Relational
Database Design

COMP9311 24T3; Week 5.2
By Zhengyi Yang, UNSW

Notice

0 Next week is the quiet week

a No Lecture/Lab

o Forum and Consultation is available as normal

Review: Normal Forms

INF:

 Attribute values are atomic
2NF:
* Nonprime attributes are not partially dependent on any key

3NF:

« For all non-trivial FD’s X = A, either X is a superkey or A is a prime attribute (i.e., no transitive

dependency)
BCNF:

« For all non-trivial FD’'s X 2 A, X is a superkey

From The Previous Lectures

Redundancy/Anomalies can be removed from relation designs by

decomposing them until they are in a normal form.

Decomposition

Definition (Decomposition): A decomposition of a relation

scheme, R, is a set of relation schemes {R4, ..., R,,} such that R; C

R for each i, and U;_, R; = R.

This is called the attribute preservation condition of decomposition.

Decomposition

Example: R={A, B, C, D, E}
R1 = {A! B}
R2 = {A! C}
R;={C, D, E}

A naive decomposition: each relation has only one attribute?

On Decompositions

Important: it is improper to assess the quality of your decompositions by

independently checking to see if the resulting relations are in a higher form.

A good decomposition should also have the following two properties.

1. the dependency preservation property

2. the nonadditive (or lossless) join property

Together, they gives us desirable decompositions

Dependency Preserving

A decomposition D={R,, ..., R} of R is dependency-preserving
wrt a set F of FDs if:

(F{U...UF)" =F",

where F; means the projection of F onto R..

Projection of F

Given a set of initial dependencies F on R:
Let R be decomposed into R;, ..., R,y

Definition (Projection): The projection of Fon R;, denoted by 7 (F)
where R; is a subset of R, is the set of dependencies X = Y in F* such
that the attributes in X U Y are all contained in R;.

To simplify notations, we also denote the projection of F on R; as F;.

In simple English: F; is the subset of dependencies F* that include only attributes in
R;. (Hence a projection of F)

Projection of F Example

Definition (Projection): The projection of F on R;, denoted by ng.(F) where R; is a
subset of R, is the set of dependencies X = Yin F+ such that the attributes in X U
Y are all contained in R;.

Example

R=(A,B,C,DE G M)
F={A->BC,D->EG M->A}

What are the projections of R1 and R27?
R=(A,B,C,M)and R,=(C, D, E, G)

10

Projection of F Example

Definition (Projection): The projection of F on R;, denoted by ng (F) where R; is a subset of

R, is the set of dependencies X = Y in F+ such that the attributes in X U Y are all contained
in Ri'

Example

R=(AB,C,D,E, G, M)

F={A->BC,D>EG, M>A}

What are the projections of R1 and R27?

R=(A,B,C,M)and R,=(C,D, E, G)

ng, ={A > BC, M > A}, ng, ={D =2 EG} (Projections of R1 and R2)
(Can be similarly denotedas F, ={A-> BC,M > A}, F,={D =2 EG})

11

Dependency Preservation Example (1)

Dependency Preservation:
A decomposition is dependency preserving if (F, U F, U ... U F) =F*

R=(AB,C,D,E,G M)
ConsiderF={A->BC,D-> EG, M > A}
Decomposed into

R,=(A,B,C,M)and R,=(C, D, E, G)

ngp (F) ={A-> BC,M > A}, ng (F)={D > EG}

(Question: Is this decomposition dependency preserving?)

12

Dependency Preservation Example (1)

Dependency Preservation:

A decomposition is dependency preserving if (F,U F,U ... UF,)" =F*

R=(A,B,C,D,E,G,M)

Consider F={A->BC,D>EG,M> A} Let F' =z (F) U mg, (F).
Decomposed into F'+ = F+, Thus it is dependency preserving.
R=(A,B,C M)and R,=(C,D, E, G) (Question: Must F’ be the same as F ?)

gz, (F) ={A > BC, M > A}, mz (F)={D > EG}

(Question: Is this decomposition dependency preserving?)

