
NoSQL

COMP9311 24T3; Week 9

By Zhengyi Yang, UNSW

Notice

2

- Additional consultation will be scheduled before the final exam

- Project 1: marks and sample solution will be released on Wednesday

- Assignment 2 will be due at 5pm next Monday

Acknowledgements

3

Some parts of this slides are adopted from

- “Database System Concepts” - 7th Edition

- Slides by Prof. George Kollios (Boston University)

- Slides by Asst Prof. Risa B. Myers (Rice University)

- Slides by Dr. David Novak (Masaryk University)

- Slides by Prof. Ying Zhang (UTS)

- Slides by Dr. Longbin Lai (UNSW)

- Neo4j Educator Resources

- Slides by myself at Rust Meetup Sydeny 2020

NoSQL is Hot!

4

NoSQL stands for “not only SQL”:

➢ Non-tabular databases and store

data differently than relational

tables

➢ Firstly proposed in 2009

Big Data

5

▪ Very large volumes of data being collected

• Driven by growth of web, social media, and more recently internet-of-
things

• Web logs were an early source of data

▪ Analytics on web logs has great value for advertisements, web site
structuring, what posts to show to a user, etc

▪ Big Data: differentiated from data handled by earlier generation databases

• Volume: much larger amounts of data stored

• Velocity: much higher rates of insertions

• Variety: many types of data, beyond relational data

Some Old Numbers

6

• Facebook:

▪ 130TB/day: user logs

▪ 200-400TB/day: 83 million pictures

• Google: > 25 PB/day processed data

• Gene sequencing: 100M kilobases

per day per machine

▪ Sequence 1 human cell costs Illumina $1k

▪ Sequence 1 cell for every infant by 2015?

▪ 10 trillion cells / human body

• Total data created in 2010: 1.ZettaByte (1,000,000 PB)/year

▪ ~60% increase every year

Big Data is not only Databases

7

Big data is more about data analytics and on-line querying

Many components:

• Storage systems

• Database systems

• Data mining and statistical algorithms

• Visualization

Features of RDBMS

8

• Data stored in columns and tables

• Relationships represented by data

• Data Manipulation Language

• Data Definition Language

• Transactions (ACID)

• Abstraction from physical layer

• Applications specify what, not how

• Physical layer can change without modifying applications

The Value of Relational Databases

9

• A (mostly) standard data model

• Many well developed technologies

➢ physical organization of the data, search indexes, query optimization, search

operator implementations

• Good concurrency control (ACID)
➢ transactions: atomicity, consistency, isolation, durability

• Many reliable integration mechanisms
➢ “shared database integration” of applications

• Well-established: familiar, mature, support,...

Data Management: Trends & Requirements

10

Trends

• Volume of data

• Cloud comp. (IaaS)

• Velocity of data

• Big users

• Variety of data

Requirements

• Real database scalability massive

➢ database distribution

➢ dynamic resource management

➢ horizontally scaling systems

• Frequent update operations

• Massive read throughput

• Flexible database schema

➢ semi-structured data

RDBMS for Big Data

11

● relational schema
○ data in tuples

○ a priori known schema

● schema normalization
○ data split into tables (3NF)

○ queries merge the data

● transaction support
○ trans. management with ACID
○ Atomicity, Consistency, Isolation, Durability

○ safety first

● but current data are

naturally flexible

● inefficient for large data

● slow in distributed

environment

● full transactions very

inefficient in distributed

enviroment.

CAP Theorem

12

At most two of the following three can be

maximized at one time

• Consistency

• Each client has the same view of the data

• Availability

• Each client can always read and write

• Partition Tolerance

• System works well across distributed physical networks

Summary: Querying Big Data

13

▪ Transaction processing systems that need very high scalability

• Many applications willing to sacrifice ACID properties and other

database features, if they can get very high scalability

▪ Query processing systems that

• Need very high scalability, and

• Need to support non-relation data

Processing Data - Terms

14

● OLTP: Online Transaction Processing (DBMSs)

○ Database applications

○ Storing, querying, multi-user access

● OLAP: Online Analytical Processing (Warehousing)

○ Answer multi-dimensional analytical queries

○ Financial/marketing reporting, budgeting,

forecasting, …

● HTAP: Hybrid Transaction/Analytical Processing

NoSQL Databases

15

● NoSQL: Database technologies that are (mostly):
○ Not using the relational model (nor the SQL language)

○ Designed to run on large clusters (horizontally scalable)

○ No schema - fields can be freely added to any record

○ Open source

○ Based on the needs of the current big data era

● Other characteristics (often true):
○ easy replication support (fault-tolerance, query efficiency)

○ Simple API

○ Eventually consistent (not ACID)

Just Another Temporary Trend?

