
Relational
Database Design

COMP9311 24T3; Week 5.2

By Zhengyi Yang, UNSW

Notice

❑ Next week is the quiet week

❑ No Lecture/Lab

❑ Forum and Consultation is available as normal

2

Review: Normal Forms

1NF:

• Attribute values are atomic

2NF:

• Nonprime attributes are not partially dependent on any key

3NF:

• For all non-trivial FD’s X → A, either X is a superkey or A is a prime attribute (i.e., no transitive

dependency)

BCNF:

• For all non-trivial FD’s X → A, X is a superkey

3

From The Previous Lectures

Redundancy/Anomalies can be removed from relation designs by

decomposing them until they are in a normal form.

4

Decomposition

Definition (Decomposition): A decomposition of a relation

scheme, R, is a set of relation schemes 𝑅1, … , 𝑅𝑛 such that 𝑅𝑖 ⊆

𝑅 for each 𝑖, and ∪𝑖=1
𝑛 𝑅𝑖 = 𝑅.

This is called the attribute preservation condition of decomposition.

5

Decomposition

Example: R={A, B, C, D, E}

 R1 = {A, B}

 R2 = {A, C}

 R3 = {C, D, E}

A naive decomposition: each relation has only one attribute?

6

On Decompositions

Important: it is improper to assess the quality of your decompositions by

independently checking to see if the resulting relations are in a higher form.

A good decomposition should also have the following two properties.

1. the dependency preservation property

2. the nonadditive (or lossless) join property

Together, they gives us desirable decompositions

7

Dependency Preserving

A decomposition D={R1, …, Rn} of R is dependency-preserving

wrt a set F of FDs if:

(F1 ∪ … ∪ Fn)
+ = F+,

where Fi means the projection of F onto Ri.

8

Projection of F

Given a set of initial dependencies F on R:

Let R be decomposed in to 𝑅𝑖 , … , 𝑅𝑚

Definition (Projection): The projection of F on 𝑅𝑖, denoted by 𝜋𝑅𝑖
(F)

where 𝑅𝑖 is a subset of R, is the set of dependencies X → Y in F+ such

that the attributes in X ∪ 𝑌 are all contained in 𝑅𝑖.

To simplify notations, we also denote the projection of F on 𝑅𝑖 as 𝐹𝑖.

In simple English: Fi is the subset of dependencies F+ that include only attributes in

𝑅𝑖 . (Hence a projection of F)

9

Projection of F Example

Definition (Projection): The projection of F on 𝑅𝑖, denoted by 𝜋𝑅𝑖
(F) where 𝑅𝑖 is a

subset of R, is the set of dependencies X → Y in F+ such that the attributes in X 

Y are all contained in 𝑅𝑖.

Example

R = (A, B, C, D, E, G, M)

F = { A → BC, D → EG, M → A }

What are the projections of R1 and R2?

R1= (A, B, C, M) and R2 = (C, D, E, G)

10

Projection of F Example

Definition (Projection): The projection of F on 𝑅𝑖, denoted by 𝜋𝑅𝑖
(F) where 𝑅𝑖 is a subset of

R, is the set of dependencies X → Y in F+ such that the attributes in X  Y are all contained

in 𝑅𝑖.

Example

R = (A, B, C, D, E, G, M)

F = { A → BC, D → EG, M → A }

What are the projections of R1 and R2?

R1= (A, B, C, M) and R2 = (C, D, E, G)

𝜋𝑅1
 = { A → BC, M → A}, 𝜋𝑅2

 = {D → EG} (Projections of R1 and R2)

(Can be similarly denoted as F1 = { A → BC, M → A}, F2 = {D → EG})

11

Dependency Preservation Example (1)

Dependency Preservation:

A decomposition is dependency preserving if (F1  F2  …  Fn)
+ = F+

R = (A, B, C, D, E, G, M)

Consider F = { A → BC, D → EG, M → A }

Decomposed into

R1= (A, B, C, M) and R2 = (C, D, E, G)

𝜋𝑅1
(𝐹) = { A → BC, M → A}, 𝜋𝑅2

(𝐹) = {D → EG}

(Question: Is this decomposition dependency preserving?)