13

Dependency Preservation Example (2)

R=(AB,C,D,E, G, M)
ConsiderF={A>BC,D>EG M>A M >D}
Decomposition into R, and R,
R=(A,B,C,M)and R, = (C, D, E, G);
F,.={A>BC,M > A} F,={D > EG}

(Question: is R1 and R2 dependency preserving w.r.tto F? (It seems like

we lost M = D))

14

Dependency Preservation Example (2)

R=(A,B,C,D,E, G, M)
ConsiderF={A>BC,D>EG,M>A, M> D}
Decomposition into R, and R,
R,=(A,B,C,M)and R,=(C, D, E, G);
F,={A>BC,M > A},F,={D > EG}

We only checked if F, U F, is the same as F, this is not always sufficient.

Approach: We need to verify if M>D is inferred by F, U F,

Answer: Since M* | ., y 2 = {M, A, B, C}, Therefore, M->D is not inferred by F, U F, Hence, R,and R, are

not dependency preserving regarding F.

15

Dependency Preservation Example (3)

Third Example:

R=(AB,C,D,E, G, M)
ConsiderF={A->BC,D > EG,M-> A, M>C, C-> D, M-> D}
Decomposition into R, and R,

R=(A, B, C,M)and R,=(C, D, E, G)
F,.={A-> BC,M> A, M-> C},F, ={D-> EG, C-> D}

(Question: Is this dependency preserving?)

16

Dependency Preservation Example (3)

Third Example: Answer:

R=(A B,C,D,E,G,M) Once again F, UF, is not the same as F.
Consider F ={A > BC,D > EG, M > A, M>C, We can verify that M- D is inferred by F, and F,,
C-> D, M- D} Thus, F+ = (F, U F,)+ (they are equivalent)
Decomposition into R, and R, Hence, R, and R, are dependency preserving
R.=(A,B,C,M)and R,=(C, D, E, G) regarding F.

F,={A> BC,M> A, M> C},F, ={D> EG,

C-> D}

(Question: Is this dependency preserving?)

17

Lossless Join Property

Another property that a decomposition D should possess is the lossless join
property.

Definition (Lossless Join Property): Formally, a decomposition D = {R,,
R,, ..., R} of R has the lossless join property with respect to the set of
dependencies F on R if, for every relation state r of R that satisfies F, the
following holds, where * is the NATURAL JOIN of all the relations in D:

Y(TTR(r), - TTRm(N)) = 1.

18

Lossless Join Property

Simplified explanation:

A decomposition {R,, . . . ,R,} of R is a lossless join
decomposition with respect to a set F of FD’s if for every relation

instance r that satisfies F: r = T, (r)p<--- XITT (r).

n

19

Recall

Both the 3NF and BCNF can ensure lossless join property holds.

Property 3NF BCNF
Elimination of redundancy due to | Most Yes
functional dependency

Lossless Join Yes Yes
Dependency preservation due to | Yes Maybe
functional dependency

20

Lossy Join Decomposition(cont)

Suppose that we decompose the following relation:

STUDENT_ADVISOR

Name Department Advisor
Jones Comp Sci Smith
Ng Chemistry Turner
Martin Physics Bosky
Dulles Decision Sci Hall
Duke Mathematics James
James Comp Sci Clark
Evan Comp Sci Smith
Baxter English Bronte

With dependencies {Name — Department, Name — Advisor, Advisor —

Department}, into two relations:

21

A Lossy Join Decomposition(cont)

STUDENT_ADVISOR

STUDENT_DEPARTMENT

Name Department Advisor
Jones Comp Sci Smith
Ng Chemistry Turner
Martin Physics Bosky
Dulles Decision Sci Hall
Duke Mathematics James
James Comp Sci Clark
Evan Comp Sci Smith
Baxter English Bronte

Name Department
Jones Comp Sci
Ng Chemistry
Martin Physics
Duke Mathematics
Dulles Decision Sci
James Comp Sci
Evan Comp Sci
Baxter English

DEPARTMENT_ADVISOR

Department Advisor
Comp Sci Smith
Chemistry Turner

Physics Bosky

Decision Sci Hall

Mathematics James
Comp Sci Clark

English Bronte

22

A Lossy Join Decomposition(cont)

When we join back two tables, it is
not the same as the original

relation.

(the tuples marked with * have
been added).

Thus, the decomposition is lossy.