16

● There have been other trends here before

○ object databases, XML databases, etc.

● But NoSQL databases:

○ are answer to real practical problems big companies have

○ are often developed by the biggest players

○ outside academia but based on solid theoretical results

■ e.g. old results on distributed processing

○ widely used

The End of RDBMS?

17

● Relational databases are not going away

○ are ideal for a lot of structured data, reliable, mature, etc.

● RDBMS became one option for data storage

Using different data stores in different circumstances

Two trends:

1. NoSQL databases implement standard RDBMS features

2. RDBMS are adopting NoSQL principles

NoSQL Properties

18

1. Flexible scalability

○ horizontal scalability instead of vertical

2. Dynamic schema of data

○ different levels of flexibility for different types of DB

3. Efficient reading

○ spend more time storing the data, but read fast

○ keep relevant information together

4. Cost saving

○ designed to run on commodity hardware

○ typically open-source (with a support from a company)

NoSQL Databases

19

● Key-value stores

● Document databases

● Column-family stores

● Graph databases

NoSQL Databases by Data Models

20

Key-Value Stores

21

● Come from a research paper by Amazon (Dynamo)
○ Global Distributed Hash Table (Key-Value Stores)

● A simple hash table (map), primarily used when all

accesses to the database are via primary key
○ key-value mapping

● In RDBMS world: A table with two columns:
○ ID column (primary key)

○ DATA column storing the value (unstructured binary large object)

Key-Value Stores - Operations

22

▪ Key-value stores support

• put(key, value): used to store values with an associated key,

• get(key): which retrieves the stored value associated with the specified

key

• delete(key): remove the key and its associated value

• scan(from, to): range scan

▪ Some systems also support range queries on key values

Key-Value Stores - Architecture

23

1. Embedded systems

a. the system is a library and the DB runs within your

system

2. Large-scale Distributed stores

a. distributed hash table (DHT)

Key-Value Stores

24

● Why?

○ Simple Data Model: Hash Table is well-studied

○ Good Scalability: Small System Cost, via good look-up locality and

caching

● Why not?

○ Poor to complex (interconnected) data

Key-Value Stores - Vendors

25

Project
Voldemort

Ranked list: http://db-engines.com/en/ranking/key-value+store

http://db-engines.com/en/ranking/key-value+store

Document Stores

26

● Basic concept of data: Document

● Documents are self-describing pieces of data
○ Hierarchical tree data structures

○ Nested associative arrays (maps), collections, scalars

○ XML, JSON (JavaScript Object Notation), BSON, …

● Documents in a collection should be “similar”
○ Their schema can differ

● Documents stored in the value part of key-value
○ Key-value stores where the values are examinable

○ Building search indexes on various keys/fields

Document Stores - Example

27

key=3 -> { "personID": 3,

"firstname": "Martin",

"likes": ["Biking","Photography"],

"lastcity": "Boston",

"visited": ["NYC", "Paris"] }

key=5 -> { "personID": 5,

"firstname": "Pramod",

"citiesvisited": ["Chicago", "London","NYC"],

"addresses": [

{ "state": "AK",

"city": "DILLINGHAM" },

{ "state": "MH",

"city": "PUNE" }],

"lastcity": "Chicago“ }

MongoDB

28

- humongous => Mongo

- Data are organized in collections. A collection stores a set of

documents.

- Collection like table and document like record

- but: each document can have a different set of attributes

even in the same collection

- Semi-structured schema!