12

Dependency Preservation Example (1)

Dependency Preservation:

A decomposition is dependency preserving if (F1  F2  …  Fn)
+ = F+

R = (A, B, C, D, E, G, M)

Consider F = { A → BC, D → EG, M → A }

Decomposed into

R1= (A, B, C, M) and R2 = (C, D, E, G)

𝜋𝑅1
(𝐹) = { A → BC, M → A}, 𝜋𝑅2

(𝐹) = {D → EG}

(Question: Is this decomposition dependency preserving?)

13

Let F’ = 𝜋𝑅1
(𝐹) U 𝜋𝑅2

(𝐹).

F’+ = F+, Thus it is dependency preserving.

(Question: Must F’ be the same as F ?)

Dependency Preservation Example (2)

R = (A, B, C, D, E, G, M)

Consider F = { A → BC, D → EG, M → A, M → D }

Decomposition into R1 and R2

R1= (A, B, C, M) and R2 = (C, D, E, G);

F1 = { A → BC, M → A}, F2 = {D → EG}

(Question: is R1 and R2 dependency preserving w.r.t to F? (It seems like

we lost M → D))

14

Dependency Preservation Example (2)

R = (A, B, C, D, E, G, M)

Consider F = { A → BC, D → EG, M → A, M → D }

Decomposition into R1 and R2

R1= (A, B, C, M) and R2 = (C, D, E, G);

F1 = { A → BC, M → A}, F2 = {D → EG}

We only checked if F1 U F2 is the same as F, this is not always sufficient.

Approach: We need to verify if M→D is inferred by F1 U F2

Answer: Since M+ | F1 U F2 = {M, A, B, C}, Therefore, M→D is not inferred by F1 U F2. Hence, R1 and R2 are

not dependency preserving regarding F.

15

Dependency Preservation Example (3)

Third Example:

R = (A, B, C, D, E, G, M)

Consider F = {A → BC, D → EG, M → A , M→C, C→ D, M→ D}

Decomposition into R1 and R2

R1= (A, B, C, M) and R2 = (C, D, E, G)

F1 = {A → BC, M→ A, M→ C}, F2 = {D→ EG, C→ D}

(Question: Is this dependency preserving?)

16

Dependency Preservation Example (3)

Third Example:

R = (A, B, C, D, E, G, M)

Consider F = {A → BC, D → EG, M → A , M→C,

C→ D, M→ D}

Decomposition into R1 and R2

R1= (A, B, C, M) and R2 = (C, D, E, G)

F1 = {A → BC, M→ A, M→ C}, F2 = {D→ EG,

C→ D}

(Question: Is this dependency preserving?)

17

Answer:

Once again F1 U F2 is not the same as F.

We can verify that M→ D is inferred by F1 and F2.

Thus, F+ = (F1 U F2)+ (they are equivalent)

Hence, R1 and R2 are dependency preserving

regarding F.

Lossless Join Property

Another property that a decomposition D should possess is the lossless join

property.

Definition (Lossless Join Property): Formally, a decomposition D = {R1,

R2, ..., Rm} of R has the lossless join property with respect to the set of

dependencies F on R if, for every relation state r of R that satisfies F, the

following holds, where * is the NATURAL JOIN of all the relations in D:

*(πR1(r), ..., πRm(r)) = r.

18

Lossless Join Property

Simplified explanation:

A decomposition {R1, . . . ,Rm} of R is a lossless join

decomposition with respect to a set F of FD’s if for every relation

instance r that satisfies F: 𝑟 = 𝜋
𝑅1

𝑟 ⋈ ⋯ ⋈𝜋
𝑅𝑛

𝑟 .

19

Recall

Both the 3NF and BCNF can ensure lossless join property holds.

20

Property 3NF BCNF

Elimination of redundancy due to

functional dependency

Most Yes

Lossless Join Yes Yes

Dependency preservation due to

functional dependency

Yes Maybe

Lossy Join Decomposition(cont)

Suppose that we decompose the following relation:

With dependencies ሼ
ሽ

𝑁𝑎𝑚𝑒 → 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑁𝑎𝑚𝑒 → 𝐴𝑑𝑣𝑖𝑠𝑜𝑟, 𝐴𝑑𝑣𝑖𝑠𝑜𝑟 →
𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 , into two relations:

21

STUDENT_ADVISOR

Name Department Advisor

Jones Comp Sci Smith

Ng Chemistry Turner

Martin Physics Bosky

Dulles Decision Sci Hall

Duke Mathematics James

James Comp Sci Clark

Evan Comp Sci Smith

Baxter English Bronte

A Lossy Join Decomposition(cont)

