

UNSW
SYDNEY

Relational Database Design

COMP9311 24T3; Week 5.2

By Zhengyi Yang, UNSW

Notice

- Next week is the quiet week
- No Lecture/Lab
- Forum and Consultation is available as normal

Review: Normal Forms

1NF:

- Attribute values are **atomic**

2NF:

- Nonprime attributes are not **partially dependent** on any key

3NF:

- For all non-trivial FD's $X \rightarrow A$, either X is a superkey or A is a prime attribute (i.e., no **transitive dependency**)

BCNF:

- For all non-trivial FD's $X \rightarrow A$, X is a superkey

From The Previous Lectures

Redundancy/Anomalies can be removed from relation designs by decomposing them until they are in a normal form.

Decomposition

Definition (Decomposition): A decomposition of a relation scheme, R , is a set of relation schemes $\{R_1, \dots, R_n\}$ such that $R_i \subseteq R$ for each i , and $\bigcup_{i=1}^n R_i = R$.

This is called the **attribute preservation** condition of decomposition.

Decomposition

Example: $R=\{A, B, C, D, E\}$

$$R_1 = \{A, B\}$$

$$R_2 = \{A, C\}$$

$$R_3 = \{C, D, E\}$$

A naive decomposition: each relation has only one attribute?

On Decompositions

Important: it is improper to assess the quality of your decompositions by independently checking to see if the resulting relations are in a higher form.

A good decomposition should also have the following two properties.

1. the **dependency preservation** property
2. the **nonadditive (or lossless) join** property

Together, they give us desirable decompositions

Dependency Preserving

A decomposition $D=\{R_1, \dots, R_n\}$ of R is **dependency-preserving** wrt a set F of FDs if:

$$(F_1 \cup \dots \cup F_n)^+ = F^+,$$

where F_i means the **projection** of F onto R_i .

Projection of F

Given a set of initial dependencies F on R :

Let R be decomposed in to R_1, \dots, R_m

Definition (Projection): The **projection** of F on R_i , denoted by $\pi_{R_i}(F)$ where R_i is a subset of R , is the set of dependencies $X \rightarrow Y$ in F^+ such that the attributes in $X \cup Y$ are all contained in R_i .

To simplify notations, we also denote the projection of F on R_i as F_i .

In simple English: F_i is the subset of dependencies F^+ that include only attributes in R_i . (Hence a projection of F)

Projection of F Example

Definition (Projection): The **projection** of F on R_i , denoted by $\pi_{R_i}(F)$ where R_i is a subset of R , is the **set of dependencies** $X \rightarrow Y$ in F^+ such that the attributes in $X \cup Y$ are all contained in R_i .

Example

$$R = (A, B, C, D, E, G, M)$$

$$F = \{ A \rightarrow BC, D \rightarrow EG, M \rightarrow A \}$$

What are the projections of R1 and R2?

$$R_1 = (A, B, C, M) \text{ and } R_2 = (C, D, E, G)$$

Projection of F Example

Definition (Projection): The **projection** of F on R_i , denoted by $\pi_{R_i}(F)$ where R_i is a subset of R , is the **set of dependencies** $X \rightarrow Y$ in F^+ such that the attributes in $X \cup Y$ are all contained in R_i .

Example

$$R = (A, B, C, D, E, G, M)$$

$$F = \{ A \rightarrow BC, D \rightarrow EG, M \rightarrow A \}$$

What are the projections of R1 and R2?

$$R_1 = (A, B, C, M) \text{ and } R_2 = (C, D, E, G)$$

$$\pi_{R_1} = \{ A \rightarrow BC, M \rightarrow A \}, \pi_{R_2} = \{ D \rightarrow EG \} \text{ (Projections of R1 and R2)}$$

$$(\text{Can be similarly denoted as } F_1 = \{ A \rightarrow BC, M \rightarrow A \}, F_2 = \{ D \rightarrow EG \})$$

Dependency Preservation Example (1)

Dependency Preservation:

A decomposition is **dependency preserving** if $(F_1 \cup F_2 \cup \dots \cup F_n)^+ = F^+$

$R = (A, B, C, D, E, G, M)$

Consider $F = \{ A \rightarrow BC, D \rightarrow EG, M \rightarrow A \}$

Decomposed into

$R_1 = (A, B, C, M)$ and $R_2 = (C, D, E, G)$

$\pi_{R_1}(F) = \{ A \rightarrow BC, M \rightarrow A \}, \pi_{R_2}(F) = \{ D \rightarrow EG \}$

(Question: Is this decomposition dependency preserving?)

