

COMP9517: Computer Vision

Motion and Tracking Applications in Biomedical Imaging

Topics

- Examples of change detection
- Patient motion correction in angiography
- Examples of template matching
- Cell motion correction in microscopy
- Monomodal brain image registration
- Multimodal medical image registration
- Examples of optical flow
- Heart tissue motion estimation
- Examples of object tracking
- Particle tracking in molecular biology
- Bayesian multitarget tracking method
- Heart motion tracking and analysis
- Tracking for neuron reconstruction
- Object tracking in cell biology

Example of Change Detection

Digital Subtraction Angiography

Mask Image

X -ray at time $t_{0}+\Delta t$

Live Image

Digital Subtraction Angiography

Live - Mask

Contrast Stretched

Meijering et al., Radiology, 2001

Digital Subtraction Angiography

Contrast Stretched

Motion Corrected

Automatic motion correction here is a form of template matching

Examples of Template Matching

Cell Motion Correction

Cell fixation by image postprocessing allows analysis of the internal changes over time

Brain Image Registration

To understand how the human brain develops from childhood to adulthood and to study developmental disorders we can use magnetic resonance imaging (MRI) at different ages and match the images to a template using automatic image registration techniques

Multimodal Image Registration

Computed Tomography (CT)
Joint Visualization

Magnetic Resonance (MR)

Example of Optical Flow

Heart Tissue Motion Estimation

- Heart tissue cultured 6 days
- Mono-layer cardiomyocytes
- Phase-contrast microscopy
- Real-time imaging 24 fps

Since the images contain rich information it is easy to estimate local gradients with high accuracy so this is a perfect case for the optical flow method

$$
\nabla f \cdot v=-f_{t}
$$

Heart Tissue Motion

Motion vectors visualised by direction (color) and magnitude (intensity)

Examples of Object Tracking

Particle Tracking Problem

time

Bayesian Tracking

Computing the degree of belief in the object state by taking into account all available evidence up to the current time point

- State: $X_{t}=\left(r_{t}, v_{t}, a_{t}, s_{t}, I_{t}, \ldots\right)$ expressed as probability density $P\left(X_{t}\right)$ Position, velocity, acceleration, shape, intensity, ...
- Evidence: a set of images or extracted features $Y_{t}=\left\{y_{0}, \ldots, y_{t}\right\}$
- Prediction:

- Correction:

Bayesian Multitarget Tracking

- Extend the state space to include the states of all targets

$$
\begin{gathered}
X_{t}=\left(X_{1 ; t}, X_{2 ; t}, \ldots, X_{N ; t}\right) \\
X_{1 ; t}=\left(r_{1 ;}, v_{1 i t}, a_{1 ; i}, s_{1 ; i}, I_{1 ; i}, \ldots\right) \quad X_{N ; t}=\left(r_{N ; i}, v_{N *}, a_{N ; i}, s_{N ; i} I_{N ; t}, \ldots\right)
\end{gathered}
$$

Computational cost grows exponentially with the number of targets

- Use a mixture model of single-target probability densities

$$
P\left(X_{t} \mid Y_{t}\right)=\sum_{n=1}^{N} w_{n ; t} P_{n}\left(X_{t} \mid Y_{t}\right)
$$

Requires heuristics to keep track of number of targets and identities

Objective comparison of particle tracking methods

Nicolas Chenouard ${ }^{1-3,25}$, Ihor Smal ${ }^{4,5,25}$, Fabrice de Chaumont ${ }^{1,25}$, Martin Maška ${ }^{6,7,25}$, Ivo F Sbalzarini ${ }^{8}$, Yuanhao Gong ${ }^{8}$, Janick Cardinale ${ }^{8}$, Craig Carthel ${ }^{9}$, Stefano Coraluppi ${ }^{9}$, Mark Winter ${ }^{10}$, Andrew R Cohen ${ }^{10}$, William J Godinez ${ }^{11,12}$, Karl Rohr ${ }^{11,12}$, Yannis Kalaidzidis ${ }^{13,14}$, Liang Liang ${ }^{15}$, James Duncan ${ }^{15}$, Hongying Shen ${ }^{16}$, Yingke Xu^{17}, Klas E G Magnusson ${ }^{18}$, Joakim Jaldén ${ }^{18}$, Helen M Blau ${ }^{19}$, Perrine Paul-Gilloteaux ${ }^{20}$, Philippe Roudot ${ }^{21}$, Charles Kervrann ${ }^{21}$, François Waharte ${ }^{20}$, Jean-Yves Tinevez ${ }^{22}$, Spencer L Shorte ${ }^{22}$, Joost Willemse ${ }^{23}$, Katherine Celler ${ }^{23}$, Gilles P van Wezel ${ }^{23}$, Han-Wei Dan ${ }^{24}$, Yuh-Show Tsai ${ }^{24}$, Carlos Ortiz de Solórzano ${ }^{6}$, Jean-Christophe Olivo-Marin ${ }^{1,26}$ \& Erik Meijering ${ }^{4,5,26}$

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set
processes is particle tracking. Here, a 'particle' may be anything from a single molecule to a macromolecular complex, organelle, virus or microsphere ${ }^{12}$, and the task of detecting and following individual particles in a time series of images is often (somewhat confusingly) referred to as 'single-particle tracking' As the number of particles may be very large (hundreds to thousands), requiring 'multiple-particle tracking ${ }^{13-15}$, manual annotation of the image data is not feasible, and computer algorithms are needed to perform the task.