22

STUDENT_DEPARTMENT

Name Department

Jones Comp Sci

Ng Chemistry

Martin Physics

Duke Mathematics

Dulles Decision Sci

James Comp Sci

Evan Comp Sci

Baxter English

DEPARTMENT_ADVISOR

Department Advisor

Comp Sci Smith

Chemistry Turner

Physics Bosky

Decision Sci Hall

Mathematics James

Comp Sci Clark

English Bronte

STUDENT_ADVISOR

Name Department Advisor

Jones Comp Sci Smith

Ng Chemistry Turner

Martin Physics Bosky

Dulles Decision Sci Hall

Duke Mathematics James

James Comp Sci Clark

Evan Comp Sci Smith

Baxter English Bronte

A Lossy Join Decomposition(cont)

When we join back two tables, it is

not the same as the original

relation.

(the tuples marked with * have

been added).

Thus, the decomposition is lossy.

23

Name Department Advisor

Jones Comp Sci Smith

Jones Comp Sci Clark*

Ng Chemistry Turner

Martin Physics Bosky

Dulles Decision Sci Hall

Duke Mathematics James

James Comp Sci Smith*

James Comp Sci Clark

Evan Comp Sci Smith

Evan Comp Sci Clark*

Baxter English Bronte

A Lossy Join Decomposition(cont)

There is a simple test to see if a decomposition is lossy by check if this

dependency exists.

Test: A decomposition of R into R1 and R2 is lossless join if at least one of
the following dependencies is in F+:

• R1  R2 → R1

• R1  R2 → R2

This only works for binary decompositions.

24

Lossless Join Property

Note: the above test only applies for simple binary decompositions

We restate the theorem: The decomposition {R1,R2} of R is lossless iff

the common attributes R1∩ R2 form a superkey for either R1 or R2.

Exercise: Given R(A,B,C) and F = {A→ B}.

Is the decomposition into R1(A,B) and R2(A,C) lossless?

Yes

25

Lossless Join Property

Note:

➢ The word loss in lossless refers to loss of information

➢ The word loss in lossless does not refer to a loss of tuples

In fact…

➢ A decomposition without the lossless join property leads to additional

spurious tuples after NATURAL JOIN operations

➢ These additional tuples contribute to erroneous or invalid information

➢ A decomposition with a lossless join property will not lead to additional

tuples; Therefore, it is also known as non-additive join.

26

Test Lossless Join property

This previous test works on binary decompositions, below is the general

solution to testing lossless join property

Algorithm TEST_LJ:

1. Create a matrix S, each element si,j ∈S corresponds the relation Ri and the

attribute Aj, such that: sj,i = a if Ai ∈ Rj , otherwise sj,i = b.

2. Repeat the following process until (1) S has no change OR (2) one row is

made up entirely of “a” symbols.

i. For each X→ Y , choose the rows where the elements corresponding to X take the value a.

ii. In those chosen rows (must be at least two rows), the elements corresponding to Y also take

the value a if one of the chosen rows take the value a on Y .

Verdict: Decomposition is lossless if one row is entirely made up by “a” values.

27

Testing lossless join property(cont)

Example 1:

R = (A,B,C,D),

F = {A→B, A →C, C → D}.

Let R1 = (A,B,C), R2 = (C,D).

Note: rows 1 and 2 of S agree on {C}, which is the left-

hand side of C→D. Therefore, change the D value on

rows 1 to a, matching the value from row 2.

Now row 1 is entirely a’s, so the decomposition is

lossless.

28

A B C D

R1 a a a b

R2 b b a a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S, each element si,j∈S

corresponds the relation Ri and the attribute Aj,

such that: sj,i = a if Ai∈ Rj, otherwise sj,i = b.

2. Repeat the following process till S has no

change or one row is made up entirely of “a”

symbols.

1. For each X→ Y , choose the rows where the

elements corresponding to X take the value

a.

2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also

take the value a if one of the chosen rows

take the value a on Y .

Testing lossless join property(cont)

29

A B C D

R1 a a a b a

R2 b b a a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S, each element si,j∈S

corresponds the relation Ri and the attribute Aj,

such that: sj,i = a if Ai∈ Rj, otherwise sj,i = b.

2. Repeat the following process till S has no

change or one row is made up entirely of “a”

symbols.

1. For each X→ Y , choose the rows where the

elements corresponding to X take the value

a.

2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also

take the value a if one of the chosen rows

take the value a on Y .