Dependency Preservation Example (1)

Dependency Preservation:

A decomposition is **dependency preserving** if $(F_1 \cup F_2 \cup \dots \cup F_n)^+ = F^+$

$R = (A, B, C, D, E, G, M)$

Consider $F = \{ A \rightarrow BC, D \rightarrow EG, M \rightarrow A \}$

Decomposed into

$R_1 = (A, B, C, M)$ and $R_2 = (C, D, E, G)$

$\pi_{R_1}(F) = \{ A \rightarrow BC, M \rightarrow A \}, \pi_{R_2}(F) = \{ D \rightarrow EG \}$

(Question: Is this decomposition dependency preserving?)

Let $F' = \pi_{R_1}(F) \cup \pi_{R_2}(F)$.

$F'^+ = F^+$, Thus it is dependency preserving.

(Question: Must F' be the same as F ?)

Dependency Preservation Example (2)

$R = (A, B, C, D, E, G, M)$

Consider $F = \{ A \rightarrow BC, D \rightarrow EG, M \rightarrow A, M \rightarrow D \}$

Decomposition into R_1 and R_2

$R_1 = (A, B, C, M)$ and $R_2 = (C, D, E, G)$;

$F_1 = \{ A \rightarrow BC, M \rightarrow A \}$, $F_2 = \{ D \rightarrow EG \}$

(Question: is R_1 and R_2 dependency preserving w.r.t to F ? (It seems like we lost $M \rightarrow D$))

Dependency Preservation Example (2)

$R = (A, B, C, D, E, G, M)$

Consider $F = \{ A \rightarrow BC, D \rightarrow EG, M \rightarrow A, M \rightarrow D \}$

Decomposition into R_1 and R_2

$R_1 = (A, B, C, M)$ and $R_2 = (C, D, E, G)$;

$F_1 = \{ A \rightarrow BC, M \rightarrow A \}$, $F_2 = \{ D \rightarrow EG \}$

We only checked if $F_1 \cup F_2$ is the same as F , this **is not always sufficient**.

Approach: We need to verify if $M \rightarrow D$ is inferred by $F_1 \cup F_2$

Answer: Since $M^+ |_{F_1 \cup F_2} = \{M, A, B, C\}$, Therefore, $M \rightarrow D$ is not inferred by $F_1 \cup F_2$. Hence, R_1 and R_2 are not dependency preserving regarding F .

Dependency Preservation Example (3)

Third Example:

$R = (A, B, C, D, E, G, M)$

Consider $F = \{A \rightarrow BC, D \rightarrow EG, M \rightarrow A, M \rightarrow C, C \rightarrow D, M \rightarrow D\}$

Decomposition into R_1 and R_2

$R_1 = (A, B, C, M)$ and $R_2 = (C, D, E, G)$

$F_1 = \{A \rightarrow BC, M \rightarrow A, M \rightarrow C\}$, $F_2 = \{D \rightarrow EG, C \rightarrow D\}$

(Question: Is this dependency preserving?)

Dependency Preservation Example (3)

Third Example:

$R = (A, B, C, D, E, G, M)$

Consider $F = \{A \rightarrow BC, D \rightarrow EG, M \rightarrow A, M \rightarrow C, C \rightarrow D, M \rightarrow D\}$

Decomposition into R_1 and R_2

$R_1 = (A, B, C, M)$ and $R_2 = (C, D, E, G)$

$F_1 = \{A \rightarrow BC, M \rightarrow A, M \rightarrow C\}$, $F_2 = \{D \rightarrow EG, C \rightarrow D\}$

(Question: Is this dependency preserving?)

Answer:

Once again $F_1 \cup F_2$ is not the same as F .

We can verify that $M \rightarrow D$ is inferred by F_1 and F_2 .

Thus, $F^+ = (F_1 \cup F_2)^+$ (they are equivalent)

Hence, R_1 and R_2 are dependency preserving regarding F .

Lossless Join Property

Another property that a decomposition D should possess is the lossless join property.

Definition (Lossless Join Property): Formally, a decomposition $D = \{R_1, R_2, \dots, R_m\}$ of R has the lossless join property with respect to the set of dependencies F on R if, for every relation state r of R that satisfies F , the following holds, where $*$ is the NATURAL JOIN of all the relations in D :

$$*(\pi_{R1}(r), \dots, \pi_{Rm}(r)) = r.$$

Lossless Join Property

Simplified explanation:

A decomposition $\{R_1, \dots, R_m\}$ of R is a *lossless join* decomposition with respect to a set F of FD's if for every relation instance r that satisfies F : $r = \pi_{R_1}(r) \bowtie \dots \bowtie \pi_{R_n}(r)$.