- Only requirement: every document should have an “_id” field

Example MongoDB

29

{ "_id”:ObjectId("4efa8d2b7d284dad101e4bc9"),

"Last Name": ” Cousteau",

"First Name": ” Jacques-Yves",

"Date of Birth": ”06-1-1910" },

{ "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),

"Last Name": "PELLERIN",

"First Name": "Franck",

"Date of Birth": "09-19-1983",

"Address": "1 chemin des Loges",

"City": "VERSAILLES" }

MongoDB - Features

30

● JSON-style documents

○ actually uses BSON (JSON's binary format)

● replication for high availability

● auto-sharding for scalability

● document-based queries

● can create an index on any attribute

● for faster reads

MongoDB vs RDBMS

31

RDBMS MongoDB Equivalent

database database

table collection

row document

attributes fields (field-name:value pairs)

primary key the ‘_id’ field, which is the key

associated with the document

Relationships in MongoDB

32

Two options:

1. store references to other documents using their _id

values

2. embed documents within other documents

Example

33

Here is an example of embedded relationship:

{

"_id":ObjectId("52ffc33cd85242f436000001"),

"contact": "987654321",

"dob": "01-01-1991",

"name": "Tom Benzamin",

"address": [

{

"building": "22 A, Indiana Apt",

"pincode": 123456,

"city": "Los Angeles",

"state": "California"

},

{

"building": "170 A, Acropolis Apt",

"pincode": 456789,

"city": "Chicago",

"state": "Illinois"

}

]

}

{

"_id":ObjectId("52ffc33cd85242f436000001"),

"contact": "987654321",

"dob": "01-01-1991",

"name": "Tom Benzamin",

"address_ids": [

ObjectId("52ffc4a5d85242602e000000"),

ObjectId("52ffc4a5d85242602e000001")

]

}

And here an example of reference based

MongoDB - Queries

34

● Query language expressed via JSON

● clauses: where, sort, count, sum, etc.

SQL: SELECT * FROM users

MongoDB: db.users.find()

- SELECT * FROM users WHERE personID = 3

- db.users.find({ "personID": 3 })

- SELECT firstname, lastcity FROM users WHERE personID = 5

- db.users.find({ "personID": 5}, {firstname:1, lastcity:1})

Document Stores - Vendors

35
Ranked list: http://db-engines.com/en/ranking/document+store

MS Azure

DocumentDB

http://db-engines.com/en/ranking/document+store

Column-Family Stores

36

● Origin from Google’s BigTable

● Also known as wide-column or columnar

● Data model: rows that have many columns associated

with a row key

● Column families are groups of related data (columns) that

are often accessed together

Column-Family Stores - Main Idea

37

- Each table tends to have many attributes (from thousands ~ millions)

- In most applications (in OLAP) we are only interested in a few

attributes

- Traditional raw-based

- Store each record in a sequential file

- We need to read the whole record to access only one attribute

- Column-based

- Store the data by putting the same attribute in a sequential file

- Faster access and better compression

Column-Family Stores - Example 1

38

Column-Family Stores - Example 2

39

For a customer we typically access all

profile information at the same time, but
not customer’s orders.

BigTable

40

”com.ccn.www”

column family

● Google’s BigTable

○ Drives MapReduce, and the following: Apache Hadoop, Hadoop File System (HDFS), HBase,

Apache Cassandra

● 2008: Google published the Bigtable Paper

○ “BigTable = sparse, distributed, persistent, multi-dimensional sorted map indexed by (row_key,

column_key, timestamp)”

row key row

column column column column column

“contents:html” “param:lang” “param:enc” “a:cnnsi.com” “a:ihned.cz”

column names

<html>...

<html>...

t2
t6

t8
<html>... EN UTF-8 CNN.com CNN

t2 t2 t3 t7

Column-Family Stores

41

● Why?

○ Optimized for OLAP

○ Semi-Structured Data: Each column can define its own schema

● Why not?

○ Not good for

■ OLTP

■ Incremental Data Loading

■ Row-specific Queries

Column-Family Stores - Vendors

42
Ranked list: http://db-engines.com/en/ranking/wide+column+store

http://db-engines.com/en/ranking/wide+column+store

Graph Data Structure

43

- A graph is a structure in mathematics (graph theory)

- Famous problem: Seven Bridges of Königsberg

- Optimised for handling highly connected data

Edge

Vertex

Graph Database

44

Data Model

- Vertices (Nodes) -> Entities

- Edges -> Relations

Are we going to learn ER model again?