Name Department Advisor
Jones Comp Sci Smith
Jones Comp Sci Clark*
Ng Chemistry Turner
Martin Physics Bosky
Dulles Decision Sci Hall
Duke Mathematics James
James Comp Sci Smith*
James Comp Sci Clark
Evan Comp Sci Smith
Evan Comp Sci Clark*
Baxter English Bronte

23

A Lossy Join Decomposition(cont)

There is a simple test to see if a decomposition is lossy by check if this
dependency exists.

Test: A decomposition of R into R, and R, is lossless join if at least one of
the following dependencies is in F*:

*RiNnR, »> R,
*RiNMnR, > R,

This only works for binary decompositions.

24

Lossless Join Property

Note: the above test only applies for simple binary decompositions

We restate the theorem: The decomposition {R,,R,} of R is lossless iff

the common attributes R,N R, form a superkey for either R, or R..
Exercise: Given R(A,B,C) and F = {A— B}.
Is the decomposition into R,(A,B) and R,(A,C) lossless?

Yes

25

Lossless Join Property

Note:
» The word loss in lossless refers to loss of information

> The word loss in lossless does not refer to a loss of tuples

In fact...

> A decomposition without the lossless join property leads to additional
spurious tuples after NATURAL JOIN operations

> These additional tuples contribute to erroneous or invalid information

> A decomposition with a lossless join property will not lead to additional
tuples; Therefore, it is also known as non-additive join.

26

Test Lossless Join property

This previous test works on binary decompositions, below is the general
solution to testing lossless join property

Algorithm TEST LJ:
1. Create a matrix S, each element s;; €S corresponds the relation R; and the
attribute A;, such that: s;; = a if A;€ R;, otherwise s;; = b.
2. Repeat the following process until (1) S has no change OR (2) one row is
made up entirely of “a” symbols.
l. For each X— Y , choose the rows where the elements corresponding to X take the value a.

li. Inthose chosen rows (must be at least two rows), the elements corresponding to Y also take
the value a if one of the chosen rows take the value aonY .

Verdict: Decomposition is lossless if one row is entirely made up by “a” values.

27

Testing lossless join property(cont)

CHEAT SHEET: Algorithm TEST LJ

Example 1:
R = (A,B,C,D), 1. Create a matrix S, each element s; €S
F={A-B A—C, C— D} corresponds the relation R; and the attribute A,

Let R, = (A,B,C), R, = (C,D).
such that: s;; = a if A€ R;, otherwise s;; = b.

A B C D 2. Repeat the following process till S has no
R, |a 3 3 b change or one row is made up entirely of “a”
symbols.
R
2 | b b a a 1. For each X— Y , choose the rows where the

Note: rows 1 and 2 of S agree on {C}, which is the left- elements corresponding to X take the value

hand side of C—D. Therefore, change the D value on a.

rows 1 to a, matching the value from row 2.
2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also
take the value a if one of the chosen rows

take the valueaonyY . 28

Testing lossless join property(cont)

Example 1:

R =(A,B,C,D),

F={A—-B, A—C, C— D}
Let R, = (A,B,C), R, = (C,D).

CHEAT SHEET: Algorithm TEST LJ

A B C D
R, |a a a ba
R, |b b a a

Note: rows 1 and 2 of S agree on {C}, which is the left-
hand side of C—D. Therefore, change the D value on
rows 1 to a, matching the value from row 2.

Now row 1 is entirely a’s, so the decomposition is

lossless.

1. Create a matrix S, each element s,-’jES
corresponds the relation R, and the attribute Aj,
such that: s;; = a if A€ R;, otherwise s;; = b.
2. Repeat the following process till S has no
change or one row is made up entirely of “a@”
symbols.
1. For each X— Y, choose the rows where the
elements corresponding to X take the value
a.