Recall

Both the 3NF and BCNF can ensure lossless join property holds.

Property	3NF	BCNF
Elimination of redundancy due to functional dependency	Most	Yes
Lossless Join	Yes	Yes
Dependency preservation due to functional dependency	Yes	Maybe

Lossy Join Decomposition(cont)

Suppose that we decompose the following relation:

STUDENT ADVISED		
Name	Department	Advisor
Jones	Comp Sci	Smith
Ng	Chemistry	Turner
Martin	Physics	Bosky
Dulles	Decision Sci	Hall
Duke	Mathematics	James
James	Comp Sci	Clark
Evan	Comp Sci	Smith
Baxter	English	Bronte

With dependencies $\{Name \rightarrow Department, Name \rightarrow Advisor, Advisor \rightarrow Department\}$, into two relations:

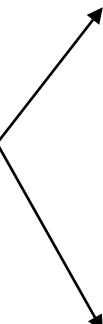
A Lossy Join Decomposition(cont)

STUDENT ADVISED

Name	Department	Advisor
Jones	Comp Sci	Smith
Ng	Chemistry	Turner
Martin	Physics	Bosky
Dulles	Decision Sci	Hall
Duke	Mathematics	James
James	Comp Sci	Clark
Evan	Comp Sci	Smith
Baxter	English	Bronte

STUDENT_DEPARTMENT

Name	Department
Jones	Comp Sci
Ng	Chemistry
Martin	Physics
Duke	Mathematics
Dulles	Decision Sci
James	Comp Sci
Evan	Comp Sci
Baxter	English



DEPARTMENT ADVISED

Department	Advisor
Comp Sci	Smith
Chemistry	Turner
Physics	Bosky
Decision Sci	Hall
Mathematics	James
Comp Sci	Clark
English	Bronte

A Lossy Join Decomposition(cont)

When we join back two tables, it is not the same as the original relation.

(the tuples marked with * have been added).

Thus, the decomposition is lossy.

Name	Department	Advisor
Jones	Comp Sci	Smith
Jones	Comp Sci	Clark*
Ng	Chemistry	Turner
Martin	Physics	Bosky
Dulles	Decision Sci	Hall
Duke	Mathematics	James
James	Comp Sci	Smith*
James	Comp Sci	Clark
Evan	Comp Sci	Smith
Evan	Comp Sci	Clark*
Baxter	English	Bronte

A Lossy Join Decomposition(cont)

There is a simple test to see if a decomposition is lossy by check if this dependency exists.

Test: A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+ :

- $R_1 \cap R_2 \rightarrow R_1$
- $R_1 \cap R_2 \rightarrow R_2$

This only works for **binary** decompositions.

Lossless Join Property

Note: the above test only applies for simple **binary** decompositions

We restate the theorem: The decomposition $\{R_1, R_2\}$ of R is lossless iff the common attributes $R_1 \cap R_2$ form a superkey for either R_1 or R_2 .

Exercise: Given $R(A,B,C)$ and $F = \{A \rightarrow B\}$.

Is the decomposition into $R_1(A,B)$ and $R_2(A,C)$ lossless?

Yes

Lossless Join Property

Note:

- The word loss in lossless refers to loss of information
- The word loss in lossless does not refer to a loss of tuples

In fact...

- A decomposition without the lossless join property leads to **additional spurious** tuples after NATURAL JOIN operations
 - These additional tuples contribute to erroneous or invalid information
- A decomposition with a lossless join property will not lead to additional tuples; Therefore, it is also known as **non-additive join**.

Test Lossless Join property

This previous test works on **binary** decompositions, below is the general solution to testing lossless join property

Algorithm TEST_LJ:

1. Create a **matrix** S , each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
2. Repeat the following process until (1) S has no change OR (2) one row is made up entirely of “a” symbols.
 - i. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 - ii. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y .

Verdict: Decomposition is *lossless* if one row is entirely made up by “a” values.

Testing lossless join property(cont)

Example 1:

$R = (A, B, C, D)$,

$F = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$.

Let $R_1 = (A, B, C)$, $R_2 = (C, D)$.

