions)

- In most applications (in OLAP) we are only interested in a few

attributes

- Traditional raw-based

- Store each record in a sequential file

- We need to read the whole record to access only one attribute

- Column-based

- Store the data by putting the same attribute in a sequential file

- Faster access and better compression



Column-Family Stores - Example 1
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Column-Family Stores - Example 2
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For a customer we typically access all 

profile information at the same time, but 
not customer’s orders.



BigTable
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”com.ccn.www”

column family

● Google’s BigTable

○ Drives MapReduce, and the following: Apache Hadoop, Hadoop File System (HDFS), HBase, 

Apache Cassandra

● 2008: Google published the Bigtable Paper

○ “BigTable = sparse, distributed, persistent, multi-dimensional sorted map indexed by (row_key, 

column_key, timestamp)”

row key                                       row

column                               column         column                     column           column

“contents:html” “param:lang” “param:enc” “a:cnnsi.com” “a:ihned.cz”

column names

<html>...

<html>...

t2
t6

t8
<html>... EN UTF-8 CNN.com CNN

t2 t2 t3 t7



Column-Family Stores
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● Why?

○ Optimized for OLAP

○ Semi-Structured Data: Each column can define its own schema

● Why not?

○ Not good for

■ OLTP

■ Incremental Data Loading

■ Row-specific Queries



Column-Family Stores - Vendors
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Ranked list: http://db-engines.com/en/ranking/wide+column+store

http://db-engines.com/en/ranking/wide+column+store


Graph Data Structure
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- A graph is a structure in mathematics (graph theory) 

- Famous problem: Seven Bridges of Königsberg

- Optimised for handling highly connected data

Edge

Vertex



Graph Database
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Data Model

- Vertices (Nodes) -> Entities

- Edges -> Relations

Are we going to learn ER model again?



Graphs are Everywhere!
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Internet

Social Networks

Road Networks

Knowledge Graphs
Biological Networks



Graphs are Large!
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#Edges Ratio

<10K 17.8%

10K-100K 17.1%

100K-1M 10.1%

1M-10M 6.9%

10M-100M 16.3%

100M-1B 16.3%

>1B 15.5%

#Bytes Ratio

<100MB 19.0%

100MB-1G 15.7%

1G-10G 20.7%

10G-100G 14.1%

100G-1T 16.5%

>1T 14.0%

#Vetices Ratio

<10K 17.3%

10K-100K 17.3%

100K-1M 15.0%

1M-10M 13.4%

10M-100M 15.7%

>100M 21.3%

>1 trillion 
connections

>60 trillion 
URLs

>60 billion 
edges every 30 

days

Small to medium sized companies



Information vs Knowledge
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History

48



Graph DBMS Landscape
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The graph database landscape in 2019
DBMS popularity trend by database model 

between 2013 and 2019 – DB-Engine



Advantages
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• Performance

❑ Traditional Joins are inefficient

❑ Billion-scale data are common, e.g., Facebook social network , Google web graph

• Flexibility

❑ Real-world entities may not have a fixed schema. It is not feasible to design 1000 

attributes for a table. 

❑ Relationships among entities can be arbitrary. It is not feasible to use 1000 tables to 

model 1000 types of relationships.

• Agility

❑ Business requirements changes over time

❑ Today’s development practices are agile, test-driven



Applications
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- Social Network: Facebook, Twitter, LinkedIn … 

- E-commerce: eBay, Amazon, Alibaba … 

- Banking: JPMorgan, Citi, UBS …

- Telecom: Verizon, Orange, AT&T …

- IoT: nest

- Search Engine: Google

- Navigation: Google Maps

- Bioinformatics: DNAnexue

- …



Graph Technology Landspace

52



Neo4j
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- The most popular Graph Database at present

- Cypher query language

- Developed in Java and open-source

- Resources:

- Neo4j Cypher Manual

- Neo4j Developer Resources

https://neo4j.com/docs/cypher-manual/4.0/
https://neo4j.com/developer/resources/


Property Graph Model
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● Nodes

(Entities)

● Relationships

● Properties

● Labels



Graph DB Data Modeling
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- Flexible & adaptive schema compared to RDBMs

- What you sketch = what you store in the database



Neo4j vs Relational Model 
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• Retains ACID transaction properties

• Foreign keys not necessary as they are 
represented as relationships 

• Relationships are stored/represented per relational 
record/row instead of per table



Neo4j vs Relational Model - Example
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netId FirstName

abc1 Albert

def2 Danielle

ghi3 Gary

stu7 Sandeep

yz10 Yusin

netId Major

ghi3 STAT

ghi3 COMP

abc1 COMP

def2 ECE

stu7 STAT

netId Course

abc1 COMP 430

def2 COMP 430

abc1 COMP 431

Student

Majors

Enrolls



Property or Node? 
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• Dept for a course could be a property of course or a 
node

• How to decide?  It depends

• Standardization of terms

• How often will it be updated?

• Searchability

• Readability

• Reusability 



MongoDB vs Neo4j

59



Choosing a DBMS
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• Efficient data storage
• Structure (e.g. networks)

• Sparsity

• Performance
• Types of queries / analysis

• Need for visualization
• Built in algorithms or tools

• Reads vs. Writes

• Quantity of data

• Importance
• Objects
• Relationships



When to use a graph database?