Example 1:

R = (A,B,C,D),

F = {A→B, A →C, C → D}.

Let R1 = (A,B,C), R2 = (C,D).

Note: rows 1 and 2 of S agree on {C}, which is the left-

hand side of C→D. Therefore, change the D value on

rows 1 to a, matching the value from row 2.

Now row 1 is entirely a’s, so the decomposition is

lossless.

Testing lossless join property(cont)

Example 2:

R = (A,B,C,D,E),

F = {AB →CD ,A → E, C → D}.

Let R1 = (A,B,C),

R2 = (B,C,D) and

R3 = (C,D,E).

30

A B C D E

R1 a a a b b

R2 b a a a b

R3 b b a a a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S, each element si,j∈S

corresponds the relation Ri and the attribute Aj,

such that: sj,i = a if Ai∈ Rj, otherwise sj,i = b.

2. Repeat the following process till S has no

change or one row is made up entirely of “a”

symbols.

1. For each X→ Y , choose the rows where the

elements corresponding to X take the value

a.

2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also

take the value a if one of the chosen rows

take the value a on Y .

Testing lossless join property(cont)

Example 2:

R = (A,B,C,D,E),

F = {AB →CD ,A → E, C → D}.

Let R1 = (A,B,C),

R2 = (B,C,D) and

R3 = (C,D,E).

31

A B C D E

R1 a a a b b

R2 b a a a b

R3 b b a a a

a

Not lossless join

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S, each element si,j∈S

corresponds the relation Ri and the attribute Aj,

such that: sj,i = a if Ai∈ Rj, otherwise sj,i = b.

2. Repeat the following process till S has no

change or one row is made up entirely of “a”

symbols.

1. For each X→ Y , choose the rows where the

elements corresponding to X take the value

a.

2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also

take the value a if one of the chosen rows

take the value a on Y .

Testing lossless join property(cont)

Example 3:

R = (A,B,C,D,E,G),

F = {C → DE, A → B, AB → G}.

Let R1 = (A,B), R2 = (C,D,E) and

R3 = (A,C,G).

32

A B C D E G

R1 a a b b b b

R2 b b a a a b

R3 a b a b b a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S, each element si,j∈S

corresponds the relation Ri and the attribute Aj,

such that: sj,i = a if Ai∈ Rj, otherwise sj,i = b.

2. Repeat the following process till S has no

change or one row is made up entirely of “a”

symbols.

1. For each X→ Y , choose the rows where the

elements corresponding to X take the value

a.

2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also

take the value a if one of the chosen rows

take the value a on Y .

Testing lossless join property(cont)

Example 3:

R = (A,B,C,D,E,G),

F = {C → DE, A → B, AB → G}.

Let R1 = (A,B), R2 = (C,D,E) and

R3 = (A,C,G).

33

A B C D E G

R1 a a b b b b

R2 b b a a a b

R3 a b a a a a

A B C D E G

R1 a a b b b b

R2 b b a a a b

R3 a b a b b a

a a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S, each element si,j∈S

corresponds the relation Ri and the attribute Aj,

such that: sj,i = a if Ai∈ Rj, otherwise sj,i = b.

2. Repeat the following process till S has no

change or one row is made up entirely of “a”

symbols.

1. For each X→ Y , choose the rows where the

elements corresponding to X take the value

a.

2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also

take the value a if one of the chosen rows

take the value a on Y .

Testing lossless join property(cont)

Example 3:

R = (A,B,C,D,E,G),

F = {C → DE, A → B, AB → G}.

Let R1 = (A,B), R2 = (C,D,E) and

R3 = (A,C,G).

34

A B C D E G

R1 a a b b b b

R2 b b a a a b

R3 a b a a a a

a

A B C D E G

R1 a a b b b b

R2 b b a a a b

R3 a b a b b a

a a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S, each element si,j∈S

corresponds the relation Ri and the attribute Aj,

such that: sj,i = a if Ai∈ Rj, otherwise sj,i = b.

2. Repeat the following process till S has no

change or one row is made up entirely of “a”

symbols.

1. For each X→ Y , choose the rows where the

elements corresponding to X take the value

a.

2. In those chosen rows (must be at least two

rows), the elements corresponding to Y also

take the value a if one of the chosen rows

take the value a on Y .

