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Object Tracking
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Motion Tracking
• Tracking is the problem of generating an inference about the 

motion of an object given a sequence of images
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Applications
• Motion capture

– Record motion of people to control cartoon characters in animations
– Modify the motion record to obtain slightly different behaviours

• Recognition from motion
– Determine the identity of a moving object
– Assess what the object is doing

• Surveillance
– Detect and track objects in a scene for security
– Monitor their activities and warn if anything suspicious happens

• Targeting
– Decide which objects to target in scene
– Make sure the objects get hit
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Difficulties in Tracking
• Loss of information caused by projection of the 

3D world on a 2D image
• Noise in images
• Complex object motion
• Non-rigid or articulated nature of objects
• Partial and full object occlusions
• Complex object shapes
• Scene illumination changes
• Real-time processing requirements
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Example Tracking Problem
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Human visual motion perception
• Not so accurate and reproducible in quantification

• Good at integrating spatial and temporal information

• Powerful in making associations and predictions

Computer vision challenges
• Integration of spatial and temporal information

• Modeling and incorporation of prior knowledge

• Probabilistic rather than deterministic approach 

Bayesian estimation methods…

Single moving microscopic particle
• Imaged with signal-to-noise ratio (SNR) of 1.5



Motion Assumptions
• When moving objects do not have unique texture or 

colour, the characteristics of the motion itself must 
be used to connect detected points into trajectories

• Assumptions about each moving object:
– Location changes smoothly over time
– Velocity (speed and direction) changes smoothly over time
– Can be at only one location in space at any given time
– Not in same location as another object at the same time
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Topics
• Bayesian inference

Using probabilistic models to perform tracking

• Kalman filtering
Using linear model assumptions for tracking

• Particle filtering
Using nonlinear models for tracking
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Bayesian Inference
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Problem Definition
• A moving object has a state which evolves over time

• The state is measured at each time point

• Measurements are combined to estimate the state
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iXRandom variable:

ixSpecific value:

can contain any quantities of interest 
(position, velocity, acceleration, 

shape, intensity, colour, …)

iYRandom variable:

iySpecific value:

in computer vision the 
measurements are typically 

features computed from the images



Three Main Steps
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• Prediction: use the measurements
up to time         to predict the state at time

0 1 1( , ,..., )iy y y −

1i − i

• Association: select the measurements at time
that are related to the object state

i

• Correction: use the incoming measurement
to update the state prediction

iy



Independence Assumptions
• Current state depends only on the immediate past

• Measurements depend only on the current state

)|,...,()|()|,...,,( ikjiiikji XYYPXYPXYYYP =

0 1 1 1( | , ,..., ) ( | )i i i iP X X X X P X X− −=
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These assumptions imply 
the tracking problem has 
the structure of inference 
on a hidden Markov model
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Tracking by Bayesian Inference
• Prediction
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Tracking by Bayesian Inference
• Correction
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measurement
model

prediction of
current state

constant
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• Prediction

• Correction

In summary, tracking by Bayesian inference is done by 
iterative prediction and correction:

0: 1 1 1 0: 1 1( | ) ( | ) ( | )i i i i i i iP X Y P X X P X Y dX− − − − −= ∫

Tracking by Bayesian Inference
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0: 0: 1( | ) ( | ) ( | )i i i i i iP X Y P Y X P X Y −∝

Posterior at time 𝑖𝑖 − 1

Posterior at time 𝑖𝑖
0: 0 0 1 1( , ,..., )k k kY Y y Y y Y y= = = =



• Measurement model

To make tracking by Bayesian inference work in practice 
you need to design two models:

1( | )i iP X X −

Tracking by Bayesian Inference

• Dynamics model
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( | )i iP Y X

The specific design choices are application dependent



• Example 2: maximum a posteriori (MAP)

Final estimates are computed from the posterior:

Tracking by Bayesian Inference

• Example 1: expected a posteriori (EAP)
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0:ˆ ( | )i i i i i ix x P X x Y dx= =∫

0:ˆ arg max ( | )
ii x i i ix P X x Y= =

These are the most popular ones but others are possible



Tracking by Bayesian Inference
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0:( | )i i iP X x Y=

ix

MAPˆ ixEAPˆ ix



Bayesian Tracking Example
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t

0:( | )i iP X Y
1t i= +

t i=

2t i= +
3t i= +

4t i= +

Estimating the coordinates of a moving particle:

Posterior computed from the image

x

y



Kalman Filtering

Copyright (C) UNSW 19COMP9517 24T2W9 Object Tracking



Probability Density Propagation
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dynamics model

noise

measurement model



Linear / Gaussian Assumption

• The measurement is obtained by multiplying the state by some 
matrix and then adding a zero-mean normal random variable:

i i iy Hx r= +
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If we assume the dynamics (state transition) model and the 
measurement model to be linear, and the noise to be additive 
Gaussian, then all the probability densities will be Gaussians:

𝑥𝑥 ∼ 𝑁𝑁(𝜇𝜇, Σ)

1 1i i ix Ax q− −= +

• The state is advanced by multiplying with some known matrix 
and then adding a zero-mean normal random variable:



Kalman Filtering
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1~ ( , )i ix N Ax Q−

~ ( , )i iy N Hx R

1i ix Ax−
−=

1
T

i iP AP A Q−
−= +

1. Predict state

2. Predict covariance

1( )T T
i i iK P H H P H R− − −= +

( )i i i i ix x K y H x− −= + −

1. Compute Kalman gain

2. Correct state with measurement

3. Correct covariance

( )i i iP I K H P−= −

Prediction

Correction

1i i→ +



Particle Filtering
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Probability Density Propagation
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dynamics model

noise

measurement model



• Represent the conditional state density by a set of samples 
(particles) with corresponding weights (importance)

Non-Linear / Non-Gaussian Case
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( ) ( )
0: 1( | ) { , }n n N

i i i i nP X Y s π =→



• Propagate each sample using the dynamics model and obtain 
its new weight using the measurement model

Particle Filtering
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Particle Filtering Algorithm
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NIPS 1996

https://papers.nips.cc/paper/1996/hash/0829424ffa0d3a2547b6c9622c77de03-Abstract.html


Example Application
Tracking of active contour representations of objects
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Particle filtering is also known variously as sequential Monte Carlo (SMC) 
filtering, bootstrap filtering, the condensation algorithm…



Example Application
Tracking of object location in the presence of clutter
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( , , , )i is x y w h=

Walking pedestrian represented by a 
state vector consisting of a center 
position and a bounding box:

( )n
is (samples)

îs (estimated)

is (truth/annotated)



Example Application
Tracking of object location in the presence of clutter
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https://www.youtube.com/watch?v=j-duyzShJ_o

https://www.youtube.com/watch?v=j-duyzShJ_o


References and Acknowledgements
• Chapters 5 and 8 of Szeliski 2010
• Chapter 18 of Forsyth and Ponce 2011
• Chapter 9 of Shapiro and Stockman 2001
• Paper by M. Isard and A. Blake 1998

CONDENSATION: Conditional density propagation for visual tracking
Available online via the UNSW Library

• Some images drawn from the above references
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https://doi.org/10.1023/A:1008078328650


Example exam question
Which one of the following statements about object 
tracking is incorrect?
A. The particle filtering method assumes that the dynamics model and 

the measurement model can be parameterized.

B. The hidden Markov model assumes that the measurements depend 
only on the current state of the objects.

C. The prediction step of Bayesian inference assumes that the current 
state of the objects depends only on the previous state.

D. The Kalman filtering method assumes that the dynamics and 
measurement noise are additive Gaussian.
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