	A	B	C	D
R_1	a	a	a	b
R_2	b	b	a	a

Note: rows 1 and 2 of S agree on $\{C\}$, which is the left-hand side of $C \rightarrow D$. Therefore, change the D value on rows 1 to a, matching the value from row 2.

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S , each element $s_{i,j} \in S$ corresponds to the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
2. Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
 1. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y .

Testing lossless join property(cont)

Example 1:

$R = (A, B, C, D)$,

$F = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$.

Let $R_1 = (A, B, C)$, $R_2 = (C, D)$.

	A	B	C	D
R_1	a	a	a	b a
R_2	b	b	a	a

Note: rows 1 and 2 of S agree on $\{C\}$, which is the left-hand side of $C \rightarrow D$. Therefore, change the D value on rows 1 to a, matching the value from row 2.

Now **row 1 is entirely a's**, so the decomposition is lossless.

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S , each element $s_{i,j} \in S$ corresponds to the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
2. Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
 1. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y .

Testing lossless join property(cont)

Example 2:

$R = (A, B, C, D, E)$,

$F = \{AB \rightarrow CD, A \rightarrow E, C \rightarrow D\}$.

Let $R_1 = (A, B, C)$,

$R_2 = (B, C, D)$ and

$R_3 = (C, D, E)$.

	A	B	C	D	E
R_1	a	a	a	b	b
R_2	b	a	a	a	b
R_3	b	b	a	a	a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S , each element $s_{i,j} \in S$ corresponds to the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
2. Repeat the following process till S has no change or one row is made up entirely of “a” symbols.
 1. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y .

Testing lossless join property(cont)

Example 2:

$$R = (A, B, C, D, E),$$

$$F = \{AB \rightarrow CD, A \rightarrow E, C \rightarrow D\}.$$

$$Let R_1 = (A, B, C),$$

$$R_2 = (B, C, D) \text{ and}$$

$$R_3 = (C, D, E).$$

	A	B	C	D	E	
R ₁	a	a	a	b	b	←
R ₂	b	a	a	a	b	←
R ₃	b	b	a	a	a	

Not lossless join

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S , each element $s_{i,j} \in S$ corresponds to the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
2. Repeat the following process till S has no change or one row is made up entirely of “a” symbols.
 1. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y .

Testing lossless join property(cont)

Example 3:

$$R = (A, B, C, D, E, G),$$

$$F = \{C \rightarrow DE, A \rightarrow B, AB \rightarrow G\}.$$

$$\text{Let } R_1 = (A, B), R_2 = (C, D, E) \text{ and}$$

$$R_3 = (A, C, G).$$

	A	B	C	D	E	G
R ₁	a	a	b	b	b	b
R ₂	b	b	a	a	a	b
R ₃	a	b	a	b	b	a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S , each element $s_{i,j} \in S$ corresponds to the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
2. Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
 1. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y .

Testing lossless join property(cont)

Example 3:

$$R = (A, B, C, D, E, G),$$

$$F = \{C \rightarrow DE, A \rightarrow B, AB \rightarrow G\}.$$

$$\text{Let } R_1 = (A, B), R_2 = (C, D, E) \text{ and}$$

$$R_3 = (A, C, G).$$

	A	B	C	D	E	G
R_1	a	a	b	b	b	
R_2	b	b	a	a	a	b
R_3	a	b	a	b	b	a

	A	B	C	D	E	G
R_1	a	a	b	b	b	b
R_2	b	b	a	a	a	b
R_3	a	b	a	a	a	a

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S , each element $s_{i,j} \in S$ corresponds to the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_i \in R_j$, otherwise $s_{j,i} = b$.
2. Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
 1. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y .

Testing lossless join property(cont)

Example 3:

$$R = (A, B, C, D, E, G),$$

$$F = \{C \rightarrow DE, A \rightarrow B, AB \rightarrow G\}.$$

$$\text{Let } R_1 = (A, B), R_2 = (C, D, E) \text{ and}$$

$$R_3 = (A, C, G).$$

	A	B	C	D	E	G
R_1	a	a	b	b	b	
R_2	b	b	a	a	a	b
R_3	a	b	a	b	b	a

	A	B	C	D	E	G
R_1	a	a	b	b	b	b
R_2	b	b	a	a	a	b
R_3	a	b	a	b	b	a

Lossless join

CHEAT SHEET: Algorithm TEST_LJ

1. Create a matrix S , each element $s_{i,j} \in S$ corresponds to the relation R_i and the attribute A_j , such that: $s_{j,i} = a$ if $A_j \in R_i$, otherwise $s_{j,i} = b$.
2. Repeat the following process till S has no change or one row is made up entirely of "a" symbols.
 1. For each $X \rightarrow Y$, choose the rows where the elements corresponding to X take the value a.
 2. In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y .