Graphs are Everywhere!

45

Internet

Social Networks

Road Networks

Knowledge Graphs
Biological Networks

Graphs are Large!

46

#Edges Ratio

<10K 17.8%

10K-100K 17.1%

100K-1M 10.1%

1M-10M 6.9%

10M-100M 16.3%

100M-1B 16.3%

>1B 15.5%

#Bytes Ratio

<100MB 19.0%

100MB-1G 15.7%

1G-10G 20.7%

10G-100G 14.1%

100G-1T 16.5%

>1T 14.0%

#Vetices Ratio

<10K 17.3%

10K-100K 17.3%

100K-1M 15.0%

1M-10M 13.4%

10M-100M 15.7%

>100M 21.3%

>1 trillion
connections

>60 trillion
URLs

>60 billion
edges every 30

days

Small to medium sized companies

Information vs Knowledge

47

History

48

Graph DBMS Landscape

49

The graph database landscape in 2019
DBMS popularity trend by database model

between 2013 and 2019 – DB-Engine

Advantages

50

• Performance

❑ Traditional Joins are inefficient

❑ Billion-scale data are common, e.g., Facebook social network , Google web graph

• Flexibility

❑ Real-world entities may not have a fixed schema. It is not feasible to design 1000

attributes for a table.

❑ Relationships among entities can be arbitrary. It is not feasible to use 1000 tables to

model 1000 types of relationships.

• Agility

❑ Business requirements changes over time

❑ Today’s development practices are agile, test-driven

Applications

51

- Social Network: Facebook, Twitter, LinkedIn …

- E-commerce: eBay, Amazon, Alibaba …

- Banking: JPMorgan, Citi, UBS …

- Telecom: Verizon, Orange, AT&T …

- IoT: nest

- Search Engine: Google

- Navigation: Google Maps

- Bioinformatics: DNAnexue

- …

Graph Technology Landspace

52

Neo4j

53

- The most popular Graph Database at present

- Cypher query language

- Developed in Java and open-source

- Resources:

- Neo4j Cypher Manual

- Neo4j Developer Resources

https://neo4j.com/docs/cypher-manual/4.0/
https://neo4j.com/developer/resources/

Property Graph Model

54

● Nodes

(Entities)

● Relationships

● Properties

● Labels

Graph DB Data Modeling

55

- Flexible & adaptive schema compared to RDBMs

- What you sketch = what you store in the database

Neo4j vs Relational Model

56

• Retains ACID transaction properties

• Foreign keys not necessary as they are
represented as relationships

• Relationships are stored/represented per relational
record/row instead of per table

Neo4j vs Relational Model - Example

57

netId FirstName

abc1 Albert

def2 Danielle

ghi3 Gary

stu7 Sandeep

yz10 Yusin

netId Major

ghi3 STAT

ghi3 COMP

abc1 COMP

def2 ECE

stu7 STAT

netId Course

abc1 COMP 430

def2 COMP 430

abc1 COMP 431

Student

Majors

Enrolls

Property or Node?

58

• Dept for a course could be a property of course or a
node

• How to decide? It depends

• Standardization of terms

• How often will it be updated?

• Searchability

• Readability

• Reusability

MongoDB vs Neo4j

59

Choosing a DBMS

60

• Efficient data storage
• Structure (e.g. networks)

• Sparsity

• Performance
• Types of queries / analysis

• Need for visualization
• Built in algorithms or tools

• Reads vs. Writes

• Quantity of data

• Importance
• Objects
• Relationships

When to use a graph database?

61

●If…

○ Your data has many M-M relationships

○ Care about referential integrity

○ You highly value the relationships of the data

(especially when you may consider the relationship to be more important than the elements
themselves)

○ …case by case question

Relational (A) Graph (B)

Relational Graph

Relational Graph

Which to use?