Lossless join

Checkpoint

Previous:

1. The test for lossless join property

2. The dependency preservation property

Next:

1. The method to decompose to BCNF and 3NF

2. Minimal Cover and Equivalence

3. The method to decompose to 3NF

35

Testing for BCNF

Testing of a relation schema R to see if it satisfies BCNF can be

simplified in some cases (but not all cases):

➢ To check if a nontrivial dependency α → β causes a violation

of BCNF, compute α+ (the attribute closure of α), and verify

that it includes all attributes of R; that is, it is a superkey for R.

➢ To check if a relation schema R is in BCNF, it suffices to check

only the dependencies in the given set F for violation of BCNF,

rather than check all dependencies in F +.

36

Testing for BCNF

NOTE: We cannot use F to test relations Ri (decomposed from R) for violation of

BCNF. It may not suffice.

Consider R(A, B, C, D, E) with F = {A -> B, BC -> D}.

Suppose R is decomposed into R1 = (A, B) and R2 = (A, C, D, E).

Neither of the dependencies in F contains only attributes from R2.

So R2 is in BCNF? No, AC -> D is in F+.

Example above : X →Y violating BCNF is not always in F.

It passing with respect to the projection of F on Ri

37

Testing Decomposition for BCNF

An alternative BCNF test is sometimes easier than computing every dependency in F+.

To check if a relation schema Ri in a decomposition of R is truly in BCNF, we apply this test:

For each subset X of Ri , computer X+.

➢ X →(X+|Ri − X) violates BCNF, if X+|Ri − X ≠ ∅ and Ri − X+ ≠ ∅ .

➢ This will show if Ri violates BCNF.

Explanation:

➢ X+|Ri − X = ∅ means each F.D with X as the left-hand side is trivial;

➢ Ri − X+ = ∅ means X is a superkey of Ri

38

Lossless Decomposition into BCNF

Algorithm TO_BCNF

➢ D := {R1,R2, ...Rn}

➢ While (there exists a Ri ∈ D and Ri is not in BCNF) Do

1 . find a X →Y in Ri that violates BCNF;

2. replace Ri in D by (Ri − Y) and (X ∪ Y);

39

Lossless Decomposition into BCNF

Example:

Find a BCNF decomposition of the relation scheme below:

SHIPPING (Ship , Capacity , Date , Cargo , Value)

 F consists of:

 Ship → Capacity

 {Ship , Date} → Cargo

 {Cargo , Capacity} → Value

We know this relation is not in BCNF

40

Algorithm TO_BCNF

D := {R1,R2, ...Rn}

While (there exists a Ri ∈ D and Ri is not in

BCNF) Do

1 . find a X →Y in Ri that violates BCNF;

2. replace Ri in D by (Ri − Y) and (X ∪ Y);

Lossless Decomposition into BCNF (V1)

From Ship→ Capacity, we decompose SHIPPING into R1A and R 2A

R1A(Ship , Date , Cargo , Value) with Key: {Ship,Date}

 A nontrivial FD in F+ violates BCNF: {Ship , Cargo} → Value

 and

 R2A(Ship , Capacity) with Key: {Ship}

 Only one nontrivial FD in F+: Ship → Capacity

41

SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}→ Value

Lossless Decomposition into BCNF (V1)

R1 is not in BCNF so we must decompose it further into R11A and R12A

 R11A (Ship , Date , Cargo) with Key: {Ship,Date}

 Only one nontrivial FD in F+ with single attribute on the right side: {Ship , Date} →Cargo

 and

 R12A (Ship , Cargo , Value) with Key: {Ship,Cargo}

 Only one nontrivial FD in F+ with single attribute on the right side: {Ship,Cargo} → Value

This is in BCNF, and the decomposition is lossless but not dependency
preserving (the FD {Capacity, Cargo} → Value) has been lost.

42

SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}→ Value

Lossless Decomposition into BCNF (V2)

Or we could have chosen {Cargo , Capacity} →Value, which would
give us:

 R1B (Ship , Capacity , Date , Cargo) with Key: {Ship,Date}

 A nontrivial FD in F+ violates BCNF: Ship → Capacity

 and

 R2B (Cargo , Capacity , Value) with Key: {Cargo,Capacity}

 Only one nontrivial FD in F+ with single attribute on the right side: {Cargo , Capacity} → Value

Once again, R1B is not in BCNF so we must decompose it further…

43

SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}→ Value

Lossless Decomposition into BCNF (V2)

R1 is not in BCNF so we must decompose it further into R11B and R12B

 R11B (Ship , Date , Cargo) with Key: {Ship,Date}

 Only one nontrivial FD in F+ with single attribute on the right side: {Ship , Date} → Cargo

 and

 R12B (Ship , Capacity) with Key: {Ship}

 Only one nontrivial FD in F+: Ship → Capacity

This is in BCNF, and the decomposition is both lossless and dependency

preserving.