2. In those chosen rows (must be at least two
rows), the elements corresponding to Y also
take the value a if one of the chosen rows

take the valueaonyY . 29

Testing lossless join property(cont)

CHEAT SHEET: Algorithm TEST LJ

Example 2: 1. Creat trix S h el ts; €S
R = (A,B,C,D,E), . Create a matrix S, each element s;;
F={AB—CD,6A—E, C— D}. corresponds the relation R; and the attribute A,
such that: s;; = a if A€ R;, otherwise s;; = b.
Let R1 = (A,B, C), 2. Repeat the following process till S has no
R2 = (B’ C’D) and change or one row is made up entirely of “a”
R, = (C,D,E).
symbols.
A B C D E 1. For each X— Y , choose the rows where the
R, a a a b b elements corresponding to X take the value
R, b a a a b a.
2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also
take the value a if one of the chosen rows

take the valueaonyY . 30

Testing lossless join property(cont)

CHEAT SHEET: Algorithm TEST LJ

Example 2: 1. Creat trix S h el ts; €S
R = (A,B,C,D,E), . Create a matrix S, each element s;;
F={AB—CD,6A—E, C— D}. corresponds the relation R; and the attribute A,
such that: s;; = a if A€ R;, otherwise s;; = b.
Let R1 = (A,B, C), 2. Repeat the following process till S has no
R2 = (B’ C’D) and change or one row is made up entirely of “a”
R, = (C,D,E).
symbols.
A B C D/g 1. For each X— Y , choose the rows where the
R, a a a b b < elements corresponding to X take the value
R, b a a a b e— a.
2. In those chosen rows (must be at least two

Not lossless join _
rows), the elements corresponding to Y also

take the value a if one of the chosen rows

take the valueaonyY . 31

Testing lossless join property(cont)

CHEAT SHEET: Algorithm TEST LJ

Example 3:

R=(A,B,C,D,EQG),
F={C—DE,A— B, AB— G}.

Let R, = (A,B), R, = (C,D,E) and such that: s;, = a if A€ R, otherwise s;; = b.
R3 = (A,C,G). 2. Repeat the following process till S has no

1. Create a matrix S, each element s,-’jeS

corresponds the relation R, and the attribute Aj,

change or one row is made up entirely of “a”
A B C D E G

symbols.
R, a a b b b b
1. For each X— Y , choose the rows where the
R, b b a a a b e— _
elements corresponding to X take the value
Ry a b a b b aee—— 3
2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also
take the value a if one of the chosen rows

take the value a on-Y . 32

Testing lossless join property(cont)

CHEAT SHEET: Algorithm TEST LJ

Example 3:

R=(A,B,C,D,EQG),
F={C—DE,A— B, AB— G}.

1. Create a matrix S, each element s,-’jeS

corresponds the relation R, and the attribute Aj,

Let R, = (A,B), R, = (C,D,E) and such that: s;,= a if A€ R, otherwise s, = b.
17 ’ ’ 2= e
R3 = (A, C,G). 2. Repeat the following process till S has no
A B C D E G A B C D E G change or one row is made up entirely of “a”
symbols.
R, a a b b b b R, a a b b b b —
1. For each X— Y , choose the rows where the

R, b b a a a b e— R, b b a a a b

elements corresponding to X take the value

a.

Q) m—p

a 2. In those chosen rows (must be at least two
rows), the elements corresponding to Y also
take the value a if one of the chosen rows

take the value a on-Y . 33

Testing lossless join property(cont)

Example 3:

R=(A,B,C,D,EQG),
F={C—DE,A— B, AB— G}.
LetR, = (A,B), R, =(C,D,E) and
R; = (A,C,G).

A B C D E G A B

R, a a b b b b R, a a

R, b b a a a b e— R, b b

Q) m—p
Q) —— P

CHEAT SHEET: Algorithm TEST LJ

1. Create a matrix S, each element s,-’jeS

corresponds the relation R, and the attribute Aj,
such that: s;; = aif A€ R, otherwise s;; = b.

2. Repeat the following process till S has no
change or one row is made up entirely of “a”
symbols.

1. For each X— Y, choose the rows where the

elements corresponding to X take the value

a a a a e a.
2. In those chosen rows (must be at least two
rows), the elements corresponding to Y also
Lossless join take the value a if one of the chosen rows

take the value a on-Y . 34

Checkpoint

Previous:
1. The test for lossless join property

2. The dependency preservation property

Next:
1. The method to decompose to BCNF and 3NF
2. Minimal Cover and Equivalence
3. The method to decompose to 3NF

35

Testing for BCNF

Testing of a relation schema R to see if it satisfies BCNF can be

simplified in some cases (but not all cases):

> To check if a nontrivial dependency a — [3 causes a violation
of BCNF, compute a+ (the attribute closure of a), and verify
that it includes all attributes of R; that is, it is a superkey for R.