Checkpoint

Previous:

1. The test for lossless join property
2. The dependency preservation property

Next:

1. The method to decompose to BCNF and 3NF
2. Minimal Cover and Equivalence
3. The method to decompose to 3NF

Testing for BCNF

Testing of a relation schema R to see if it satisfies BCNF can be simplified in **some** cases (but **not** all cases):

- To check if a nontrivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF, compute α^+ (the attribute closure of α), and verify that it includes all attributes of R ; that is, it is a superkey for R .
- To check if a relation schema R is in BCNF, it suffices to check only the dependencies in the given set F for violation of BCNF, rather than check all dependencies in F^+ .

Testing for BCNF

NOTE: We cannot use F to test relations R_i (decomposed from R) for violation of BCNF. It may not suffice.

Consider $R(A, B, C, D, E)$ with $F = \{A \rightarrow B, BC \rightarrow D\}$.

Suppose R is decomposed into $R1 = (A, B)$ and $R2 = (A, C, D, E)$.

Neither of the dependencies in F contains only attributes from $R2$.
So $R2$ is in BCNF? No, $AC \rightarrow D$ is in F^+ .

Example above : $X \rightarrow Y$ violating BCNF is not always in F .
It passing with respect to the projection of F on R_i

Testing Decomposition for BCNF

An alternative BCNF test is sometimes easier than computing every dependency in F^+ .

To check if a relation schema R_i in a decomposition of R is truly in BCNF, we apply this test:

For **each subset** X of R_i , computer X^+ .

- $X \rightarrow (X^+|_{R_i} - X)$ violates BCNF, if $X^+|_{R_i} - X \neq \emptyset$ and $R_i - X^+ \neq \emptyset$.
- This will show if R_i violates BCNF.

Explanation:

- $X^+|_{R_i} - X = \emptyset$ means each F.D with X as the left-hand side is trivial;
- $R_i - X^+ = \emptyset$ means X is a superkey of R_i

Lossless Decomposition into BCNF

Algorithm TO_BCNF

- $D := \{R_1, R_2, \dots, R_n\}$
- **While** (there exists a $R_i \in D$ and R_i is not in BCNF) **Do**
 - 1 . find a $X \rightarrow Y$ in R_i that **violates** BCNF;
 2. replace R_i in D by ($R_i - Y$) and ($X \cup Y$);

Lossless Decomposition into BCNF

Example:

Find a BCNF decomposition of the relation scheme below:

SHIPPING (Ship , Capacity , Date , Cargo , Value)

F consists of:

$Ship \rightarrow Capacity$

$\{Ship , Date\} \rightarrow Cargo$

$\{Cargo , Capacity\} \rightarrow Value$

We know this relation is not in BCNF

Algorithm TO_BCNF

$D := \{R_1, R_2, \dots, R_n\}$

While (there exists a $R_i \in D$ and R_i is not in BCNF) **Do**

- 1 . find a $X \rightarrow Y$ in R_i that **violates** BCNF;
2. replace R_i in D by ($R_i - Y$) and ($X \cup Y$);

Lossless Decomposition into BCNF (V1)

From $Ship \rightarrow Capacity$, we decompose **SHIPPING** into R_{1A} and R_{2A}

$R_{1A}(Ship, Date, Cargo, Value)$ with Key: $\{Ship, Date\}$

A nontrivial FD in F^+ violates BCNF: $\{Ship, Cargo\} \rightarrow Value$

and

$R_{2A}(Ship, Capacity)$ with Key: $\{Ship\}$

Only one nontrivial FD in F^+ : $Ship \rightarrow Capacity$

SHIPPING ($Ship, Capacity, Date, Cargo, Value$)

F consists of: $Ship \rightarrow Capacity$, $\{Ship, Date\} \rightarrow Cargo$, $\{Cargo, Capacity\} \rightarrow Value$

Lossless Decomposition into BCNF (V1)

R_1 is not in BCNF so we must decompose it further into R_{11A} and R_{12A}

$R_{11A}(Ship, Date, Cargo)$ with Key: $\{Ship, Date\}$

Only one nontrivial FD in F^+ with single attribute on the right side: $\{Ship, Date\} \rightarrow Cargo$
and

$R_{12A}(Ship, Cargo, Value)$ with Key: $\{Ship, Cargo\}$

Only one nontrivial FD in F^+ with single attribute on the right side: $\{Ship, Cargo\} \rightarrow Value$

This is in BCNF, and the decomposition is lossless but not dependency preserving (the FD $\{Capacity, Cargo\} \rightarrow Value$) has been lost.

