
COMP9517: Computer Vision

Deep Learning
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Challenges in CV
Consider object detection as an example:
 Variations in viewpoint
 Differences in illumination
 Hidden parts of images
 Background clutter
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Computer Vision and Deep Learning
• The earliest research in computer vision started way back in  

1950s. Since then, we have come a long way but still find  
ourselves far from the ultimate objective.

• But with neural networks and deep learning, we have become  
empowered like never before.

• Successful applications of deep learning in CV include
• Object recognition – ImageNet
• Context Analysis
• Semantic Segmentation
• Classification
• Retrieval
• Self-driving cars
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A bit of History
• Earliest studies about visual mechanics of animals by Hubel and Weisel

emphasised the importance of edge detection for solving CV problems
• Early processing in cat visual cortex looks like it is performing convolutions that  

are looking for oriented edges and blobs

• Certain cells are looking for edges with a particular orientation at a particular  
spatial location in the visual field

• This inspired convolutional neural networks but was limited by the lack of  
computational power

• Hinton et al. reinvigorated research into deep learning and proposed a  
greedy layer wise training technique
• In 2012, Alex Krizhevesky et al. won ImageNet challenge and proposed the  

well recognised AlexNet Convolutional Neural Network



A bit of History
• AlexNet (2012)

• ImageNet classification
• Images showing 1000 object  

categories
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Deep Learning
• Deep learning is a collection of artificial neural network techniques that  

are widely used at present

• Predominantly, deep learning techniques rely on large amounts of data  
and deeper learning architectures

• Some well known paradigms:
 Convolutional Neural Networks (CNNs)
 Recurrent Neural Networks
 Auto-encoders
 Restricted Boltzmann Machines
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Traditional Approach vs DL
• CNNs can be interpreted as gradually transforming the images into a  

representation in which the classes are separable by a linear classifier.

• CNNs will try to learn low-level features such as edges and lines in early  
layers, then parts of objects and then high-level representation of an  
object in subsequent layers.

http://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/
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Traditional Approach vs DL

https://towardsdatascience.com/convolutional-neural-networks-for-all-part-i-cdd282ee7947

https://towardsdatascience.com/convolutional-neural-networks-for-all-part-i-cdd282ee7947
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CNNs

• CNNs are very similar to regular Neural Networks
• Made up of neurons with learnable weights

• CNN architecture assumes that inputs are images
• So that we have local features
• Which allows us to

• encode certain properties in the architecture that makes the forward pass  
more efficient and

• significantly reduces the number of parameters needed for the network



Neural Networks
• Artificial Neural Networks are inspired by human nervous system

• NNs are composed of a large number of interconnected processing  
elements known as neurons

• They use supervised error correcting rules with back-propagation to learn  
a specific task

http://statsmaths.github.io/stat665/lectures/lec12/lecture12.pdf
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NN: Perceptron

Each neuron has multiple dendrites and a single axon. The neuron receives its inputs
from its dendrites and transmits its output through its axon. Both inputs and outputs
take the form of electrical impulses. The neuron sums up its inputs, and if the total
electrical impulse strength exceeds the neuron’s firing threshold, the neuron fires offa  new 
impulse along its single axon. The axon, in turn, distributes the signal along its  
branching synapses which collectively reach thousands of neighboring neurons.
https://towardsdatascience.com/from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks-d0411777571b
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NN: Perceptron

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
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0 or 1

Perceptron is a single-layer neural network
A multi-layer perceptron becomes Neural Networks

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53


Neural Network Architecture

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
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Why CNNs?

• The problem with regular NNs is that they do not scale well  
with dimensions (i.e. larger images)
• Eg: 32x32 image with 3 channels (RGB) – a neuron in first hidden layer  

would have 32x32x3 = 3,072 weights : manageable.
• Eg: 200x200 image with 3 channels –a neuron in first hidden layer  

would have 200x200x3 = 120,000 weights and we need at least several  
of these neurons which makes the weights explode.



Week 8 COMP9517 2020 T2 15

So what is different?
• In contrast, CNNs consider 3-D volumes of neurons and propose a  

parameter sharing scheme that minimises the number of parameters  
required by the network.

• CNN neurons are arranged in 3 dimensions: Width, Height and Depth.

• Neurons in a layer are only connected to a small region of the layer before  
it (hence not fully connected)



So what is different?