> To check if a relation schema R is in BCNF, it suffices to check
only the dependencies in the given set F for violation of BCNF,
rather than check all dependencies in F +.

36

Testing for BCNF

NOTE: We cannot use F to test relations R, (decomposed from R) for violation of
BCNF. It may not suffice.

Consider R(A, B, C, D, E) with F = {A-> B, BC -> D}.
Suppose R is decomposed into R1 = (A, B)and R2 = (A, C, D, E).

Neither of the dependencies in F contains only attributes from R2.
So R2isin BCNF? No, AC->Disin F+.

Example above : X —Y violating BCNF is not always in F.
It passing with respect to the projection of F on R,

37

Testing Decomposition for BCNF

An alternative BCNF test is sometimes easier than computing every dependency in F+.
To check if a relation schema R;in a decomposition of R is truly in BCNF, we apply this test:

For each subset X of R;, computer X*.
> X —(X*|g — X) violates BCNF, if X*|;, - X#0 and R, - X*# Q.
» This will show if R; violates BCNF.

Explanation:
» X*|gi— X =0 means each F.D with X as the left-hand side is trivial;

> R, — X" =@ means X is a superkey of R,

38

Lossless Decomposition into BCNF

Algorithm TO_BCNF
» D ={R,R,, ...R,}
> While (there exists a R;€ D and R;is not in BCNF) Do
1.find a X =Y in R, that violates BCNF;
2.replace R;inDby (R,—-Y)and (XU Y),

39

Lossless Decomposition into BCNF

Example:
Find a BCNF decomposition of the relation scheme below:

SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of:
Algorithm TO_BCNF

Ship — Capacity D= (R.R, R
{Ship , Date} — Cargo While (there exists a R;€ D and R; is not in
{Cargo , Capacity} — Value BCNF) Do

1.find a X —-Y in R, that violates BCNF;
We know this relation is not in BCNF 2. replace RinDby (R, -Y)and (XUY);

40

Lossless Decomposition into BCNF (V1)

From Ship— Capacity, we decompose SHIPPING into R,,and R ,,

R A(Ship , Date , Cargo , Value) with Key: {Ship,Date}
A nontrivial FD in F* violates BCNF: {Ship , Cargo} — Value

and

R,oA(Ship , Capacity) with Key: {Ship}
Only one nontrivial FD in F*: Ship — Capacity

SHIPPING (Ship , Capacity , Date , Cargo , Value)
F consists of: Ship — Capacity, {Ship , Date}— Cargo, {Cargo , Capacity}— Value

41

Lossless Decomposition into BCNF (V1)

R, is not in BCNF so we must decompose it further into Ry;, and R,,

R1a (Ship , Date , Cargo) with Key: {Ship,Date}
Only one nontrivial FD in F* with single attribute on the right side: {Ship , Date} —Cargo
and

Rioa (Ship , Cargo, Value) with Key: {Ship,Cargo}
Only one nontrivial FD in F* with single attribute on the right side: {Ship,Cargo} — Value

This is in BCNF, and the decomposition is lossless but not dependency
preserving (the FD {Capacity, Cargo} — Value) has been lost.

SHIPPING (Ship , Capacity , Date , Cargo , Value)
F consists of: Ship — Capacity, {Ship , Date}— Cargo, {Cargo , Capacity}—Value

42

Lossless Decomposition into BCNF (V2)

Or we could have chosen {Cargo , Capacity} — Value, which would
give us:

R.g (Ship , Capacity , Date , Cargo) with Key: {Ship,Date}
A nontrivial FD in F* violates BCNF: Ship — Capacity

and
R,g (Cargo , Capacity , Value) with Key: {Cargo, Capacity}

Only one nontrivial FD in F* with single attribute on the right side: {Cargo, Capacity} — Value

Once again, R,z is not in BCNF so we must decompose it further...

SHIPPING (Ship , Capacity , Date , Cargo , Value)
F consists of: Ship — Capacity, {Ship , Date}— Cargo, {Cargo , Capacity}— Value | 43

Lossless Decomposition into BCNF (V2)

R, is not in BCNF so we must decompose it further into R,z and R,
Ryg (Ship , Date , Cargo) with Key: {Ship,Date}
Only one nontrivial FD in F* with single attribute on the right side: {Ship , Date} — Cargo
and
Ry,5 (Ship , Capacity) with Key: {Ship}
Only one nontrivial FD in F*: Ship — Capacity

This is in BCNF, and the decomposition is both lossless and dependency
preserving.