SHIPPING ($Ship, Capacity, Date, Cargo, Value$)

F consists of: $Ship \rightarrow Capacity$, $\{Ship, Date\} \rightarrow Cargo$, $\{Cargo, Capacity\} \rightarrow Value$

Lossless Decomposition into BCNF (V2)

Or we could have chosen $\{Cargo, Capacity\} \rightarrow Value$, which would give us:

$R_{1B} (Ship, Capacity, Date, Cargo)$ with Key: $\{Ship, Date\}$

A nontrivial FD in F^+ violates BCNF: $Ship \rightarrow Capacity$

and

$R_{2B} (Cargo, Capacity, Value)$ with Key: $\{Cargo, Capacity\}$

Only one nontrivial FD in F^+ with single attribute on the right side: $\{Cargo, Capacity\} \rightarrow Value$

Once again, R_{1B} is not in BCNF so we must decompose it further...

$SHIPPING (Ship, Capacity, Date, Cargo, Value)$

F consists of: $Ship \rightarrow Capacity$, $\{Ship, Date\} \rightarrow Cargo$, $\{Cargo, Capacity\} \rightarrow Value$

Lossless Decomposition into BCNF (V2)

R_1 is not in BCNF so we must decompose it further into R_{11B} and R_{12B}

$R_{11B} (Ship, Date, Cargo)$ with Key: $\{Ship, Date\}$

Only one nontrivial FD in F^+ with single attribute on the right side: $\{Ship, Date\} \rightarrow Cargo$
and

$R_{12B} (Ship, Capacity)$ with Key: $\{Ship\}$

Only one nontrivial FD in F^+ : $Ship \rightarrow Capacity$

This is in BCNF, and the decomposition is both lossless and dependency preserving.

SHIPPING (Ship, Capacity, Date, Cargo, Value)

F consists of: $Ship \rightarrow Capacity$ $\{Ship, Date\} \rightarrow Cargo$, $\{Cargo, Capacity\} \rightarrow Value$

Lossless Decomposition into BCNF

With this algorithm from the previous slide...

We get a decomposition D of R that does the following:

- May **not** preserves dependencies
- Has the lossless join property
- Is such that each resulting relation schema in the decomposition is in BCNF

Lossless decomposition into BCNF

Review: Algorithm TO_BCNF

$D := \{R_1, R_2, \dots, R_n\}$

While \exists a $R_i \in D$ and R_i is not in BCNF **Do**

{ find a $X \rightarrow Y$ in R_i that violates BCNF; replace R_i in D by $(R_i - Y)$ and $(X \cup Y)$; }

Since a $X \rightarrow Y$ violating BCNF is not always in F , the main difficulty is to verify if R_i is in BCNF;

Practice

$F = \{ A \rightarrow B, A \rightarrow C, A \rightarrow D, C \rightarrow E, E \rightarrow D, C \rightarrow G \},$

$R1 = (C, D, E, G), R2 = (A, B, C, D)$

Practice

$F = \{ A \rightarrow B, A \rightarrow C, A \rightarrow D, C \rightarrow E, E \rightarrow D, C \rightarrow G \},$

$R1 = (C, D, E, G), R2 = (A, B, C, D)$

Answer:

$R11 = (C, E, G), R12 = (E, D)$ because of $E \rightarrow D$

$R21 = (A, B, C), R22 = (C, D)$ because of $C \rightarrow D$

Lossless and dependency-preserving decomposition into 3NF

A lossless and dependency-preserving decomposition into 3NF is **always** possible.

More definitions regarding FD's are needed.

Equivalence(1)

Definition (**equivalence**): Two sets of functional dependencies E and F are equivalent if $E^+ = F^+$.

Equivalence can also be understood via cover defined as in the next page

Equivalence(2) – Alternative Definition

Definition (cover): A set of functional dependencies F is said to cover another set of functional dependencies E if every FD in E is also in F^+ ; that is, if every dependency in E can be inferred from F ; alternatively, we can say that E is covered by F .

Explanation (equivalence): Therefore, equivalence means that every FD in E can be inferred from F , and every FD in F can be inferred from E ; that is, E is equivalent to F if both the conditions— E covers F AND F covers E —hold

Minimal Cover

Definition (equivalence): Two sets of functional dependencies E and F are equivalent if $E^+ = F^+$.