44

SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of: Ship → Capacity {Ship , Date}→ Cargo, {Cargo , Capacity}→ Value

Lossless Decomposition into BCNF

With this algorithm from the previous slide…

We get a decomposition D of R that does the following:

➢ May not preserves dependencies

➢ Has the lossless join property

➢ Is such that each resulting relation schema in the decomposition

is in BCNF

45

Lossless decomposition into BCNF

Review: Algorithm TO_BCNF

D := {R1,R2, ...Rn}

While ∃ a Ri ∈ D and Ri is not in BCNF Do

 { find a X →Y in Ri that violates BCNF; replace Ri in D by (Ri − Y) and (X ∪ Y); }

Since a X →Y violating BCNF is not always in F, the main difficulty is to verify if Ri is

in BCNF;

46

Practice

F = { A→B, A→C, A→D, C→E, E→D, C→G },

R1 = (C, D, E, G), R2 = (A, B, C, D)

47

Practice

F = { A→B, A→C, A→D, C→E, E→D, C→G },

R1 = (C, D, E, G), R2 = (A, B, C, D)

Answer:

R11 = (C, E, G), R12 = (E, D) because of E -> D

R21 = (A, B, C), R22 = (C, D) because of C -> D

48

Lossless and dependency-preserving
decomposition into 3NF

A lossless and dependency-preserving decomposition into 3NF is

always possible.

More definitions regarding FD’s are needed.

49

Equivalence(1)

Definition (equivalence): Two sets of functional dependencies E

and F are equivalent if E+ = F+.

Equivalence can also be understood via cover defined as in the

next page

50

Equivalence(2) – Alternative Definition

Definition (cover): A set of functional dependencies F is said to cover

another set of functional dependencies E if every FD in E is also in F+;

that is, if every dependency in E can be inferred from F; alternatively,

we can say that E is covered by F.

Explanation (equivalence): Therefore, equivalence means that every

FD in E can be inferred from F, and every FD in F can be inferred from

E; that is, E is equivalent to F if both the conditions—E covers F AND

F covers E—hold

51

Minimal Cover

Definition (equivalence): Two sets of functional dependencies E and

F are equivalent if E+ = F+.

Definition. A minimal cover Fmin of a set of functional dependencies E
is a minimal set of dependencies (in the standard canonical form and
without redundancy) that is equivalent to E.

Property: If any dependency from F is removed; this property is lost F

A minimal cover for F is a minimal set of FD’s Fmin such that F+ = F+
min.

52

Minimal Cover

A set F of FD’s is minimal if

1. Every FD X→ Y in F is simple: Y consists of a single

attribute,

2. Every FD X→ A in F is left-reduced: there is no proper

subset Y ⊂ X such that X → A can be replaced with Y→A.

3. No FD in F can be removed; that is, there is no FD X→A in F

such that (F − {X → A})+ = F+.

53

Prereq. for Algorithm (1)

(Condition one)

Algorithm Reduce_right

➢ INPUT: F.

➢ OUTPUT: right side reduced F’.

➢ For each FD X→ Y ∈ F where Y = {A1,A2, ...,Ak}, we use all X →{Ai} (for

1≤ i ≤ k) to replace X→ Y .

54

Prereq. for Algorithm (2)

(Condition two)

Algorithm Reduce_left

➢ INPUT: right side reduced F.

➢ OUTPUT: right and left side reduced F’.

➢ For each X → {A} ∈ F where X = {Ai : 1 ≤ i ≤ k}, do the following. For i =

1 to k, replace X with X − {Ai} if A∈(X − {Ai})
+.

55

Prereq for Algorithm (3)

(Condition three)

Algorithm Reduce_redundancy

➢ INPUT: right and left side reduced F.

➢ OUTPUT: a minimum cover F’ of F.

➢ For each FD X → {A} ∈ F, remove it from F if: A ∈ X+ with respect to F −

{X →{A}}.

56

Algorithm for Minimal Cover

Algorithm Min_Cover

Input: a set F of functional dependencies.

 Step 1: Reduce right side.

 Apply Algorithm Reduce Right to F.

 Step 2: Reduce left side.