SHIPPING (Ship , Capacity , Date , Cargo , Value)
F consists of: Ship — Capacity {Ship, Date}— Cargo, {Cargo , Capacity}— Value |44

Lossless Decomposition into BCNF

With this algorithm from the previous slide...

We get a decomposition D of R that does the following:
» May not preserves dependencies
» Has the lossless join property

> Is such that each resulting relation schema in the decomposition
Is in BCNF

45

Lossless decomposition into BCNF

Review: Algorithm TO_BCNF
D:={R.,R, ..R,}
While 3 a R;e D and R;is notin BCNF Do

{ find a X —-Y in R, that violates BCNF; replace R;in Dby (R,-Y)and (XU Y), }

Since a X —Y violating BCNF is not always in F, the main difficulty is to verify if R; is

in BCNF;

46

Practice

F ={A-B,A~C,A—~D, C—E, E~D, C~G},

R1=(C,D,E G),R2=(A B, C, D)

47

Practice

F={A—-B,A—C, A—D, C—E, E—D, C-G},
R1=(C,D,E,G),R2=(A,B, C,D)
Answer:

R11=(C, E, G), R12 = (E, D) because of E-> D

R21 = (A, B, C), R22 = (C, D) because of C->D

48

Lossless and dependency-preserving
decomposition into 3NF

A lossless and dependency-preserving decomposition into 3NF is

always possible.

More definitions regarding FD’s are needed.

49

Equivalence(1)

Definition (equivalence): Two sets of functional dependencies E

and F are equivalent if E+ = F+.

Equivalence can also be understood via cover defined as in the

next page

50

Equivalence(2) — Alternative Definition

Definition (cover): A set of functional dependencies F is said to cover
another set of functional dependencies E if every FD in E is also in F+;
that is, if every dependency in E can be inferred from F; alternatively,
we can say that E is covered by F.

Explanation (equivalence): Therefore, equivalence means that every
FD in E can be inferred from F, and every FD in F can be inferred from
E; that is, E is equivalent to F if both the conditions—E covers F AND
F covers E—hold

o1

Minimal Cover

r
Definition (equivalence): Two sets of functional dependencies £ and

F are equivalent if E+ = F+.

.. Of a set of functional dependencies E
IS a minimal set of dependencies (in the standard canonical form and
without redundancy) that is equivalent to E.

Definition. A minimal cover F

Property: If any dependency from F is removed; this property is lost F

A minimal cover for F is a minimal set of FD’s F_. such that F* = F* . .

52

Minimal Cover

A set F of FD’s is minimal if
1. Every FD X— Y'In F is simple: Y consists of a single
attribute,
2. Every FD X— A in F is left-reduced: there is no proper
subset Y c X such that X — A can be replaced with Y—A.
3. No FD in F can be removed; that is, there is no FD X—Ain F
such that (F - {X - A})*=F*.

53

Prereq. for Algorithm (1)

(Condition one)
Algorithm Reduce_right
> INPUT: F.
» OUTPUT: right side reduced F'.
> Foreach FD X— Y e Fwhere Y = {A,A,, ...,A}, we use all X —{A} (for

1< i< k) toreplace X— Y.

54

Prereq. for Algorithm (2)

(Condition two)
Algorithm Reduce_left
» INPUT: right side reduced F.
» OUTPUT: right and left side reduced F'.

> Foreach X — {A} € Fwhere X ={A;: 1 =i <k}, do the following. For i =
1 to k, replace X with X = {A} if Aeg(X - {A})".

95

Prereq for Algorithm (3)

(Condition three)

Algorithm Reduce_redundancy
> INPUT: right and left side reduced F.

> OUTPUT: a minimum cover F’of F.

> Foreach FD X — {A} € F, remove it from F if: A € X* with respect to F -
{X —{A}}.

56

Algorithm for Minimal Cover

Algorithm Min_ Cover
Input: a set F of functional dependencies.

Step 1: Reduce right side.
Apply Algorithm Reduce Right to F.