Tracking Heart Motion in MRI

Tracking Heart Motion in MRI

Tracks

Strain

Smal \& Meijering, Medical Image Analysis, 2012

Neuron Reconstruction

Neuron Reconstruction

$\mathbf{H}=\left(\begin{array}{lll}I_{x x} & I_{x y} & I_{x z} \\ I_{y x} & I_{y y} & I_{y z} \\ I_{z x} & I_{z y} & I_{z z}\end{array}\right)=\mathbf{V}^{\mathrm{T}} \cdot \mathbf{\Lambda} \cdot \mathbf{V}$
Seed points: $\lambda_{3} \ll \lambda_{2} \approx \lambda_{1}$

Neuron Reconstruction

Target states
$\mathbf{x}_{1 ; k}=\left(x_{1 ; k}, y_{1 ; k}, z_{1 ; k}, v_{1 ; k}^{x}, v_{1 ; k}^{y}, v_{1 ; k}^{z}\right)$
$\mathbf{x}_{2 ; k}=\left(x_{2 ; k}, y_{2 ; k}, z_{2 ; k}, v_{2 ; k}^{x}, v_{2 ; k}^{y}, v_{2 ; k}^{z}\right)$
$\mathbf{x}_{3 ; k}=\left(x_{3 ; k}, y_{3 ; k}, z_{3 ; k}, v_{3 ; k}^{x}, v_{3 ; k}^{y}, v_{3 ; k}^{z}\right)$

Tracking for Neuron Reconstruction

Radojevic \& Meijering, Neuroinformatics, 2019

Neuron Reconstruction Results

Cell Tracking

Popular segmentation methods

- Intensity thresholding
- Watershed segmentation
- Active contour fitting
- Level-set segmentation

Model: $C(r)=\sum_{n} \mathbf{P}_{n} B(r-n)$
Fitting: $\quad \hat{C}=\arg \min E(C)$

Cell Tracking

Linking by contour model evolution

Dzyubachyk \& Meijering, IEEE Transactions on Medical Imaging, 2010

Cell Tracking

Coloured contours indicate the results of cell segmentation and indentification

An objective comparison of cell-tracking algorithms

Vladimír Ulman ${ }^{1,24,25}$ © , Martin Maška ${ }^{1,25}$, Klas E G Magnusson ${ }^{2}$, Olaf Ronneberger ${ }^{3,24}$, Carsten Haubold ${ }^{4}$, Nathalie Harder ${ }^{5,24}$ © , Pavel Matula ${ }^{1}$, Petr Matula ${ }^{1}$, David Svoboda ${ }^{10}$, Miroslav Radojevic ${ }^{6}$, Ihor Smal ${ }^{6}$, Karl Rohr ${ }^{5}$, Joakim Jaldén ${ }^{2}$, Helen M Blau ${ }^{7}$, Oleh Dzyubachyk ${ }^{8}$, Boudewijn Lelieveldt ${ }^{8,9}$, Pengdong Xiao ${ }^{10,24 ®}$, Yuexiang Li ${ }^{11,24}$, Siu-Yeung Cho ${ }^{12}$, Alexandre C Dufour ${ }^{13}{ }^{(1)}$, Jean-Christophe Olivo-Marin ${ }^{13} \mathbb{D}^{(0)}$, Constantino C Reyes-Aldasoro ${ }^{14}$, Jose A Solis-Lemus ${ }^{14}$, Robert Bensch ${ }^{3}{ }^{\bullet}$, Thomas Brox ${ }^{3}$, Johannes Stegmaier ${ }^{15}$, Ralf Mikut ${ }^{15(0)}$, Steffen Wolf ${ }^{4}$, Fred A Hamprecht ${ }^{4}$, Tiago Esteves ${ }^{16,17 ©}$, Pedro Quelhas ${ }^{16}$, Ömer Demirel ${ }^{18}$, Lars Malmström ${ }^{18(0), ~ F l o r i a n ~ J u g ~}{ }^{19}$, Pavel Tomancak ${ }^{19}$ © , Erik Meijering ${ }^{6}$, Arrate Muñoz-Barrutia ${ }^{20,21(D), ~}$ Michal Kozubek ${ }^{1}$ \& Carlos Ortiz-de-Solorzano ${ }^{22,23(0)}$

We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures
these processes. Imaging techniques, such as phase contrast (PhC) or differential interference contrast (DIC) microscopy, make cells visible without the need of exogenous markers. Fluorescence microscopy, on the other hand, relies on fluorescent reporters to specifically label cell components such as nuclei, cytoplasm or membranes. These labeled structures are then imaged in two or three dimensions by various imaging modalities, including widefield, confocal, multiphoton or light-sheet fluorescence microscopy.

Cell Lineage Reconstruction

Drosophila embryogenesis

Keller et al. 2014

Cell Lineage Reconstruction

Tracking each cell during Drosophila embryonic development

Keller et al., Nature Methods, 2014

Plenty of challenges left !!!

Contact: Professor Erik Meijering
erik.meijering@unsw.edu.au

See also CSE Thesis Topic Database