NN
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CNN



CNN Architecture
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CNN Architecture

• LeNet-5
• The very first CNN
• Handwritten digit recognition
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CNN Architecture

• AlexNet
• The start of booming of deep learning
• ImageNet classification
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CNN Architecture
• CNNs are usually made up of various types of layers

• Convolution Layer

• Pooling Layer

• ReLU Layer, and

• Fully-Connected Layer

• Dropout layer

• Output layer

• This lecture provides a fundamental understanding of CNN

• Most recent CNN architectures have more different types of layers or
models, which are out of the scope of this lecture



CNN: Convolutional Layer
Convolution
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CNN: Convolutional Layer
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CNN: Convolutional Layer
• The output of the Conv layer can be interpreted as holding neurons  

arranged in a 3D volume.

• The Conv layer's parameters consist of a set of learnable filters. Every filter  
is small spatially (along width and height), but extends through the full  
depth of the input volume.

• During the forward pass, each filter is slid (convolved) across the width  
and height of the input volume, producing a 2-dimensional activation map  
of that filter.

• Network will learn filters (via backpropagation) that activate when they  
see some specific type of feature at some spatial position in the input.



CNN: Convolutional Layer

Original LINK
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CNN: Convolutional Layer
• Stacking these activation maps for all filters along the depth dimension  

forms the full output volume

• Every entry in the output volume can thus also be interpreted as an  
output of a neuron that looks at only a small region in the input and  
shares parameters with neurons in the same activation map (since these  
numbers all result from applying the same filter)



CNN: Convolutional Layer
With 6 filters, we get 6 activation maps
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CNN: Convolutional Layer
Local Connectivity

• As we have realized by now, it is impractical to use fully connected  
networks when dealing with high dimensional images/data

• Hence the concept of local connectivity: each neuron only connects to a  
local region of the input volume.

• The spatial extent of this connectivity is a hyperparameter called receptive
field of the neuron.

• The extent of the connectivity along the depth axis is always equal to the  
depth of the input volume.

• The connections are local in space (along width and height), but always
full along the entire depth of the input volume.
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CNN: Convolutional Layer
Local Connectivity

• Eg1: Suppose that the input volume has size [32x32x3]. If the receptive  
field is of size 5x5, then each neuron in the Conv Layer will have weights to  
a [5x5x3] region in the input volume, for a total of 5*5*3 = 75 weights.  
Notice that the extent of the connectivity along the depth axis must be 3,  
since this is the depth of the input volume.

• Eg 2: Suppose an input volume had size [16x16x20], i.e. . Then using an  
example receptive field size of 3x3, every neuron in the Conv Layer would  
now have a total of 3*3*20 = 180 connections to the input volume. Notice  
that, again, the connectivity is local in space (e.g. 3x3), but full along the  
input depth (20).



CNN: Convolutional Layer
Spatial Arrangement

• Three hyperparameters control the size of the output volume: the depth,  
stride and zero-padding
• Depth controls the number of neurons in the Conv layer that connect to the

same region of the input volume
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CNN: Convolutional Layer
Spatial Arrangement

• Three hyperparameters control the size of the output volume: the depth,  
stride and zero-padding
• Stride is the distance that the filter is moved by in spatial dimensions

http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
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CNN: Convolutional Layer
Spatial Arrangement

• Three hyperparameters control the size of the output volume: the depth,  
stride and zero-padding
• Zero-padding is padding of the input with zeros spatially on the border of the

input volume

https://deeplizard.com/learn/video/qSTv_m-KFk0
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CNN: Convolutional Layer
Spatial Arrangement

• We can compute the spatial size of the output volume as a function of the  
input volume size (W), the receptive field size of the Conv Layer neurons  
(F), the stride with which they are applied (S), and the amount of zero  
padding used (P) on the border:

(W−F+2P)/S+1

• If this number is not an integer, then the strides are set incorrectly and the  
neurons cannot be tiled so that they "fit" across the input volume neatly,  
in a symmetric way.
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CNN: Convolutional Layer
Spatial Arrangement

• Real-world example. The AlexNet that won the ImageNet challenge in  
2012 accepted images of size 227x227x3

• On the first Convolutional Layer, it used neurons with receptive field size  
F=11, stride S=4 and no zero padding P=0.

• Since (227 - 11)/4 + 1 = 55, and since the Conv layer had a depth of K=96,  
the Conv layer output volume had size 55x55x96

• Each of the 55*55*96 neurons in this volume was connected to a region  
of size 11x11x3 in the input volume

• Moreover, all 96 neurons in each depth column are connected to the same
11x11x3 region of the input, but of course with different weights



CNN: Convolutional Layer
Spatial Arrangement
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CNN: Convolutional Layer
Parameter Sharing

• Parameter sharing scheme used in Convolutional Layers to  
control the number of parameters
• In other words, denoting a single 2-D slice as a depth slice (e.g. a  

volume of size [55x55x96] has 96 depth slices, each of size [55x55]),  
we are going to constrain the neurons in each depth slice to use the  
same weights and bias

• This is exactly what we do with spatial filters for signals/images!

