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Feature Representation

Part 2
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Feature Types
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• Colour features (Part 1)
– Colour moments
– Colour histogram

• Texture features (Part 1)
– Haralick texture features
– Local binary patterns (LBP)
– Scale-invariant feature transform (SIFT)
– Texture feature encoding

• Shape features (Part 2)
– Basic shape features
– Shape context
– Histogram of oriented gradients (HOG)



Shape Features

• Shape is an essential feature of material objects that can be 
used to identify and classify them

• Example: object recognition
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Shape Features

• Human perception of an object or region involves capturing 
prominent / salient aspects of shape

• Shape features in an image are normally extracted after the 
image has been segmented into object regions
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Shape Features

• Challenges

– Invariance to rigid transformations

– Tolerance to non-rigid deformations

– Correspondence unknown
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Basic Shape Features

• Simple geometrical shape descriptors
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Convex Area:

Area of the convex 
hull that encloses 

the object

Net Area Principal Axes



Basic Shape Features

• Convexity versus concavity of an object
An object      is called convex (or concave) if the straight line between any 
two points in the object is (or is not) contained in the object

• Convex hull of an object
The smallest convex set that contains the object

• Convex deficiency of an object
Set difference between the convex hull and the object
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Basic Shape Features

• Simple geometrical shape descriptors
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Compactness:

Ratio of the area of an 
object to the area of a 
circle with the same 

perimeter

Circularity:

Ratio of 4𝜋𝜋 times the 
area of an object to the 

second power of its 
perimeter (4𝜋𝜋𝐴𝐴/𝑃𝑃2
equals 1 for a circle)



Basic Shape Features

• Simple geometrical shape descriptors
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Elongation:

Ratio between the 
length and width 

of the object’s 
bounding box

Eccentricity:

Ratio of the length 
of the minor axis 
to the length of 
the major axis



Boundary Descriptors

• Chain code descriptor
– The shape of a region can be represented by labelling the relative 

position of consecutive points on its boundary
– A chain code consists of a list of directions from a starting point and 

provides a compact boundary representation
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Example:

2,1,0,7,7,0,1,1



Boundary Descriptors

• Local curvature descriptor
– The curvature of an object is a local shape attribute
– Convex (versus concave) parts have positive (versus negative) curvature
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Boundary Descriptors

• Two interpretations of local curvature
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Boundary Descriptors

• Global curvature descriptors
– Total bending energy

o Amount of physical energy stored in a rod bent to the contour
o Circular objects have the smallest contour bending energy

– Total absolute curvature

o Absolute value of the curvature integrated along the object contour
o Convex objects have the smallest total absolute curvature
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Boundary Descriptors

• Radial distance descriptor 
– Use the centroid of the shape as the reference point and compute the 

radial distance for all N pixels along its boundary

– Scale invariance is achieved by normalising d(n) by the maximum 
distance to obtain the radial distance r(n)

– The number of times the signal r(n) crosses its mean can be used as a 
measure of boundary roughness
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Application Example

• Combining feature descriptors to classify objects
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Shape Context

• Shape context is a point-wise local feature descriptor
– Pick n points on the contour of a shape
– For each point pi construct a histogram hi of the relative coordinates 

of the other n − 1 points  =>  this is the shape context of pi
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S. Belongie, J. Malik, J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence 24(4):509-522. https://doi.org/10.1109/34.993558

https://doi.org/10.1109/34.993558


Application Example

• Shape matching
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Shape Context

• Shape matching
– Step 1: Sample a list of points on shape edges

For example from Canny edge detector (Gaussian filtering, intensity gradient, 
non-maximum suppression, hysteresis thresholding, edge tracking)
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Shape Context

• Shape matching
– Step 2: Compute the shape context for each point

– Step 3: Compute the cost matrix between two shapes P and Q
The cost between any two points 𝑝𝑝 ∈ 𝑃𝑃 and 𝑞𝑞 ∈ 𝑄𝑄 with corresponding shape 
contexts 𝑔𝑔 and ℎ is defined as
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Shape Context

• Shape matching
– Step 4: Find the one-to-one matching that minimises the total cost 

between pairs of points on the two shapes

– Step 5: Transform or deform one shape to the other based on the 
previous one-to-one point matching
o Choose the desired transformation (for example affine)
o Apply least-squares or RANSAC fitting
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Shape Context

• Shape matching
– Step 6: Compute the shape distance

Other costs may also be taken into consideration
o Appearance of the image at the points
o Bending energy of the transformation
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Application Example

• Shape matching

Week 3 COMP9517 2020 T2 22

1) Sample points

2) Compute shape context

3) Compute cost matrix

4) Find point matching

5) Perform transformation

6) Compute distance



Histogram of Oriented Gradients

• HOG describes the distributions of gradient orientations in 
localized areas and does not require initial segmentation
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N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Computer Vision and Pattern 
Recognition 2005. https://doi.org/10.1109/CVPR.2005.177

⇒

https://doi.org/10.1109/CVPR.2005.177


Histogram of Oriented Gradients

• Step 1: Calculate gradient magnitude and orientation at each 
pixel with a gradient operator  =>  gradient vector
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Histogram of Oriented Gradients

• Step 2: Divide orientations into N bins and assign the 
gradient magnitude of each pixel to the bin corresponding 
to its orientation  =>  cell histogram
– For example 9 bins evenly divided from 0 to 180 degrees
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Histogram of Oriented Gradients

• Step 3: Concatenate and block-normalise cell histograms to 
generate detection-window level HOG descriptor
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# features = (7 x 15) x 9 x 4 = 3780 

# blocks

# orientations/cell

# cells/block



Histogram of Oriented Gradients

• Detection via sliding window on the image
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Histogram of Oriented Gradients

• Detection via sliding window on the image
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HOG feature map Detector response map



Application Example

• Human detection
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https://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/

https://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/


Application Example

• Human detection
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https://www.youtube.com/watch?v=0hMMRlB9DUc

https://www.youtube.com/watch?v=0hMMRlB9DUc


Application Example

• Deformable part model
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P. Felzenszwalb, D. McAllester, D. Ramanan, “A discriminatively trained, multiscale, deformable part model,” 
Computer Vision and Pattern Recognition 2008. https://doi.org/10.1109/CVPR.2008.4587597

https://doi.org/10.1109/CVPR.2008.4587597


Summary

• Feature representation is essential in solving almost all 
types of computer vision problems

• Most commonly used image features:
– Colour features (Part 1)

• Colour moments and histogram
– Texture features (Part 1)

• Haralick, LBP, SIFT
– Shape features (Part 2)

• Basic, shape context, HOG
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Summary

• Other techniques described
– Descriptor matching
– Feature encoding (Bag-of-Words)
– k-means clustering
– Alignment and RANSAC
– Spatial transformations
– Shape features
– Shape matching
– Sliding window detection
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