62

1. …if you were given a set of well-structured

data

2. …if you are scraping data from the Internet

3. …if you are storing tax info

4. …if the dataset is extremely large

5. …if you are trying to build a friend network

NoSQL – Neo4j

A

B

C

D

Relational

NoSQL - Mongo

It depends

Nodes and Properties

63

●Node
○ Typically used to represent entities

○ Has zero or more relationships

○ Each node is an instance of an entity

●Property
○ Key/value pairs

○ Belong to nodes and relationships

Type: student
Name: Jane
Doe

Type: fruit
Name:
Pear

Property Types

64

●Number (Integer and Float specifically)

●String

●Boolean

●Temporal type - Date, Time, LocalTime, DateTime,

LocalDateTime and Duration

Relationships

65

●Edge that connects nodes

●Relationships must have a direction and a type

●Can have properties

Questions

66

1. What are some examples of relationships that are directional?

2. What are some examples of relationships that are non-

directional?

Questions

67

1. What are some examples of relationships that are directional?

○Think of Twitter

2. What are some examples of relationships that are non-

directional?

○Thinks of Facebook

Labels

68

●Grouping mechanism for nodes

●Used to define constraints and/or indexes

●Faster lookup compared to checking a property

netId: abc1

Student

Label

T/F Questions

69

1. There's a 1-1 mapping from the relational model to a

graph database

2. Each node must have the same properties as all other

nodes

3. Relationships cannot have properties

Cypher Query Language

70

An example of Cypher:

Find Sushi restaurants in New York

that Philip’s friends like

Cypher Introduction

71

● Declarative graph query language

● Shares many keywords and query structures with SQL

● Comments can be added with “//” or "/* */"

● Case insensitive except for

○ Labels

○ Property keys

○ Relationship types

Cypher Patterns

72

● Used to describe the shape of what you are looking for

● Node: ()

● Relationship: -, ->, <-

● Relationship identifier: []

● Labels :<LabelName>

● Variables: n, node, foo

● Not only for querying, also for creating new nodes,

relations etc.

Cypher Patterns 1

73

●Any directional relationship
MATCH (n:Student)-->(m:Student)

RETURN n,m;

Students with a relation with another
Student

n and m are variables

Student is a label

Cypher Patterns 2

74

●Specific relationships

MATCH (n:Student)-[:MENTORS]->(m:Student)

RETURN DISTINCT n.netId;

netIds of students who mentor other students

●Note the text output

●Can return properties

Cypher Patterns 3

75

●Nodes with different labels
MATCH (n:Student)-[:ENROLL]->(m:Course)

RETURN n, m;

Students enrolled in courses

Cypher clauses – MATCH/WHERE

76

●Find pattern (MATCH), then filter results (WHERE)
○ WHERE is part of MATCH-WHERE clause

○ can be replaced with OPTIONAL MATCH, WITH for future constraints

●Find node with firstname ‘Albert’
MATCH (n {name: 'Albert'})

RETURN n;

●Also
MATCH (n)

WHERE n.name = 'Albert'

RETURN n;

Cypher clauses – RETURN

77

●RETURN is equivalent to SELECT in SQL, it returns the

specified nodes or properties

●RETURN netIds of students with relationships with other

students

MATCH (a:Student)-->(otherNode:Student)

RETURN a.netId, otherNode.netId;

Types of Graph Queries

78

- Graph Pattern Matching

- Given a graph pattern, find subgraphs in the database graph that match the query.

- Can be augmented with other (relational-like) features, such as projection.

- Graph Navigation

- A flexible querying mechanism to navigate the topology of the data.

- Called path queries, since they require to navigate using paths (potentially

variable length).