Step 2: Reduce left side.
Apply Algorithm Reduce Left to the output of Step 1.

Step 3. Remove redundant FDs.
Apply Algorithm Remove_redundency to the output of Step 2.

S7

Computing a Minimal Cover (Step 1)

Step 1: Reduce Right: Foreach FD X— Y e Fwhere Y =
{A,A,, ...,A}, we use all X —{A} (for 1</ < k) to replace X— Y .

Practice:
R — (A, B, C, D) Ea G)
F = {A ->BCD, B -> CDE, AC -> E}

Attheend of step1wehave:F ={A->B,A->C,A->D,B->C,B->
D,B->E,AC -> E}

58

Computing a Minimal Cover (Step 2)

Step 2: Reduce Left: For each X — {A} € Fwhere X ={A,;: 1 <i<k}, do the
following. For i =1 to k, replace X with X - {A} if Ae(X - {A})".

From Step 1, we had: F={A->B,A->C,A->D,B->C,B->D,B->E,AC -> E}

AC -> E

C* = {C}; thus C -> E is not inferred by F".

Hence, AC -> E cannot be replaced by C -> E.

A*={A, B, C, D, E}; thus, A-> E is inferred by F’.

Hence, AC -> E can be replaced by A-> E.

We now have F"={A->B,A->C,A->D,A->E,B->C,B->D, B ->E}

59

Computing a Minimal Cover (Step 3)

Step 3: Reduce_redundancy: For each FD X — {A} € F, remove it from F if: A € X* with
respect to F — {X —{A}}.

From Step 2, we had: F"={A->B,A->C,A->D,A->E,B->C,B->D,B->E}

Atle a5 ={A, C, D, E}; thus A-> B is not inferred by F” — {A -> B}.
That is, A -> B is not redundant.
A+|F,,_{A_>)= {A, B, C, D, E}; thus, A-> C is redundant.

1)

Thus, we can remove A -> C from F” to obtain F’”.

We find that we can remove A -> D and A -> E but not the others.
Thus, F,={A->B,B->C,B->D, B ->E}.

60

A Note on Finding Minimal Cover

There can be more than one possible minimum cover.

We can always find at least one minimal cover F for any
set of dependencies E using this algorithm.

61

3NF Decomposition Algorithm

Algorithm 3NF decomposition
1. Find a minimal cover G for F.

2. For each left-hand-side X of a functional dependency that appears in G, create a relation
schema in D with attributes {X'U {A;} U {A,} ... U {A,} }, where X-> A, X-> A,, ..., X->A,are
the only dependencies in G with X as left-hand-side (X is the key to this relation).

3. If none of the relation schemas in D contains a key of R, then create one more relation schema

in D that contains attributes that form a key of R.

4. Eliminate redundant relations from the resulting set of relations in the relational database
schema. A relation R is considered redundant if R is a projection of another relation S in the

schema; alternately, R is subsumed by S.

62

3NF Decomposition Algorithm

With this algorithm from the previous slide...

We get a decomposition D of R that does the following:
» Preserves dependencies
» Has the nonadditive (lossless) join property

» Is such that each resulting relation schema in the decomposition is in
3NF

63

3NF Decomposition Algorithm

Example ONE:
R=(AB,C,D,E, G)
F...={A->B, B->C, B->D, B->E}.
Candidate key: (A, G)
R,=(A,B),R,=(B, C,D, E)
R; = (A, G)

64

3NF Decomposition Algorithm

Example TWO:

Following from the SHIPPING relation. The functional dependencies
already form a canonical cover.

» From Ship— Capacity, derive R,(Ship,Capacity),
» From {Ship,Date} — Cargo, derive R,(Ship , Date , Cargo),

» From {Capacity,Cargo} — Value, derive R4(Capacity , Cargo ,
Value).

» There are no attributes not yet included and the original key
{Ship,Date} is included in R,.

SHIPPING (Ship , Capacity , Date , Cargo , Value)
F consists of: Ship — Capacity, {Ship , Date}— Cargo, {Cargo , Capacity}— Value |65

3NF Decomposition Algorithm

Example THREE: Apply the algorithm to the LOTS example given earlier.