• Motivation of parameter sharing
• If one patch feature is useful to compute at some spatial position (x,y),

then it should also be useful to compute at a different position (x2,y2).
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CNN: Convolutional Layer
Parameter Sharing

• Example:
• In the AlexNet example, without parameter sharing, there are  

55*55*96 = 290,400 neurons in the first Conv Layer, and each has  
11*11*3 = 363 weights and 1 bias.

• Together, this adds up to 290400 * 364 = 105,705,600 parameters on  
the first layer of the ConvNet alone. Clearly, this number is very high.

• With this parameter sharing scheme, the first Conv Layer in our  
example would now have only 96 unique sets of weights (one for each  
depth slice), for a total of 96*11*11*3 = 34,848 unique weights, or  
34,944 parameters (+96 biases).

• Alternatively, all 55*55 neurons in each depth slice will now be using  
the same parameters.
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CNN: Convolutional Layer
Parameter Sharing

• In practice during backpropagation, every neuron in the volume will  
compute the gradient for its weights, but these gradients will be added up  
across each depth slice and only update a single set of weights per slice.

• If all neurons in a single depth slice are using the same weight vector, then  
the forward pass of the Conv layer can in each depth slice be computed as  
a convolution of the neuron's weights with the input volume. (Hence the  
name: Convolutional Layer).

• Therefore, it is common to refer to the sets of weights as a filter (or a  
kernel), which is convolved with the input.

• The result of this convolution is an activation map (or feature map), and  
the activation maps for each different filter are stacked together along the  
depth dimension to produce the output volume.



CNN: Convolutional Layer
Example Filters
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CNN: Convolutional Layer
Summary

• Accepts a volume of size W1×H1×D1

• Requires four hyperparameters:
• number of filters K,

• their spatial extent F,

• the stride S,

• the amount of zero padding P.

• Produces a volume of size W2×H2×D2 where:
• W2=(W1−F+2P)/S+1

• H2=(H1−F+2P)/S+1

• D2=K
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CNN: Convolutional Layer
Summary

• With parameter sharing, it introduces F⋅F⋅D1 weights per filter, for a  
total of (F⋅F⋅D1)⋅K weights and K biases.

• In the output volume, the d-th depth slice (of size W2×H2) is the result of  
performing a valid convolution of the d-th filter over the input volume  
with a stride of S, and then offset by d-th bias.
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CNN: Pooling Layer

• The function of pooling layer
• to progressively reduce the spatial size of the representation to reduce

the number of parameters and computation in the network, and
• hence to also control overfitting

• The Pooling Layer operates
• independently on every depth slice of the input and resizes it spatially,

typically using the MAX operation (ie: max pooling)
• The most common form is a pooling layer with filters of size 2x2  

applied with a stride of 2, which downsamples every depth slice in the  
input by 2 along both width and height, discarding 75% of the  
activations



CNN: Pooling Layer
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CNN: Pooling Layer

• Max pooling
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CNN: Pooling Layer
Summary

• Accepts a volume of size W1×H1×D1

• Requires two hyperparameters:
• their spatial extent F,

• the stride S,

• Produces a volume of size W2×H2×D2where:
• W2=(W1−F)/S+1

• H2=(H1−F)/S+1

• D2=D1

• Introduces zero parameters since it computes a fixed function
of the input



CNN: ReLU Layer
• Although ReLU (Rectified Linear Unit) is considered as a layer, it is really an  

activation function:

f(x) = max(0, x)

• This is favoured in deep learning as opposed to the traditional activation  
functions like Sigmoid or Tanh
• To accelerate the convergence of stochastic gradient descent

• Be computationally inexpensive compared to traditional ones

• However, ReLu units can be fragile during training and ‘die’. Leaky ReLUs  
were proposed to handle this problem.
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CNN: Fully-Connected Layer
• Neurons in a fully connected layer have full connections to all activations  

in the previous layer, as seen in regular Neural Networks. Their activations  
can hence be computed with a matrix multiplication followed by a bias  
offset.
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CNN: Dropout Layer
• Problem with overfitting –model performs well on training data but  

generalises poorly to testing data

• Dropout is a simple and effective method to reduce overfitting

• In each forward pass, randomly set some neurons to zero

• Probability of dropping is a hyperparameter, such as 0.5
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CNN: Dropout Layer
• Makes the training process noisy