MATCH (p:Person)-[:LIKES]->(:Language {name = "SQL"})

RETURN p.name

MATCH (p:Person)-[:KNOWS*1..2]->(:Person {name = "Alice"})

RETURN p.name

More Cypher clauses

79

- CREATE

- DELETE

- SET

- ORDER BY

- LIMIT

- WITH

- Aggregations:
- COUNT
- COLLECT
- SUM
- …

- …

Graph Algorithms

80

● The real power of graph databases

● Can save huge amounts of programming effort

● Include
○ Centrality - node importance

○ Community detection – node connectivity and partitions

○ Path finding – routes through the network

○ Similarity – of nodes

○ Link prediction – closeness of nodes

● https://neo4j.com/docs/graph-data-science/current/

https://neo4j.com/docs/graph-data-science/current/

Neo4j

81

More resources can be found on

neo4j.com

Related Courses at UNSW CSE

82

- COMP9312: Data Analytics for Graphs

- COMP9313: Big Data Management

https://www.handbook.unsw.edu.au/undergraduate/courses/2021/COMP9312/
https://www.handbook.unsw.edu.au/undergraduate/courses/2022/COMP9313

Learning Outcome

83

- NoSQL vs RDBMS

- Data Models

- Key-value

- Document

- Column-family

- Graph

	Slide 1
	Slide 2: Notice
	Slide 3: Acknowledgements
	Slide 4: NoSQL is Hot!
	Slide 5: Big Data
	Slide 6: Some Old Numbers
	Slide 7: Big Data is not only Databases
	Slide 8: Features of RDBMS
	Slide 9: The Value of Relational Databases
	Slide 10: Data Management: Trends & Requirements
	Slide 11: RDBMS for Big Data
	Slide 12: CAP Theorem
	Slide 13: Summary: Querying Big Data
	Slide 14: Processing Data - Terms
	Slide 15: NoSQL Databases
	Slide 16: Just Another Temporary Trend?
	Slide 17: The End of RDBMS?
	Slide 18: NoSQL Properties
	Slide 19: NoSQL Databases
	Slide 20: NoSQL Databases by Data Models
	Slide 21: Key-Value Stores
	Slide 22: Key-Value Stores - Operations
	Slide 23: Key-Value Stores - Architecture
	Slide 24: Key-Value Stores
	Slide 25: Key-Value Stores - Vendors
	Slide 26: Document Stores
	Slide 27: Document Stores - Example
	Slide 28: MongoDB
	Slide 29: Example MongoDB
	Slide 30: MongoDB - Features
	Slide 31: MongoDB vs RDBMS
	Slide 32: Relationships in MongoDB
	Slide 33: Example
	Slide 34: MongoDB - Queries
	Slide 35: Document Stores - Vendors
	Slide 36: Column-Family Stores
	Slide 37: Column-Family Stores - Main Idea
	Slide 38: Column-Family Stores - Example 1
	Slide 39: Column-Family Stores - Example 2
	Slide 40: BigTable
	Slide 41: Column-Family Stores
	Slide 42: Column-Family Stores - Vendors
	Slide 43: Graph Data Structure
	Slide 44: Graph Database
	Slide 45: Graphs are Everywhere!
	Slide 46: Graphs are Large!
	Slide 47: Information vs Knowledge
	Slide 48: History
	Slide 49: Graph DBMS Landscape
	Slide 50: Advantages
	Slide 51: Applications
	Slide 52: Graph Technology Landspace
	Slide 53: Neo4j
	Slide 54: Property Graph Model
	Slide 55: Graph DB Data Modeling
	Slide 56: Neo4j vs Relational Model
	Slide 57: Neo4j vs Relational Model - Example
	Slide 58: Property or Node?
	Slide 59: MongoDB vs Neo4j
	Slide 60: Choosing a DBMS
	Slide 61: When to use a graph database?
	Slide 62: Which to use?
	Slide 63: Nodes and Properties
	Slide 64: Property Types
	Slide 65: Relationships
	Slide 66: Questions
	Slide 67: Questions
	Slide 68: Labels
	Slide 69: T/F Questions
	Slide 70: Cypher Query Language
	Slide 71: Cypher Introduction
	Slide 72: Cypher Patterns
	Slide 73: Cypher Patterns 1
	Slide 74: Cypher Patterns 2
	Slide 75: Cypher Patterns 3
	Slide 76: Cypher clauses – MATCH/WHERE
	Slide 77: Cypher clauses – RETURN
	Slide 78: Types of Graph Queries
	Slide 79: More Cypher clauses
	Slide 80: Graph Algorithms
	Slide 81: Neo4j
	Slide 82: Related Courses at UNSW CSE
	Slide 83: Learning Outcome