 Apply Algorithm Reduce Left to the output of Step 1.

 Step 3: Remove redundant FDs.
 Apply Algorithm Remove_redundency to the output of Step 2.

57

Computing a Minimal Cover (Step 1)

Step 1: Reduce Right: For each FD X→ Y ∈ F where Y =

{A1,A2, ...,Ak}, we use all X →{Ai} (for 1≤ i ≤ k) to replace X→ Y .

Practice:

R = (A, B, C, D, E, G)

F = {A ->BCD, B -> CDE, AC -> E}

At the end of step 1 we have : F’ = {A -> B, A -> C, A -> D, B -> C, B ->

D, B -> E, AC -> E}

58

Computing a Minimal Cover (Step 2)

Step 2: Reduce Left: For each X → {A} ∈ F where X = {Ai : 1 ≤ i ≤ k}, do the

following. For i = 1 to k, replace X with X − {Ai} if A∈(X − {Ai})
+.

From Step 1, we had: F’ = {A -> B, A -> C, A -> D, B -> C, B -> D, B -> E, AC -> E}

AC -> E

C+ = {C}; thus C -> E is not inferred by F’.

Hence, AC -> E cannot be replaced by C -> E.

A+ = {A, B, C, D, E}; thus, A -> E is inferred by F’.

Hence, AC -> E can be replaced by A -> E.

We now have F’’ = {A -> B, A -> C, A -> D, A -> E, B -> C, B -> D, B -> E}

59

Computing a Minimal Cover (Step 3)

Step 3: Reduce_redundancy: For each FD X → {A} ∈ F, remove it from F if: A ∈ X+ with

respect to F − {X →{A}}.

From Step 2, we had: F’’ = {A -> B, A -> C, A -> D, A -> E, B -> C, B -> D, B -> E}

A+|F’’ – {A -> B} = {A, C, D, E}; thus A -> B is not inferred by F’’ – {A -> B}.

That is, A -> B is not redundant.

A+|F’’ – {A -> C} = {A, B, C, D, E}; thus, A -> C is redundant.

Thus, we can remove A -> C from F’’ to obtain F’’’.

We find that we can remove A -> D and A -> E but not the others.

Thus, Fmin={A -> B, B -> C, B -> D, B -> E}.

60

A Note on Finding Minimal Cover

There can be more than one possible minimum cover.

We can always find at least one minimal cover F for any
set of dependencies E using this algorithm.

61

3NF Decomposition Algorithm

Algorithm 3NF decomposition

1. Find a minimal cover G for F.

2. For each left-hand-side X of a functional dependency that appears in G, create a relation

schema in D with attributes {X ∪ {A1} ∪ {A2} ... ∪ {Ak} }, where X -> A1, X -> A2, ..., X -> Ak are

the only dependencies in G with X as left-hand-side (X is the key to this relation).

3. If none of the relation schemas in D contains a key of R, then create one more relation schema

in D that contains attributes that form a key of R.

4. Eliminate redundant relations from the resulting set of relations in the relational database

schema. A relation R is considered redundant if R is a projection of another relation S in the

schema; alternately, R is subsumed by S.

62

3NF Decomposition Algorithm

With this algorithm from the previous slide…

We get a decomposition D of R that does the following:

➢ Preserves dependencies

➢ Has the nonadditive (lossless) join property

➢ Is such that each resulting relation schema in the decomposition is in

3NF

63

3NF Decomposition Algorithm

Example ONE:

R = (A, B, C, D, E, G)

Fmin={A->B, B->C, B->D, B->E}.

Candidate key: (A, G)

R1 = (A, B), R2 = (B, C, D, E)

R3 = (A, G)

64

3NF Decomposition Algorithm

Example TWO:

Following from the SHIPPING relation. The functional dependencies
already form a canonical cover.

➢ From Ship→Capacity, derive R1(Ship,Capacity),

➢ From {Ship,Date} → Cargo, derive R2(Ship , Date , Cargo),

➢ From {Capacity,Cargo} → Value, derive R3(Capacity , Cargo ,
Value).

➢ There are no attributes not yet included and the original key
{Ship,Date} is included in R2.

65

SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of: Ship → Capacity, {Ship , Date}→ Cargo, {Cargo , Capacity}→ Value

3NF Decomposition Algorithm

Example THREE: Apply the algorithm to the LOTS example given earlier.