Definition. A minimal cover F_{min} of a set of functional dependencies E is a minimal set of dependencies (in the standard canonical form and without redundancy) that is **equivalent** to E .

Property: If any dependency from F is removed; this property is lost F
A *minimal cover* for F is a minimal set of FD's F_{min} such that $F^+ = F^+_{min}$.

Minimal Cover

A set F of FD's is *minimal* if

1. Every FD $X \rightarrow Y$ in F is simple: Y consists of a single attribute,
2. Every FD $X \rightarrow A$ in F is *left-reduced*: there is no proper subset $Y \subset X$ such that $X \rightarrow A$ can be replaced with $Y \rightarrow A$.
3. No FD in F can be removed; that is, there is no FD $X \rightarrow A$ in F such that $(F - \{X \rightarrow A\})^+ = F^+$.

Prereq. for Algorithm (1)

(Condition one)

Algorithm Reduce_right

- INPUT: F .
- OUTPUT: right side reduced F' .
- For each FD $X \rightarrow Y \in F$ where $Y = \{A_1, A_2, \dots, A_k\}$, we use all $X \rightarrow \{A_i\}$ (for $1 \leq i \leq k$) to replace $X \rightarrow Y$.

Prereq. for Algorithm (2)

(Condition two)

Algorithm Reduce_left

- INPUT: right side reduced F .
- OUTPUT: right and left side reduced F' .
- For each $X \rightarrow \{A\} \in F$ where $X = \{A_i : 1 \leq i \leq k\}$, do the following. For $i = 1$ to k , replace X with $X - \{A_i\}$ if $A \in (X - \{A_i\})^+$.

Prereq for Algorithm (3)

(Condition three)

Algorithm Reduce_redundancy

- INPUT: right and left side reduced F .
- OUTPUT: a minimum cover F' of F .
- For each FD $X \rightarrow \{A\} \in F$, remove it from F if: $A \in X^+$ with respect to $F - \{X \rightarrow \{A\}\}$.

Algorithm for Minimal Cover

Algorithm Min_Cover

Input: a set F of functional dependencies.

Step 1: *Reduce right side.*

Apply Algorithm Reduce Right to F .

Step 2: *Reduce left side.*

Apply Algorithm Reduce Left to the output of Step 1.

Step 3: *Remove redundant FDs.*

Apply Algorithm Remove_redundency to the output of Step 2.

Computing a Minimal Cover (Step 1)

Step 1: Reduce Right: For each FD $X \rightarrow Y \in F$ where $Y = \{A_1, A_2, \dots, A_k\}$, we use all $X \rightarrow \{A_i\}$ (for $1 \leq i \leq k$) to replace $X \rightarrow Y$.

Practice:

$$R = (A, B, C, D, E, G)$$

$$F = \{A \rightarrow BCD, B \rightarrow CDE, AC \rightarrow E\}$$

At the end of step 1 we have : $F' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow C, B \rightarrow D, B \rightarrow E, AC \rightarrow E\}$

Computing a Minimal Cover (Step 2)

Step 2: Reduce Left: For each $X \rightarrow \{A\} \in F$ where $X = \{A_i : 1 \leq i \leq k\}$, do the following. For $i = 1$ to k , replace X with $X - \{A_i\}$ if $A \in (X - \{A_i\})^+$.

From Step 1, we had: $F' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow C, B \rightarrow D, B \rightarrow E, AC \rightarrow E\}$

$AC \rightarrow E$

$C^+ = \{C\}$; thus $C \rightarrow E$ is not inferred by F' .

Hence, $AC \rightarrow E$ cannot be replaced by $C \rightarrow E$.

$A^+ = \{A, B, C, D, E\}$; thus, $A \rightarrow E$ is inferred by F' .

Hence, $AC \rightarrow E$ can be replaced by $A \rightarrow E$.

We now have $F'' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, B \rightarrow E\}$

Computing a Minimal Cover (Step 3)

Step 3: Reduce_redundancy: For each FD $X \rightarrow \{A\} \in F$, remove it from F if: $A \in X^+$ with respect to $F - \{X \rightarrow \{A\}\}$.

From Step 2, we had: $F'' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \rightarrow D, B \rightarrow E\}$

$A^+|_{F'' - \{A \rightarrow B\}} = \{A, C, D, E\}$; thus $A \rightarrow B$ is not inferred by $F'' - \{A \rightarrow B\}$.