• Forcing nodes within a layer to probabilistically take on more or less  
responsibility for the inputs

• Prevents co-adaptation of features and simulates a sparse activation

• Analogous to training a large ensemble of models but with much higher
efficiency

Week 8 COMP9517 2020 T2 48



CNN: Dropout Layer
• During test time, direct application would make the output random

• A simple approach: multiply the activation by dropout probability (e.g. 0.5)
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CNN: Output Layer
• The output layer produces the probability of each class given the input  

image

• This is the last layer containing the same number of neurons as the  
number of classes in the dataset

• The output of this layer passes through a Softmax activation function to  
normalize the outputs to a sum of one:

Week 8 COMP9517 2020 T2 50



CNN: Training
• A loss function is used to compute the model’s prediction accuracyfrom

the outputs
• Most commonly used: categorical cross-entropy loss function

• The training objective is to minimise this loss

• The loss guides the backpropagation process to train the CNN model

• Stochastic gradient descent and the Adam optimiser are commonly used  
algorithms for optimisation
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CNN: Training
• Backpropagation in general:

1. Initialise the network.

2. Input the first observation.

3.Forward-propagation. From left to  
right the neurons are activated and  
the output value is produced.

4. Calculate the error in the outputs
(loss function).

5.From right to left the generated  
error is back-propagated and  
accumulate the weight updates  
(partial derivatives).

6. Repeat steps 2-5 and adjust the
weights after a batch of observations.

7.When the whole training set passes  
through the network, that makes an  
epoch. Redo more epochs.

https://www.superdatascience.com/blogs/artificial-neural-networks-backpropagation
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CNN: Training
• Important details for training

• Pre-processing: image scaling, zero mean, and normalisation
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CNN: Training
• Important details for training

• Data augmentation:
• Essential for increasing the dataset size and avoiding over-fitting
• More data augmentation often leads to better performance but also  

longer training time
• Commonly used techniques include:

• Horizontal / vertical flipping
• Random cropping and scaling
• Rotation
• Gaussian filtering

• During testing, average the results from multiple augmented input images



CNN: Training
• Important details for training

• Data augmentation:
• Need evaluation => not all techniques are useful

https://blog.insightdatascience.com/automl-for-data-augmentation-e87cf692c366
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CNN: Training
• Important details for training

• Weight initialisation
• Cannot be all 0’s => Need to ensure diversity in the filterweights
• Use small random numbers => might aggravate the diminishing gradients  

problem
• With calibration
• Sparse initialisation
• More advanced techniques

• Use ImageNet pretrained models => not always possible



CNN: Training
• Important details for training

• Balanced training data
• Important to have similar numbers of training images for different classes,  

so the optimisation would not be biased by one class
• Use random sampling to achieve this effect during each epoch of training
• Assign different weights in the loss function
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CNN: Testing
• Forward passes of the network throughout the layers give the prediction  

output of the input data

• Also related to –Transfer learning
• CNN models trained on ImageNet can be applied to other types of images

• It is possible to finetune only the last FC layers to better fit the model to the  
specific set of images

• Especially useful for small datasets
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CNN: Model

• Case study: VGGNet
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CNN: Model

• Case study: VGGNet
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CNN: Model

• Case study: VGGNet
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Well-known Models
• Object Recognition

• AlexNet (2012)
• GoogLeNet
• VGGNet
• ResNet
• Inception v3/v4
• DenseNets is the current state-of-the-art

• Semantic Segmentation
• Multi-scale CNN (2012)
• FCN
• U-net / V-net
• U-net / V-net with skip/dense connections
• Many other variations

• Adversarial
• Generative Adversarial Networks (2014)
• Pixel2pixelGans
• CycleGans



DL Frameworks

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
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Object Recognition
• R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN

• YOLO

• R-FCN

• SSD

References and further reading: https://github.com/kjw0612/awesome-deep-vision
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Semantic Segmentation
• Deep Parsing Networks

• BoxSup

• Fully Convolutional Networks for Semantic Segmentation

• SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image  
Segmentation

• Fusing the Boundaries of Boundary Detection Using deep Learning

References and further reading: https://github.com/kjw0612/awesome-deep-vision
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Scene Understanding
• Explain Images with Multimodal Recurrent Neural Networks

• Unifying Visual-Semantic Embeddings with Multimodal Neural Language  
Models

• Deep Visual-Semantic Alignments for Generating Image Description

• Learning Query and Image Similarities with Ranking Canonical Correlation
Analysis

References and further reading: https://github.com/kjw0612/awesome-deep-vision
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