One possible minimal cover is
{ Property Id—Lot No,
Property |Id — Area, {City,Lot No} — Property Id,
Area — Price, Area — City, City — Tax_Rate }.
This gives the decomposition:
R, (Property Id, Lot No, Area)
R, (City , Lot No , Property_Id)
R, (Area , Price , City)
R, (City , Tax_Rate)

66

Summary

1. Data redundancies are undesirable as they create the potential
for update anomalies.

2. One way to remove such redundancies is to normalize a design,
guided by FD’s.

3. BCNF removes all redundancies due to FDs, but a dependency
preserving decomposition cannot always be found.

4. A dependency preserving, lossless decomposition into 3NF can
always be found, but some redundancies may remain.

5. Even where a dependency preserving, lossless decomposition
that removes all redundancies can be found, it may not be
possible, for efficiency reasons, to remove all redundancies.

67

Learning Outcome

> Checking for important decomposition properties
> Checking for the dependency preserving property
> Checking for the lossless join property

> Lossless decomposition into BCNF algorithm

> Lossless and Dependency Preserving 3NF decomposition

algorithm

68

	默认节
	Slide 1
	Slide 2: Notice
	Slide 3: Review: Normal Forms
	Slide 4: From The Previous Lectures
	Slide 5: Decomposition
	Slide 6: Decomposition
	Slide 7: On Decompositions
	Slide 8: Dependency Preserving
	Slide 9: Projection of F
	Slide 10: Projection of F Example
	Slide 11: Projection of F Example
	Slide 12: Dependency Preservation Example (1)
	Slide 13: Dependency Preservation Example (1)
	Slide 14: Dependency Preservation Example (2)
	Slide 15: Dependency Preservation Example (2)
	Slide 16: Dependency Preservation Example (3)
	Slide 17: Dependency Preservation Example (3)
	Slide 18: Lossless Join Property
	Slide 19: Lossless Join Property
	Slide 20: Recall
	Slide 21: Lossy Join Decomposition(cont)
	Slide 22: A Lossy Join Decomposition(cont)
	Slide 23: A Lossy Join Decomposition(cont)
	Slide 24: A Lossy Join Decomposition(cont)
	Slide 25: Lossless Join Property
	Slide 26: Lossless Join Property
	Slide 27: Test Lossless Join property
	Slide 28: Testing lossless join property(cont)
	Slide 29: Testing lossless join property(cont)
	Slide 30: Testing lossless join property(cont)
	Slide 31: Testing lossless join property(cont)
	Slide 32: Testing lossless join property(cont)
	Slide 33: Testing lossless join property(cont)
	Slide 34: Testing lossless join property(cont)
	Slide 35: Checkpoint
	Slide 36: Testing for BCNF
	Slide 37: Testing for BCNF
	Slide 38: Testing Decomposition for BCNF
	Slide 39: Lossless Decomposition into BCNF
	Slide 40: Lossless Decomposition into BCNF
	Slide 41: Lossless Decomposition into BCNF (V1)
	Slide 42: Lossless Decomposition into BCNF (V1)
	Slide 43: Lossless Decomposition into BCNF (V2)
	Slide 44: Lossless Decomposition into BCNF (V2)
	Slide 45: Lossless Decomposition into BCNF
	Slide 46: Lossless decomposition into BCNF
	Slide 47: Practice
	Slide 48: Practice
	Slide 49: Lossless and dependency-preserving decomposition into 3NF
	Slide 50: Equivalence(1)
	Slide 51: Equivalence(2) – Alternative Definition
	Slide 52: Minimal Cover
	Slide 53: Minimal Cover
	Slide 54: Prereq. for Algorithm (1)
	Slide 55: Prereq. for Algorithm (2)
	Slide 56: Prereq for Algorithm (3)
	Slide 57: Algorithm for Minimal Cover
	Slide 58: Computing a Minimal Cover (Step 1)
	Slide 59: Computing a Minimal Cover (Step 2)
	Slide 60: Computing a Minimal Cover (Step 3)
	Slide 61: A Note on Finding Minimal Cover
	Slide 62: 3NF Decomposition Algorithm
	Slide 63: 3NF Decomposition Algorithm
	Slide 64: 3NF Decomposition Algorithm
	Slide 65: 3NF Decomposition Algorithm
	Slide 66: 3NF Decomposition Algorithm
	Slide 67: Summary
	Slide 68: Learning Outcome