That is, $A \rightarrow B$ is not redundant.

$A^+|_{F'' - \{A \rightarrow C\}} = \{A, B, C, D, E\}$; thus, $A \rightarrow C$ is redundant.

Thus, we can remove $A \rightarrow C$ from F'' to obtain F''' .

We find that we can remove $A \rightarrow D$ and $A \rightarrow E$ but not the others.

Thus, $F_{\min} = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, B \rightarrow E\}$.

A Note on Finding Minimal Cover

There can be more than one possible minimum cover.

We can always find *at least one* minimal cover F for any set of dependencies E using this algorithm.

3NF Decomposition Algorithm

Algorithm 3NF decomposition

1. Find a minimal cover G for F .
2. For each left-hand-side X of a functional dependency that appears in G , create a relation schema in D with attributes $\{X \cup \{A_1\} \cup \{A_2\} \dots \cup \{A_k\}\}$, where $X \rightarrow A_1, X \rightarrow A_2, \dots, X \rightarrow A_k$ are the only dependencies in G with X as left-hand-side (X is the key to this relation).
3. If none of the relation schemas in D contains a key of R , then create one more relation schema in D that contains attributes that form a key of R .
4. Eliminate redundant relations from the resulting set of relations in the relational database schema. A relation R is considered redundant if R is a projection of another relation S in the schema; alternately, R is subsumed by S .

3NF Decomposition Algorithm

With this algorithm from the previous slide...

We get a decomposition D of R that does the following:

- Preserves dependencies
- Has the nonadditive (lossless) join property
- Is such that each resulting relation schema in the decomposition is in 3NF

3NF Decomposition Algorithm

Example ONE:

$R = (A, B, C, D, E, G)$

$F_{min} = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, B \rightarrow E\}.$

Candidate key: (A, G)

$R_1 = (A, B), R_2 = (B, C, D, E)$

$R_3 = (A, G)$

3NF Decomposition Algorithm

Example TWO:

Following from the *SHIPPING* relation. The functional dependencies already form a canonical cover.

- From $Ship \rightarrow Capacity$, derive $R_1(\underline{Ship}, Capacity)$,
- From $\{Ship, Date\} \rightarrow Cargo$, derive $R_2(\underline{Ship}, \underline{Date}, Cargo)$,
- From $\{Capacity, Cargo\} \rightarrow Value$, derive $R_3(\underline{Capacity}, \underline{Cargo}, Value)$.
- There are no attributes not yet included and the original key $\{Ship, Date\}$ is included in R_2 .

SHIPPING ($Ship, Capacity, Date, Cargo, Value$)

F consists of: $Ship \rightarrow Capacity$, $\{Ship, Date\} \rightarrow Cargo$, $\{Cargo, Capacity\} \rightarrow Value$

3NF Decomposition Algorithm

Example THREE: Apply the algorithm to the LOTS example given earlier.

One possible minimal cover is

{ $\text{Property_Id} \rightarrow \text{Lot_No}$,
 $\text{Property_Id} \rightarrow \text{Area}$, $\{\text{City}, \text{Lot_No}\} \rightarrow \text{Property_Id}$,
 $\text{Area} \rightarrow \text{Price}$, $\text{Area} \rightarrow \text{City}$, $\text{City} \rightarrow \text{Tax_Rate}$ }.

This gives the decomposition:

$R_1(\underline{\text{Property_Id}}, \underline{\text{Lot_No}}, \underline{\text{Area}})$

$R_2(\underline{\text{City}}, \underline{\text{Lot_No}}, \underline{\text{Property_Id}})$

$R_3(\underline{\text{Area}}, \underline{\text{Price}}, \underline{\text{City}})$

$R_4(\underline{\text{City}}, \underline{\text{Tax_Rate}})$

Summary

1. Data redundancies are undesirable as they create the potential for update anomalies.
2. One way to remove such redundancies is to normalize a design, guided by FD's.
3. BCNF removes all redundancies due to FDs, but a dependency preserving decomposition cannot always be found.
4. A dependency preserving, lossless decomposition into 3NF can always be found, but some redundancies may remain.
5. Even where a dependency preserving, lossless decomposition that removes all redundancies can be found, it may not be possible, for efficiency reasons, to remove all redundancies.

Learning Outcome

- Checking for important decomposition properties
 - Checking for the dependency preserving property
 - Checking for the lossless join property
- Lossless decomposition into BCNF algorithm
- Lossless and Dependency Preserving 3NF decomposition algorithm