61

●If…

○ Your data has many M-M relationships 

○ Care about referential integrity 

○ You highly value the relationships of the data 

(especially when you may consider the relationship to be more important than the elements 
themselves)

○ …case by case question

Relational (A) Graph (B)

Relational Graph

Relational Graph



Which to use?
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1. …if you were given a set of well-structured 

data

2. …if you are scraping data from the Internet

3. …if you are storing tax info

4. …if the dataset is extremely large

5. …if you are trying to build a friend network

NoSQL – Neo4j

A

B

C

D

Relational

NoSQL - Mongo

It depends



Nodes and Properties
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●Node
○ Typically used to represent entities

○ Has zero or more relationships

○ Each node is an instance of an entity

●Property
○ Key/value pairs

○ Belong to nodes and relationships

Type: student
Name: Jane 
Doe

Type: fruit 
Name: 
Pear



Property Types
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●Number (Integer and Float specifically)

●String

●Boolean

●Temporal type - Date, Time, LocalTime, DateTime, 

LocalDateTime and Duration



Relationships
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●Edge that connects nodes

●Relationships must have a direction and a type

●Can have properties



Questions

66

1. What are some examples of relationships that are directional?

2. What are some examples of relationships that are non-

directional?



Questions
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1. What are some examples of relationships that are directional? 

○Think of Twitter

2. What are some examples of relationships that are non-

directional?

○Thinks of Facebook



Labels
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●Grouping mechanism for nodes

●Used to define constraints and/or indexes

●Faster lookup compared to checking a property

netId: abc1

Student

Label



T/F Questions
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1. There's a 1-1 mapping from the relational model to a 

graph database

2. Each node must have the same properties as all other 

nodes

3. Relationships cannot have properties



Cypher Query Language 
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An example of Cypher:

Find Sushi restaurants in New York 

that Philip’s friends like



Cypher Introduction
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● Declarative graph query language

● Shares many keywords and query structures with SQL

● Comments can be added with “//” or "/* */"

● Case insensitive except for 

○ Labels

○ Property keys

○ Relationship types



Cypher Patterns
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● Used to describe the shape of what you are looking for

● Node: ( )

● Relationship: -, ->, <-

● Relationship identifier: [ ]

● Labels  :<LabelName>

● Variables: n, node, foo

● Not only for querying, also for creating new nodes, 

relations etc.



Cypher Patterns 1
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●Any directional relationship
MATCH (n:Student)-->(m:Student) 

RETURN n,m;

Students with a relation with another 
Student

n and m are variables

Student is a label



Cypher Patterns 2

74

●Specific relationships

MATCH (n:Student)-[:MENTORS]->(m:Student) 

RETURN DISTINCT n.netId;

netIds of students who mentor other students

●Note the text output

●Can return properties



Cypher Patterns 3
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●Nodes with different labels
MATCH (n:Student)-[:ENROLL]->(m:Course) 

RETURN n, m;

Students enrolled in courses



Cypher clauses – MATCH/WHERE
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●Find pattern (MATCH), then filter results (WHERE)
○ WHERE is part of MATCH-WHERE clause

○ can be replaced with OPTIONAL MATCH, WITH for future constraints

●Find node with firstname ‘Albert’
MATCH (n {name: 'Albert'})

RETURN n;

●Also
MATCH (n)

WHERE n.name = 'Albert'

RETURN n;



Cypher clauses – RETURN
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●RETURN is equivalent to SELECT in SQL, it returns the 

specified nodes or properties

●RETURN netIds of students with relationships with other 

students

MATCH (a:Student)-->(otherNode:Student)

RETURN a.netId, otherNode.netId;



Types of Graph Queries
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- Graph Pattern Matching

- Given a graph pattern, find subgraphs in the database graph that match the query.

- Can be augmented with other (relational-like) features, such as projection.

- Graph Navigation

- A flexible querying mechanism to navigate the topology of the data.

- Called path queries, since they require to navigate using paths (potentially 

variable length).

MATCH (p:Person)-[:LIKES]->(:Language {name = "SQL"})

RETURN p.name

MATCH (p:Person)-[:KNOWS*1..2]->(:Person {name = "Alice"})

RETURN p.name



More Cypher clauses 
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- CREATE

- DELETE

- SET

- ORDER BY

- LIMIT

- WITH

- Aggregations:
- COUNT
- COLLECT
- SUM
- …

- …



Graph Algorithms
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● The real power of graph databases

● Can save huge amounts of programming effort

● Include
○ Centrality - node importance

○ Community detection – node connectivity and partitions

○ Path finding – routes through the network

○ Similarity – of nodes

○ Link prediction – closeness of nodes

● https://neo4j.com/docs/graph-data-science/current/

https://neo4j.com/docs/graph-data-science/current/


Neo4j
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More resources can be found on 

neo4j.com



Related Courses at UNSW CSE
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- COMP9312: Data Analytics for Graphs

- COMP9313: Big Data Management

https://www.handbook.unsw.edu.au/undergraduate/courses/2021/COMP9312/
https://www.handbook.unsw.edu.au/undergraduate/courses/2022/COMP9313


Learning Outcome
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- NoSQL vs RDBMS

- Data Models

- Key-value

- Document

- Column-family

- Graph
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