One possible minimal cover is

 { Property_Id→Lot_No,

 Property_Id → Area, {City,Lot_No} → Property_Id,

 Area → Price, Area → City, City → Tax_Rate }.

This gives the decomposition:

 R1 (Property_Id , Lot_No , Area)

 R2 (City , Lot_No , Property_Id)

 R3 (Area , Price , City)

 R4 (City , Tax_Rate)

66

Summary

1. Data redundancies are undesirable as they create the potential
for update anomalies.

2. One way to remove such redundancies is to normalize a design,
guided by FD’s.

3. BCNF removes all redundancies due to FDs, but a dependency
preserving decomposition cannot always be found.

4. A dependency preserving, lossless decomposition into 3NF can
always be found, but some redundancies may remain.

5. Even where a dependency preserving, lossless decomposition
that removes all redundancies can be found, it may not be
possible, for efficiency reasons, to remove all redundancies.

67

Learning Outcome

➢ Checking for important decomposition properties

➢ Checking for the dependency preserving property

➢ Checking for the lossless join property

➢ Lossless decomposition into BCNF algorithm

➢ Lossless and Dependency Preserving 3NF decomposition

algorithm

68

	默认节
	Slide 1
	Slide 2: Notice
	Slide 3: Review: Normal Forms
	Slide 4: From The Previous Lectures
	Slide 5: Decomposition
	Slide 6: Decomposition
	Slide 7: On Decompositions
	Slide 8: Dependency Preserving
	Slide 9: Projection of F
	Slide 10: Projection of F Example
	Slide 11: Projection of F Example
	Slide 12: Dependency Preservation Example (1)
	Slide 13: Dependency Preservation Example (1)
	Slide 14: Dependency Preservation Example (2)
	Slide 15: Dependency Preservation Example (2)
	Slide 16: Dependency Preservation Example (3)
	Slide 17: Dependency Preservation Example (3)
	Slide 18: Lossless Join Property
	Slide 19: Lossless Join Property
	Slide 20: Recall
	Slide 21: Lossy Join Decomposition(cont)
	Slide 22: A Lossy Join Decomposition(cont)
	Slide 23: A Lossy Join Decomposition(cont)
	Slide 24: A Lossy Join Decomposition(cont)
	Slide 25: Lossless Join Property
	Slide 26: Lossless Join Property
	Slide 27: Test Lossless Join property
	Slide 28: Testing lossless join property(cont)
	Slide 29: Testing lossless join property(cont)
	Slide 30: Testing lossless join property(cont)
	Slide 31: Testing lossless join property(cont)
	Slide 32: Testing lossless join property(cont)
	Slide 33: Testing lossless join property(cont)
	Slide 34: Testing lossless join property(cont)
	Slide 35: Checkpoint
	Slide 36: Testing for BCNF
	Slide 37: Testing for BCNF
	Slide 38: Testing Decomposition for BCNF
	Slide 39: Lossless Decomposition into BCNF
	Slide 40: Lossless Decomposition into BCNF
	Slide 41: Lossless Decomposition into BCNF (V1)
	Slide 42: Lossless Decomposition into BCNF (V1)
	Slide 43: Lossless Decomposition into BCNF (V2)
	Slide 44: Lossless Decomposition into BCNF (V2)
	Slide 45: Lossless Decomposition into BCNF
	Slide 46: Lossless decomposition into BCNF
	Slide 47: Practice
	Slide 48: Practice
	Slide 49: Lossless and dependency-preserving decomposition into 3NF
	Slide 50: Equivalence(1)
	Slide 51: Equivalence(2) – Alternative Definition
	Slide 52: Minimal Cover
	Slide 53: Minimal Cover
	Slide 54: Prereq. for Algorithm (1)
	Slide 55: Prereq. for Algorithm (2)
	Slide 56: Prereq for Algorithm (3)
	Slide 57: Algorithm for Minimal Cover
	Slide 58: Computing a Minimal Cover (Step 1)
	Slide 59: Computing a Minimal Cover (Step 2)
	Slide 60: Computing a Minimal Cover (Step 3)
	Slide 61: A Note on Finding Minimal Cover
	Slide 62: 3NF Decomposition Algorithm
	Slide 63: 3NF Decomposition Algorithm
	Slide 64: 3NF Decomposition Algorithm
	Slide 65: 3NF Decomposition Algorithm
	Slide 66: 3NF Decomposition Algorithm
	Slide 67: Summary
	Slide 68: Learning Outcome

